TOWN OF GLASTONBURY INVITATION TO BID

BID #	<u>ITEM</u>	DATE & TIME REQUIRED
GL-2013-35	Slocomb Property Soil Remediation	June 11, 2013 @ 11:00 A.M.

The Town of Glastonbury is currently seeking bids for remediation of impacted soils at the Town-owned former JT Slocomb property located at 44 and 68 Matson Hill Road, Glastonbury, Connecticut.

Bid Forms and Specifications may be obtained from the Town's website at www.glastonbury-ct.gov or at the Office of the Purchasing Agent, Town Hall, 2155 Main Street, Glastonbury, Connecticut 06033, (second level) for a non-refundable fee of \$100.

<u>Prevailing Wages</u>: The Contractor must comply with Section 31-53 of the Connecticut General Statutes, as amended, including annual adjustments in prevailing wages.

The Town reserves the right to waive informalities or reject any part of, or the entire bid, when said action is deemed to be in the best interests of the Town. All Sealed Bids must be submitted to the Office of the Purchasing Agent no later than the time and date indicated. All bids will be publicly opened and read.

The Town of Glastonbury is an Affirmative Action/Equal Opportunity Employer. Minority/Women/Disadvantaged Business Enterprises are encouraged to bid.

Mary F. Visone Purchasing Agent

TABLE OF CONTENTS	SECTION
INFORMATION FOR BIDDERS	IB
GENERAL CONSTRUCTION SPECIFICATIONS	GCS
SPECIAL CONDITIONS	SC
SOIL REMEDIATION SPECIFICATIONS	SRM
BID PROPOSAL	BP
APPENDIX A: PREVAILING WAGE RATES	
APPENDIX B: TECHNICAL SPECIFICATIONS SECTIONS I THROUGH V	
APPENDIX C: WASTE CHARACTERIZATION DATA	
APPENDIX D: TOWN OF GLASTONBURY CONSERVATION COMMISSION/INLAND WETLANDS APPROVAL	
APPENDIX E: REMEDIAL ACTION PLAN	

SLOCOMB PROPERTY SOIL REMEDIATION INFORMATION FOR BIDDERS

- 1. Sealed bids **(one original and one copy)** on the attached Bid Forms will be received at the Office of the Purchasing Agent, Town Hall, 2155 Main Street, Glastonbury, Connecticut 06033 (second level). At the designated time of opening, they will be publicly opened, read, recorded and placed on file.
- 2. Whenever it is deemed to be in the best interest of the Town, the Town Manager, Purchasing Agent or designated representative shall waive informalities in any and all bids. The right is reserved to reject any bid, or any part of any bid, when such action is deemed to be in the best interest of the Town of Glastonbury.
- 3. The award will be on the basis of bid total cost unless otherwise specified. The bid total cost shall be arrived at by the mathematical calculation of the unit price multiplied times the number of units specified for each line item, and the total sum of all line items in the bid. In the event that the Town finds computational errors in a respondent's bid proposal, the bid total cost shall be recalculated by the Town based on the unit prices contained in the bid proposal.
- 4. Bids will be carefully evaluated as to conformance with stated specifications.
- 5. The envelope enclosing your bid should be clearly marked by bid number, time of bid opening, and date.
- 6. <u>If a bid involves any exception from stated specifications, they must be clearly noted as exceptions, underlined, and attached to the bid.</u>
- 7. The Bid Documents contain the provisions required for the requested item. Information obtained from an officer, agent, or employee of the Town or any other person shall not affect the risks or obligations assumed by the Bidder or relieve him/her from fulfilling any of the conditions of the bid.
- 8. Each Bidder is held responsible for the examination and/or to have acquainted themselves with any conditions <u>at the job site</u> which would affect their work <u>before submitting a bid</u>. Failure to meet this criteria shall not relieve the Bidder of the responsibility of completing the bid <u>without</u> extra cost to the Town of Glastonbury.
- 9. Any bid may be withdrawn prior to the above-scheduled time for the opening of bids or authorized postponement thereof. Any bid received after the time and date specified shall not be considered. No Bidder may withdraw a bid within sixty (60) days after the actual date of the opening thereof. Should there be reasons why a bid cannot be awarded within the specified period, the time may be extended by mutual agreement between the Town and the Bidder.
- 10. Each bid must be accompanied by a bid bond payable to the Town for ten percent (10%) of the total amount of the bid. The bid bond of the successful Bidder will be retained until the payment bond and performance bond have been executed and approved, after which it will be returned. A certified check may be used in lieu of a bid bond. The Town of Glastonbury will not be liable for the accrual of any interest on any certified check submitted. Cashier's checks will not be accepted.
- 11. A 100% Performance and Payment bond are required of the successful bidder. This bond shall cover all aspects of the specification and shall be delivered to the Purchasing Agent prior to the issuance of a purchase order. The Performance and Payment Bond will be returned upon the delivery and acceptance of the bid items.
- 12. The Bidder agrees and warrants that in the submission of this sealed Bid, they will not discriminate or permit discrimination against any person or group of persons on the grounds of

SLOCOMB PROPERTY SOIL REMEDIATION INFORMATION FOR BIDDERS

race, color, religion, national origin, sex, or physical disability including, but not limited to blindness, unless it is shown by such Bidder that such disability prevents performance of that which must be done to successfully fulfill the terms of this sealed Bid or in any manner which is prohibited by the laws of the United States or the State of Connecticut: and further agrees to provide the Human Relations Commission with such information requested by the Commission concerning the employment practices and procedures of the Bidder. An Affirmative Action Statement will be required by the successful Bidder.

- 13. Bidder agrees to comply with all of the latest Federal and State Safety Standards and Regulations and certifies that all work required in this bid will conform to and comply with said standards and regulations. Bidder further agrees to indemnify and hold harmless the Town for all damages assessed against the Town as a result of Bidder's failure to comply with said standards and/or regulations.
- 14. All correspondence regarding any purchase made by the Town of Glastonbury shall reference the Town's purchase order number. Each shipping container shall clearly indicate both Town purchase order number and item number.
- 15. Bidder is required to review the Town of Glastonbury Code of Ethics adopted July 8, 2003 and effective August 1, 2003. Bidder shall acknowledge that they have reviewed the document in the area provided on the bid/proposal response page (BP). The selected Bidder will also be required to complete and sign an Acknowledgement Form prior to award. The Code of Ethics and the Consultant Acknowledgement Form can be accessed at the Town of Glastonbury website at www.glastonbury-ct.gov. Upon entering the website click on Bids & RFPs which will bring you to the links for the Code of Ethics and the Consultant Acknowledgement Form. If the Bidder does not have access to the internet, a copy of these documents can be obtained through the Purchasing Department at the address listed within this bid/proposal.

16. Non-Resident Contractors:

The Town is required to report names of non-resident (out-of-State) contractors to the State of Connecticut, Department of Revenue Services (DRS) to ensure that Employment Taxes and other applicable taxes are being paid by Contractors. **Upon award, all non-resident contractors must furnish a five percent (5%) sales tax guarantee bond (State Form AU-766) or a cash bond for five percent (5%) of the total contract price (State Form AU-72) to DRS even though this project is exempt from most sales and use taxes.**

See State Notice to Non-Resident Contractors SN 2005 (12). If the above bond is not provided, the Town is required to withhold five percent (5%) from the contractor's payments and forward it to the State DRS.

The contractor must promptly furnish to the Town a copy of the **Certificate of Compliance** issued by the State DRS.

- 17. Bidder shall include on a sheet(s) attached to its proposal a complete disclosure of all past and pending mediation, arbitration and litigation cases that the bidder or its principals (regardless of their place of employment) have been involved in for the most recent five years. Please include a statement of the issues in dispute and their resolution. Acceptability of Bidder based upon this disclosure shall lie solely with the Town.
- 18. Bidder or its principals, regardless of their place of employment, shall not have been convicted of, nor entered any plea of guilty, or nolo contendere, or otherwise have been found civilly liable or criminally responsible for any criminal offense or civil action. Bidder shall not be in violation of

SLOCOMB PROPERTY SOIL REMEDIATION INFORMATION FOR BIDDERS

any State or local ethics standards or other offenses arising out of the submission of bids or proposals, or performance of work on public works projects or contracts.

19. It is the responsibility of the bidder to check the Town's website before submitting bid for addendums posted prior to bid opening.

20. Prevailing Wage Rates:

Respondents shall comply with State Statutes concerning Employment and Labor Practices, if applicable, and Section 31-53 of the Connecticut General Statutes, as amended (Prevailing Wages). Wage Rate Determination for this project from the State of Connecticut is included in the Bid Documents. Certified payrolls for site labor shall be submitted weekly to the Town's Representative or his designee on the correct State of Connecticut form. The Town reserves the right to, without prior notice, audit payroll checks given to workers on site in order to ascertain that wages and fringe benefits are being paid as required by the State of Connecticut. Please make special note of the State requirement to adjust wage and fringe benefit rates on each July 1st following the original published rates.

NOTE that respondent is to include in its proposal all costs required by such annual increases in the PREVAILING RATES. NO escalation clauses are to be included in the respondent's proposal and NO escalation clauses will be in the Contract Agreement. Respondent is to anticipate any future increases and include these costs in the proposal response.

Contractor's invoices will not be paid if certified payrolls are incomplete, incorrect, or not received in a timely manner.

All Apprentices must be registered with the State of Connecticut and their number shall not exceed the number allowed by law. Otherwise, all workers must be paid at least the Journeyman rate listed, including benefits.

OSHA SAFETY AND CERTIFICATION

<u>Effective July 1, 2009</u>: Any Mechanic, Laborer, or Worker who performs work in a classification listed on the Prevailing Wage Rate Schedule on any public works project covered under C.G.S. Section 31-53, both on site and on or in the public building, must have completed a Federal OSHA Safety and Health course within the last five (5) years.

20. <u>Each bid shall also include a description of three (3) projects completed by the bidder with</u> references to demonstrate successful experience with similar projects.

<u>IMPORTANT</u>: Failure to comply with general rules may result in disqualification of the Bidder.

NOTE:

Any technical questions regarding this bid shall be made in writing (email acceptable) and directed to Daniel A. Pennington, Town Engineer/Manager of Physical Services, 2155 Main Street. P.O. Box 6523. Glastonbury, CT 06033: Email: daniel.pennington@glastonbury-ct.gov. Telephone: (860) 652-7744 between the hours of 8:00 a.m. - 4:30 p.m. For administrative questions concerning this bid/proposal, please contact Mary F. Visone, Purchasing Agent, at (860) 652-7588 or email the Purchasing Department at purchasing@glastonbury-ct.gov. All questions, answers, and/or addenda, as applicable, will be posted on the Town's website at www.glastonburyct.gov. (Upon entering the website click on Bids & RFP's). The request must be received at least five (5) business days prior to the advertised response deadline. It is the respondent's responsibility to check the website for addenda prior to submission of any bid/proposal.

SLOCOMB PROPERTY SOIL REMEDIATION GENERAL CONSTRUCTION SPECIFICATIONS

WORKMANSHIP, MATERIALS AND EMPLOYEES Wherever in this contract the word "Engineer" is used, it shall be understood as referring to the Town Engineer/Manager of Physical Services of the Town of Glastonbury acting personally or through any assistants duly authorized. The entire work described herein shall be completed in accordance with the plans and

- The entire work described herein shall be completed in accordance with the plans and specifications to the full intent and meaning of the same. Unless otherwise specified, all materials incorporated in the permanent work shall be new, and both workmanship and material shall be of good quality. The Contractor shall, if required, furnish satisfactory evidence as to the kind and quality of materials.
- O1.03 The wording "furnish", "install", "construct", "furnish and install", or any similar terms, unless specifically noted to the contrary, shall include all labor, materials, water, tools, equipment, light, power, transportation, and any other services required for the completion of the work.
- O1.04 The Contractor shall at all times enforce strict discipline and good order among his employees, and shall seek to avoid employing on the work any unfit person or anyone not skilled in the work assigned to him.

02.00 SUPERINTENDENT

O2.01 The Contractor shall keep on the work during its progress, in the absence of the Contractor, a competent Superintendent. The Superintendent shall be acceptable to the Engineer and shall fully represent the Contractor. All directions given to the Superintendent shall be binding as if given to the Contractor.

03.00 PRECONSTRUCTION MEETING

O3.01 A Preconstruction Meeting will be held with the Engineer, Contractor, and any private utility company prior to commencing any work. The Engineer shall arrange the meeting based on a mutually convenient time.

04.00 PERMITS

Other than local permits, all permits, licenses, and fees required for the performance of the Contract work shall be secured and paid for by the Contractor.

05.00 PROPERTY ACCESS

- O5.01 The Contractor shall take all proper precautions to protect from injury or unnecessary interference, and provide proper means of access to abutting property where the existing access is cut off by the Contractor.
- 05.02 The Contractor shall take all proper precautions to protect persons from injury or unnecessary inconvenience and leave an unobstructed way along the public and private places for travelers, vehicles, and access to hydrants.

SLOCOMB PROPERTY SOIL REMEDIATION GENERAL CONSTRUCTION SPECIFICATIONS

O5.03 The Contractor shall make arrangements with the adjacent property owners for such trespass as he may reasonably anticipate in the performance of the work. All such arrangements shall be reported, in writing, to the Engineer.

06.00 PROTECTION OF THE PUBLIC AND OF WORK AND PROPERTY

- O6.01 The Contractor shall continuously maintain adequate protection of all work from damage, and shall take all reasonable precautions to protect the Town from injury or loss arising in connection with the Contract.
- O6.02 The Contractor shall adequately protect adjacent private and public property as provided by law and the Contract Documents.
- O6.03 The Contractor shall make good any damage, injury, or loss of his work and to the property of the Town resulting from lack of reasonable protective precautions.

07.00 EXISTING IMPROVEMENTS

- 07.01 The Contractor shall conduct his work so as to minimize damage to existing improvements. Except where specifically stated otherwise in the specifications, drawings, or as directed by the Engineer, it will be the responsibility of the Contractor to restore to their original condition, as near as practical, all improvements on public or private property. This shall include:
 - a. Property within and adjacent to the side of installation such as shrubs, walks, driveways, fences, etc.
 - b. Utility mains, ducts, poles, and services. The Contractor is hereby notified that utilities, if/where shown on the plans, are at approximate locations. These locations are subject to possible errors in the source of information and errors in transcription. The Contractor shall make certain of the exact location of all mains, ducts, poles, and services prior to excavation.

08.00 SEPARATE CONTRACTS

O8.01 The Engineer reserves the right to let other contracts in connection with this work. The Contractor shall afford other contractors reasonable opportunity for the introduction and storage of their materials and the execution of their work, and shall properly connect and coordinate his work with theirs. Wherever work being done by the Town of Glastonbury forces or by other contractors is contiguous to work covered by this Contract, the respective rights of the various interests involved shall be established by the Engineer to secure the completion of the various portions of the work.

09.00 INSPECTION OF WORK

- 09.01 The Town shall provide sufficient personnel for the inspection of the work.
- O9.02 The Engineer shall at all times have access to the work whenever it is in preparation or progress, and the Contractor shall provide proper facilities for such access and for inspection.

SLOCOMB PROPERTY SOIL REMEDIATION GENERAL CONSTRUCTION SPECIFICATIONS

- 09.03 If the specifications or the Engineer's instructions require any work to be specially tested or approved, the Contractor shall give the Engineer timely notice of its readiness for inspection and, if the inspection is by another authority other than the Engineer, of the date fixed for such inspection. Inspections by the Engineer shall be made promptly. If any work should be covered up without approval or consent of the Engineer, it must, if required by the Engineer, be uncovered for examination and properly restored at the Contractor's expense.
- O9.04 Reinspection of any work may be ordered by the Engineer. If such work is found to be in accordance with the Contract Documents, the Town shall pay the cost of reinspection and replacement. If such work is not in accordance with the Contract Documents, the Contractor shall pay such cost.

10.00 RIGHT TO INCREASE OR DECREASE WORK

10.01 The Town shall have the right to increase or decrease the amount of work herein specified as may be required.

11.00 RIGHT OF ENGINEER TO STOP WORK FOR WEATHER CONDITIONS

Should the work, in the opinion of the Engineer, be in danger by reason of inclemency of weather, or could not be finished in time to prevent such danger, the Contractor shall cease operations upon order of the Engineer, and shall not resume them until ordered to do so by the Engineer when the weather conditions are favorable. The Contractor shall, upon such orders, discontinue work, remove all materials or appliances for or in use upon the work, and place the streets in proper condition for use by the public during the time the work is suspended as herein provided, without cost to the Town.

12.00 CONTRACTOR TO BE RESPONSIBLE FOR IMPERFECT WORK OR MATERIALS

Any faithful work or imperfect material that may be discovered before the acceptance and the payment of the work shall be corrected upon the order of the Engineer. The acceptance and payment of the work does not in any manner relieve the Contractor of his obligation to construct work in the proper manner and the use of materials herein specified.

13.00 TOWN MAY NOTIFY CONTRACTOR IF WORK IS NOT CARRIED ON SATISFACTORILY

- If, in the opinion of the Engineer, the Contractor is not proceeding with the work at a sufficient rate of progress so as to finish in the time specified, or has abandoned said work, or is not complying with the terms and stipulations or the Contract and specifications, the Engineer may serve notice on the Contractor to adopt such methods as will ensure the completion of the work in the time specified.
- If, within five days after the Engineer has notified the Contractor that his work is not being carried on satisfactorily as before mentioned, the Engineer shall have the right to annul the Contract and manage the work under the direction of the Engineer, or re-let, for the very best interest of the Town as a new contract, the work under said new Contract shall be considered the responsibility of the defaulting Contractor.

13.03 Additional costs incurred over and above the original Contract shall be borne by the Performance Bond.

14.00 DEDUCTIONS FOR UNCORRECTED WORK

- 14.01 If the Engineer deems it inexpedient to correct work that has been damaged or that was not done in accordance with the Contract, an equitable deduction from the Contract price shall be made therefor.
- The Contractor shall promptly remove from the premises all materials condemned by the Engineer as failing to meet Contract requirements, whether incorporated in the work or not, and the Contractor shall promptly replace and re-execute his own work in accordance with the Contract and without expense to the Town, and shall bear the expense of making good all work by other contractors destroyed or damaged by such removal or replacement.
- 14.03 If the Contractor does not remove such condemned work and materials as promptly as possible after written notice, the Engineer may remove them and store the materials at the expense of the Contractor.

15.00 CLEANING UP

- 15.01 The Contractor must remove all debris of every description as the work progresses and leave the surroundings in a neat and orderly condition to the satisfaction of the Engineer.
- Upon completion, and before acceptance and final payment, the Contractor shall remove from the site all equipment, forms, surplus material, rubbish and miscellaneous debris and leave the site in a neat and presentable condition.

16.00 ROYALTIES AND PATENTS

The Contractor shall pay all royalties and license fees. He shall defend all suits or claims for infringement of any patent rights and shall save the Town of Glastonbury harmless from loss on account thereof, except that the Town of Glastonbury shall be responsible for all such loss when a particular manufacturer, product, or process is specified by the Town of Glastonbury.

01.00 NOTICE TO CONTRACTOR

- 01.01 Intent of Contract: The intent of the Contract is to prescribe a complete work or improvement that the Contractor undertakes to do, in full compliance with the specifications, plans, special provisions, proposal, and Contract. The Contractor shall perform all work in close conformity with the lines, grades, typical cross-sections, dimensions, and other data shown on the plans or as modified by written orders, including the furnishing of all materials, implements, machinery, equipment, tools, supplies, transportation, labor, and all other things necessary to the satisfactory prosecution and completion of the project.
- O1.02 The Contractor is hereby alerted to the fact that the State of Connecticut Department of Transportation Standard Specifications for Roads, Bridges and Incidental Construction, Form 816 (Form 816) and supplements thereto are to be considered part of the Contract Documents. The Form 816 shall not be provided by the Town and any cost associated therewith shall be the responsibility of the Contractor. In case of any discrepancy between the Contract Drawings or Specifications and the Form 816, the matter shall immediately be submitted to the Engineer. The Engineer shall have sole authority in resolving any discrepancies.
- Much time and effort has gone into this project in an effort to minimize impact on trees and adjacent properties. Extreme care shall be taken by the Contractor to honor commitments made by the Town. Prior to doing any work, the Contractor should meet with the Engineer to become familiar with the conditions encountered and commitments made.

02.00 COMMUNICATIONS

- O2.01 All notices, demands, requests, instructions, approvals, proposals, and claims must be in writing.
- O2.02 Any notice to, or demand upon, the Contractor shall be sufficiently given if delivered at the office of the Contractor stated on the signature page of the Agreement (or at such other office as the Contractor may, from time to time, designate) in a sealed, postage-prepaid envelope or delivered with charges prepaid to any telegraph company for transmission, in each case addressed to such office.
- All papers required to be delivered to the Town shall, unless otherwise specified in writing to the Contractor, be delivered to the Town Engineer/Manager of Physical Services, 2155 Main Street, Glastonbury, CT 06033, and any notice to, or demand upon, the Town shall be delivered at the above address in a sealed, postage-prepaid envelope or delivered with charges prepaid to any telegraph company for transmission, in each case addressed to such office or to such other representatives of the Town, or to such other address as the Town may subsequently specify in writing to the Contractor for such purpose.
- O2.04 Any such notice shall be deemed to have been given as of the time of actual delivery or, in case of mailing, when the same should have been received in due course of post or, in the case of telegrams, at the time of actual receipt, as the case may be.

03.00 PARTIAL USE OF IMPROVEMENTS

O3.01 The Town may, at its election, give notice to the Contractor and place in use those sections of the work that have been completed, inspected and can be accepted as complying with the Contractor Documents and if, in its opinion, each such section is reasonably safe and fit for the use and accommodation for which it was intended, provided:

- a. The use of such sections of the work shall not materially impede the completion of the remainder of the work by the Contractor.
- b. The Contractor shall not be responsible for any damages or maintenance costs due directly to the use of such sections.
- c. The use of such sections shall in no way relieve the Contractor of his liability due to having used defective materials or to poor workmanship.
- d. The period of guarantee shall not begin until the date of the final acceptance of all work required under this Contract.

04.00 INSURANCE

O4.01 The Contractor shall, at its own expense and cost, obtain and keep in force during the entire duration of the Project or Work the following insurance coverage covering the Contractor and all of its agents, employees and sub-contractors and other providers of services and shall name the Town and the Board of Education, its employees and agents as an Additional Insured on a primary and non-contributory basis to the Bidders Commercial General Liability and Automobile Liability policies. These requirements shall be clearly stated in the remarks section on the Contractors Certificate of Insurance. Insurance shall be written with Insurance Carriers approved in the State of Connecticut and with a minimum Best's Rating of A-. In addition, all carriers are subject to approval by the Town. Minimum limits and requirements are stated below:

- a. Worker's Compensation Insurance:
 - Statutory Coverage
 - Employer's Liability
 - \$100,000 each accident/\$500,000 disease-policy limit/\$100,000 disease each employee
- b. <u>Commercial General Liability</u>:
 - Including Premises and Operations, Products and Completed Operations, Personal and Advertising Injury, Contractual Liability and Independent Contractors
 - Limits of Liability for Bodily Injury and Property Damage Each Occurrence: \$1,000,000
 Aggregate: \$2,000,000

(The Aggregate Limit shall apply separately to each job.)

A Waiver of Subrogation shall be provided.

c. Automobile Insurance:

- Including all owned, hired, borrowed, and non-owned vehicles
- Limit of Liability for Bodily Injury and Property Damage Per Accident: \$1,000,000
- The Bidder shall direct its Insurer to provide a Certificate of Insurance to the Town before any work is performed. The Contractor shall be responsible to notify the Town 30 days in advance with written notice of cancellation or non-renewal. The Certificate shall evidence all required coverage on the General Liability and Auto Liability policies including the Additional Insured and Waiver of Subrogation on the General Liability policy. The Bidder shall provide the Town copies of any such insurance policies upon request.
- INDEMNIFICATION: To the fullest extent permitted by law, the Contractor shall indemnify and hold harmless the Town and the Board of Education and its consultants, agents, and employees from and against all claims, damages, losses and expenses, direct, indirect or consequential (including but not limited to fees and charges of engineers, attorneys and other professionals and court and arbitration costs) to the extent arising out of or resulting from the performance of the Contractor's work, provided that such claim, damage, loss or expense is caused in whole or in part by any negligent act or omission by the Contractor, or breach of its obligations herein or by any person or organization directly or indirectly employed or engaged by the Contractor to perform or furnish either of the services, or anyone for whose acts the Contractor may be liable.

05.00 WORK BY OTHERS

O5.01 Private utilities, contractors, developers or other parties may be expected to be working within the Contract area during this Contract. It shall be the responsibility of the Contractor to coordinate his work with the work being done by others in order that the construction shall proceed in an efficient and logical manner. The Contractor shall have no claim or claims whatever against the Town, the Engineer, or other parties due to delays or other reasons caused by the work by others or his failure to coordinate such work.

06.00 CONTRACTOR'S WORK AND STORAGE AREA

O6.01 The Contractor shall contact the Town to determine if any specific locations will be designated, or gain its approval prior to using any area for storage of equipment, materials and trailers during the period of this Contract. The Contractor shall confine his work/storage area to the limits as designated or approved and shall be responsible for the security of the work/storage area. Upon completion of the Contract, the Contractor shall remove all equipment and materials, except as otherwise specified, and restore the site to its original condition as approved by the Engineer and at not cost to the Town.

07.00 DISPOSAL AREA

07.01 Disposal of impacted soils shall be accomplished in accordance with the Detailed Construction Specifications contained herein.

08.00 DUST CONTROL

08.01 During the progress of the work, the Contractor shall conduct his operations and maintain the area of his activities so as to minimize the creation and dispersion of dust. If the Engineer decides that it is necessary to use water or calcium chloride for more effective dust control, the Contractor shall furnish and spread the material, as directed, without additional compensation.

09.00 MAINTENANCE/GUARANTEE PERIOD

09.01 The Contractor shall be held responsible to the Town for maintenance for a minimum of one-year following completion of all work under this Contract with respect to defects, settlements, etc.

10.00 PROTECTION OF EXISTING UTILITIES

- Prior to opening an excavation, effort shall be made to determine whether underground installations (i.e. sewer, water, fuel, electric lines, etc.) will be encountered and, if so, where such underground installations are located. Before starting any excavation, the Contractor shall submit to the Engineer plans or details showing the proposed method the Contractor will use to support and protect all existing utilities during construction. The furnishing of such plans and details shall not serve to relieve the Contractor of any responsibility for the proper conduct of the work.
- When the excavation approaches the estimated location of such an installation, the exact location shall be determined by careful probing or hand digging, and when it is uncovered, proper supports shall be provided for the existing installation. Utility companies shall be contacted and advised of proposed work prior to the start of actual excavation.
- There will be no extra payment for submitting plans or details for supporting and protecting all existing utilities during construction.

11.00 TIME FOR COMPLETION/NOTICE TO PROCEED

- 11.01 Within ten (10) calendar days after the date of the Notice of Award, the Contractor must provide the appropriate bond and insurance certificates to the Town Purchasing Agent and must be issued a Purchase Order for the Project prior to initiating any work.
- The work under this Contract shall commence within twenty-one (21) calendar days of the Notice to Proceed/Purchase Order. After the work has begun, it shall continue in an orderly fashion, such that all base Contract work is completed within twenty-one (21) calendar days from the date of commencement.
- When the Contract time is stated on a calendar-day basis, that time shall be the number of consecutive calendar days contained in the Contract period, excluding the time period from each December 1st through the following March 31st (the "winter shutdown period"). The time will be computed as herein provided on a consecutive-day basis, including all Saturdays, Sundays, holidays, and non-work days from April 1st through November 30th of each included year. Time will not be charged for days in the winter shutdown period.

If the Engineer so approves, the Contractor may work on certain tasks of the Project during the winter shutdown period with no charge being made against the Contract time.

12.00 LIQUIDATED DAMAGES

As actual damages for any delay in completion of the work that the Contractor is required to perform under this Contract are impossible to determine, the Contractor and the Sureties shall be liable for and shall pay to the Town the sum of \$250.00 as fixed, agreed and liquidated damages for each calendar day of delay from the above-stipulated completion, or completion as modified in writing by both parties, until such work is satisfactorily completed and accepted.

13.00 CHANGES IN THE WORK

The Town reserves the right to perform portions of the work in connection with these plans and specifications. The reduction in the work to be performed by the Contractor shall be made without invalidating the Contract. Whenever work is done by the Town contiguous to other work covered by this Contract, the Contractor shall provide reasonable opportunity for the execution of the work and shall properly coordinate his work with that of the Town.

14.00 LAYOUT OF WORK

The Town shall provide stake-out of the work in accordance with the plans or as directed by the Engineer. The Contractor shall protect all stakes from damage or destruction and shall be responsible to assure that the grade stakes have not been altered prior to actual construction. The Town shall replace grade stakes that have been removed, at no cost to the Contractor, if their removal was caused by reasons beyond reasonable care and protection by the Contractor. If it is determined by the Engineer that the Contractor did not provide reasonable protection, the cost of restaking will be deducted from any amounts due the Contractor in the performance of the work.

15.00 REMOVAL AND STORAGE OF MATERIALS AND STRUCTURES FOUND ON THE WORK

All salvable materials, including topsoil, gravel, fill materials, etc. and structures, including drainage pipes, catch basins and manhole frames and covers, guide railing, etc. that are not to remain in place or that are not designated for use in the work, shall be carefully removed by the Contractor and stored at such places as directed by the Engineer. All salvable materials removed and stored shall remain the property of the Town. The Engineer shall determine the materials or structures to be salvaged.

16.00 PROSECUTION AND PROGRESS

The Contractor shall give the Engineer a seven-day advance written notice of construction activities that will alter traffic patterns that result in lane shifts, detours, temporary closures of lane(s), permanent closure of lane(s), or lane reductions. This advance notification will allow the Town to publish news releases and/or provide public radio announcements to inform the public of revised traffic patterns or possible traffic

delays. Failure of the Contractor to provide such timely notice shall be considered a breach of Contract and will subject the Contractor to stop work orders until such time as the seven-day notice has been satisfied.

17.00 EXTRA WORK AND RETAINAGE

- 17.01 Extra and cost plus work shall be governed by Article 1.04.05 and Article 1.09.04 of the Form 816.
- 17.02 Retainage shall be governed by Article 1.09.06 of the Form 816, except that the retainage amount shall be equal to five (5) percent.

18.00 COMPLIANCE WITH ENVIRONMENTAL PERMITS

A Town of Glastonbury Inland-Wetland Permit was issued for this project. This permit approval is included in the Appendix of this Bid Document for reference by the Contractor. By submitting a bid, the Contractor confirms that they have read and are familiar with all of the required conditions of these permits and will conduct the work in a manner consistent with these requirements.

19.00 SUBMITTALS AND MATERIALS TESTING

- The Contractor shall provide source and supply information, sieve analysis, and material samples for gravel subbase, process stone base, modified riprap, and other granular materials to the Town for review and approval if not obtained at the Town's Bulky Waste Facility. The Town shall retain a lab for testing of these materials as required and shall perform in-place compaction testing at no expense to the Contractor.
- 19.02 Shop drawings/catalog cuts shall be provided by the Contractor for all pre-cast concrete structures, pipes and fittings, erosion control products, seed mixes, and other items to be supplied for review and approval by the Engineer as described in the specifications and the Form 816.
- 19.03 Mix designs for all bituminous and Portland cement concrete materials shall be provided by the Contractor to the Engineer for review and approval.
- 19.04 Certified Materials Test Reports and Materials Certificates shall be provided for all products and materials to be provided under this contract as described in these specifications and the Form 816.

SOIL REMEDIATION SPECIFICATIONS

Former J.T. Slocomb Facility 44 and 68 Matson Hill Road Glastonbury, CT

May 2013

Ref. No. 103139

Prepared for:

The Town of Glastonbury 2155 Main Street Glastonbury, CT 06033

Prepared by:

REMEDIATION SPECIFICATIONS FORMER JT SLOCOMB FACILITY 44 AND 68 MATSON HILL ROAD GLASTONBURY, CT

ENVIRONMENTAL SUMMARY

INTRODUCTION

The Town of Glastonbury (owner) is soliciting bids from qualified contractors to complete the remediation of certain impacted soils at its property located at 44 and 68 Matson Hill Road in Glastonbury, Connecticut. During environmental investigations at the site, four areas have been identified where soils exhibit concentrations of either extractable total petroleum hydrocarbons (ETPH) and/or volatile organic compounds (VOCs) in excess of numeric criteria contained in the Department of Energy and Environmental Protection (DEEP) Remediation Standard Regulations (RSRs). Compliance with the RSRs is required given that the site is subject to the Connecticut Transfer Act.

A Remedial Action Plan (RAP) has been developed to address the environmental impacts in accordance with the RSRs; the RAP is included as Appendix E of these specifications. As indicated in the RAP, the Town of Glastonbury has elected to remediate the impacted soil through excavation and off-site disposal. The locations of the four remedial areas are shown on EV.1 of the specifications (Appendix A).

In 2011, the Town of Glastonbury's Conservation Commission/Inland Wetland Agency reviewed and approved the demolition of the former building at the site as well as the proposed remedial actions. The review by the Conservation Commission was required because the remedial areas are located within the upland review area adjacent to Roaring Brook. Part of this approval required the installation of sediment and erosion control measures as indicated in the application drawings. The Contractor must complete the remedial actions in accordance with the conditions of this approval (which is included as Appendix D).

During the demolition of the former building at the site, portions of the concrete slab were left in place overlying the areas of impact. Where the remedial areas were below bituminous concrete pavement, sections of the pavement were left in place. Removal and proper disposal of this concrete and asphalt is also a component of these remedial actions.

Given that the site is subject to the Transfer Act, the environmental sampling and documentation will be conducted by Triton Environmental, Inc. (the Consultant) and its Licensed Environmental Professional to verify that the remedial actions achieve compliance with the RSRs. The Contractor shall be responsible for means and methods of proper excavation, loading, and disposal of the soil at a licensed off-site disposal facility as well as backfilling of the excavations with clean fill.

SUMMARY OF ENVIRONMENTAL CONDITIONS

Triton and others have completed previous remediation activities and environmental investigations at the site, including Phase I, Phase II, and Phase III Environmental Site Assessments (ESAs). During the course of these investigations, soil and groundwater samples have been collected and analyzed to investigate each identified area of concern in accordance with prevailing standards and guidelines. The analytical results of these samples have been summarized in the tables included in the enclosed Remedial Action Plan (RAP), which is provided in Appendix B. Based on these results, four areas have been identified where compounds of concern in soil exceed RSR criteria.

The RAP calls for the excavation of the soil which exceeds RSR criteria in the following four areas which are depicted in Figure EV.1 (and in Figure 2 of the RAP):

RA 1 - Western Building Area – VOCs (primarily trichloroethylene) have been identified in soil beneath the western portion of the former building at concentrations exceeding RSR criteria. An estimate of approximately 650 cubic yards (cy) of impacted soil shall be excavated from an approximately 2,900 square foot area to the depth of the seasonal low water table, approximately six feet below grade. Removal and disposal of the remaining concrete slab will be required to remediate this area.

RA 3 - Former 12,000 Gallon Underground Storage Tank (UST) and Storage Area - Petroleum hydrocarbons (and free phase product) were historically detected in the rear of the former building in the vicinity of a former UST. Previously accessible areas were excavated to remediate the bulk of these soils. However, additional impacted soils remained below and in the immediate vicinity of the former building at several locations at concentrations exceeding RSR criteria. Now that the building has been removed, these areas are accessible for excavation. Approximately 400 cy of soil shall be excavated from an approximately 1,300 square foot area to the depth of the seasonal low water table (approximately eight feet below grade) in this area. Removal and disposal of the remaining concrete slab and asphalt pavement will be required to remediate this area.

RA 4A and RA 4B - Eastern Building Area - VOCs have been detected in soil beneath the eastern portion of the former building (two locations) at concentrations that exceed RSR criteria. These areas have been identified as RA-4A and RA-4B. RA-4A consists of an approximately 250 square foot and RA-4B covers approximately 1,150 square feet. Each area will require excavation to the depth of the seasonal low water table, which is estimated at approximately six feet below grade. The estimated volumes are approximately 55 cy (RA-4A) and 255 cy (RA-4B). Removal and disposal of the remaining concrete slab and a limited area of asphalt will be required to remediate these areas.

Tables summarizing all of the soil and groundwater analytical data collected at the site are included in the RAP (Appendix E).

GENERAL SCOPE OF WORK

The Contractor shall be responsible for the following general Scope of Work (SOW), which is not intended to be all inclusive. The Contractor shall also use their experience in determining appropriate efforts to complete the specified activities. All work shall be conducted in accordance with the SOW, the Technical Plans and Specifications (Appendix A), the conditions of the approval by the Conservation Commission (Appendix D), and in accordance with government regulations and industry standards. The work shall also be conducted in accordance with terms and conditions specified in the Contract with the Town. Due to the residential nature of the site vicinity, site work associated with this contract will be limited to between the hours of 7:00 a.m. to 3:30 p.m, Monday through Friday.

- 1. **Health and Safety** Includes all necessary work, equipment, and material related to preparation and adherence to a site specific Health and Safety Plan.
- 2. **Erosion Controls** Includes all work related to installation of erosion controls previously approved by the Town, including but not limited to the installation of silt fencing and siltsack sediment control device at existing catch basins in accordance with the Town's approval. Although not part of the prior Town approval, an antitracking pad will also be required. This task also includes dust control with water or other materials as necessary, and removal and disposal of all erosion control materials at the project end.
- 3. **Removal and Stockpiling of Concrete Slabs and Asphalt Pavement** Includes all work related to the excavation and stockpiling of the remaining concrete slab and asphalt pavement overlying the remedial areas. Disposal of these materials is not included in the contract.
- 4. **Excavation of Impacted Soils** Includes all work related to the excavation of known or suspected impacted soils identified above RSR standards as directed by the Consultant.
- 5. **Dust Control** Includes all work related to the control of fugitive dust during the remedial work.
- 6. **Backfill and Site Restoration** Includes all work related to the backfilling of the remedial excavations with clean fill. Clean fill will be provided by the Town. The Contractor shall be responsible for picking up clean fill at the Town of Glastonbury's bulky waste facility on Tryon Street in Glastonbury where the Town will load the Contractors trucks.
- 7. **Regulated Soil Transportation and Disposal** Includes all necessary work related to coordination, loading, transportation, tipping fees, and disposal surcharges associated with removal and proper disposal of Connecticut regulated soil from the site. The ultimate disposal location shall be selected by the Contractor and shall be

approved in writing by the Owner. The Owner will be the designated "Generator" of all waste materials.

- 8. **Hazardous Soil Transportation and Disposal (If Necessary)** Includes all necessary work related to loading, transportation, tipping fees, and disposal surcharges associated with removal and proper disposal of hazardous waste soils (if identified) from the site to a RCRA Subtitle C landfill. The ultimate disposal location shall be selected by the Contractor and shall be approved in writing by the Owner.
- 9. **Provide Insurance** Includes all costs for insurance as required by the Owner.

WASTE CHARACTERIZATION

In order to facilitate the direct loading of soil from the four excavation areas, representative soil samples from each area were collected in advance by the Consultant. Waste characterization samples were collected from RA-1 (WC-1), RA-4A and 4B (WC-2), and RA-3 (WC-3 and WC-4). Tables that summarizes the analytical testing data for these four waste characterization samples is provided in Appendix C along with the laboratory analytical data.

Based on the waste characterization sample data, the soil is believed to be non-hazardous, Connecticut regulated soil as it complies with Connecticut's RCRA "Contained-In" Policy. However, this policy only applies to disposal in the State of Connecticut. The Contractor will be responsible for reviewing this information and confirming that the disposal facilit(ies) to be used for disposal of the excavated soil can accept the soils based on this profile.

Additional waste characterization sampling may be required pending final excavated soil volumes and disposal facility requirements. If needed, such data will be collected by the Consultant and provided to the Contractor.

SUBMITTALS

The following sections describe the required submittals and schedule for submittals. Failure to include all of the required information in the bid package may be construed as grounds to void the bid.

- A. The following shall be submitted with the Contractor's bid:
 - 1. The Contractor shall submit with their bid a statement of qualifications including their experience in conducting this type of work, including examples of at least three similar projects, with contact information for the projects.
 - 2. The Contractor shall submit a Work Plan and Schedule detailing the expected times and duration of site remediation activities.

- 3. The Contractor shall submit the name, location and qualifications of subcontractors anticipated to be used during the project, including transporters and waste disposal facilities. The Contractor shall provide options for disposal of Connecticut regulated waste soils and liquids and hazardous waste soils.
- 4. The Contractor shall submit with their bid any qualifications, exclusions, or special information regarding the work they care to add.
- B. The **selected** Contractor shall submit the following at least two weeks prior to initiation of site activities:
 - 1. The Contractor shall review the site background and analytical data and shall submit a letter certifying that they have reviewed the data, evaluated health and safety requirements, and will comply in all aspects with OSHA regulations codified in 29 CFR 1910.120 and 29 CFR 1926. The health and safety of the Contractor's employees remains solely the responsibility of the Contractor.
 - 2. The Contractor shall submit a Health and Safety Plan and is responsible for implementing the plan.
 - 3. The Contractor shall submit for written approval a report describing a program for the proposed transportation of all waste materials generated on this contract, including identification of transport routes, traffic control items and anticipated schedule.

Note that details regarding each of the aforementioned technical submittals required of the selected Contractor are provided in the specifications.

SLOCOMB PROPERTY SOIL REMEDIATION BID PROPOSAL

BID #GL-2013-35

Proposal of				
(hereinafter called "Bidder"), organized and existing under the laws of the State of				
, doing business as				
To the Town of Glastonbury (hereinafter called "Town").				
In compliance with your Invitation to Bid, the Bidder hereby proposed to furnish materials and/or				
services as per Bid Number GL-2013-35 in strict accordance with the Bid Documents, within the time set forth				
therein, and at the prices stated below.				
By submission of this bid, the Bidder certifies, and in the case of a joint bid each party thereto certifies				
as to their own organization that this bid has been arrived at independently without consultation,				
communication, or agreement as to any matter relating to this bid with any other Bidder or with any				
competitor.				
The Bidder acknowledges receipt of the following:				
Addendum #1				
Addendum #2				
Addendum #3				

It is the responsibility of the Bidder to check the Town's website for any Addendum before submitting the bid.

BID / F	I OF GLASTONBURY PROPOSAL ADVERTISED	5/21/2013	_	or RPGL# :/TIME DUE		2013-35 6/11/2013 at 11:00 AM	
NAME OF PROJECT Slocomb Pro		Slocomb Proper	operty Soil Remediation				
Numb	he responsibility of the er, Date and Time of Bid TOWN'S WEBSITE BEF ING.	Opening, and it als	SO THE RES	PONSIBILIT	Y OF THE	E BIDDER TO CHEC	Κ
TEM <u>NO</u> .	DESCRIPTION		QTY.	<u>UNIT PR</u>	<u>ICE</u>	EXTENSION	
1.	HEALTH AND SAFETY Includes all necessary w and material related to p and adherence to, a site and Safety Plan.	reparation of,	1	\$	/L.S.	\$	
2.	SOIL EROSION AND SI CONTROL Includes all initial and fin to installation of erosion including but not limited providing all labor, equip supplies necessary to inshay bales, and an anti-traincludes dust control. In and disposal of all mater end.	al work related controls, co: mobilization, ment, and stall silt fencing, acking pad. cludes removal	1	\$	/L.S.	\$	
3.	DUST CONTROL Includes all initial and fin to providing and applying (wet suppression) at the	dust control	1	\$	/L.S.	\$	

	ER NAME:			
ITEM <u>NO</u> .	DESCRIPTION	QTY.	UNIT PRICE	EXTENSION
4.	TRANSPORT AND STOCKPILING OF CLEAN FILL Includes all initial and final work related to the transportation of clean fill material from the Town's Bulky Waste facility to the site, including but not limited to: providing all labor, equipment, and supplies necessary to transport and stockpile the clean fill. (Assume 1,400 CY)	1	\$/L.S.	\$
5.	EXCAVATION AND STOCKPILING OF CONCRETE AND ASPHALT Includes all initial and final work related to the excavation and on-site stockpiling of concrete slabs and asphalt pavement, including but not limited to: mobilization and demobilization, providing all labor, equipment, and supplies necessary to excavate the designated areas. (Assume 200 CY)	1	\$/L.S.	\$
6.	EXCAVATION OF REGULATED SOIL, BACKFILL, AND GRADING Includes all initial and final work related to soil excavation, backfilling, and grading, including but not limited to: providing all labor, equipment, and supplies necessary to excavate impacted areas, grading, place and compact backfill in specified areas. (Estimated removal of 1,400 CY of regulated soil)	1	\$/L.S.	\$
7.	REGULATED SOIL TRANSPORTATION AND DISPOSAL Includes all necessary work related to loading, transportation, tipping fees, and disposal surcharges associated with removal and proper disposal of regulated soil from the site. The ultimate disposal location shall be selected by the Contractor and shall be approved in writing by the Owner.	2,100	\$/TON	\$

	ER NAME:			
ITEM <u>NO</u> .	DESCRIPTION	QTY.	UNIT PRICE	EXTENSION
8.	EXCAVATION OF ADDITIONAL REGULATED SOIL Includes all initial work related to the excavation of additional impacted soils as directed by the Consultant.	300	\$/C.Y.	\$
9.	TRANSPORTATION AND STOCKPILING OF ADDITIONAL CLEAN FILL Includes all initial and final work related to the transportation and stockpiling of additional clean fill from the Town's Tryon Street facility.	300	\$ /C.Y.	\$
10.	TRANSPORTATION AND DISPOSAL OF HAZARDOUS WASTE SOIL Includes all necessary work related to loading, transportation, tipping fees, and disposal surcharges associated with transportation and proper disposal of RCRA or TSCA hazardous waste soils (if identified) from the site to a Subtitle C landfill. The ultimate disposal location shall be selected by the Contractor and shall be approved in writing by the Owner.	100	\$/TON	\$
11.	ODOR SUPPRESSANT FOAM Per drum cost of odor suppressant foam, including application equipment and labor, if polyethylene plastic sheeting is not capable of containing VOC emissions. (Per 55 Gallon Drum)	1	\$/DRU	M \$
12.	DEWATERING Includes each and every item of work to obtain a discharge permit (remediation wastewater discharge to a surface water body), conduct the necessary dewatering, treat the water as required for discharge, and manage the discharge in accordance with the permit.	1	\$/DAY	\$

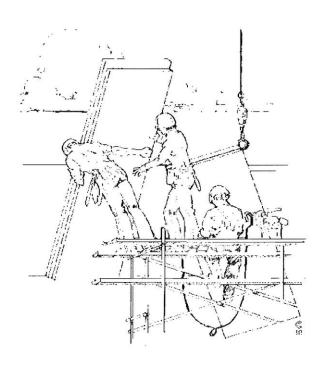
BIDDER NAME:	
item. See Technical Specifications for de	estimates only and may increase or decrease. The unit price
TOTAL BID AMOUNT:	\$
WRITTEN BID AMOUNT:	
Consultant Acknowledgement Form if I/We are	Glastonbury's Code of Ethics and agree to submit a e selected. Yes No*
proposal where the Bidder has not agreed to	
Respectfully submitted:	
Type or Print Name of Individual	Doing Business as (Trade Name)
Signature of Individual	Street Address
Title	City, State, Zip Code
Date	Telephone Number/Fax Number
E-Mail Address	SS# or TIN#
(Seal – If bid is by a Corporation)	
Attest	

OTHER ITEMS REQUIRED WITH SUBMISSION OF BID PROPOSAL:

	ckage. It is provided for the convenience of the bidders and, therefore, should not be be a complete list.
1.	Included Bid Bond as per Section 10 of the Information for Bidders.
	Included Disclosure of Past and Pending Mediation, Arbitration, and Litigation cases against the Bidder or its Principals as per Section 17 of the Information for Bidders. Included Qualifications Statement as per Section 21 of the Information for Bidders.
4.	Checked Town web site for Addendums and acknowledged Addendums on page BP-1.
5.	Acknowledged Code of Ethics on page BP-3.
6.	Clearly marked envelope with Bid Number, Date, and Time of opening.

The following bid checklist describes items required for inclusion with the above-referenced bid

APPENDIX A PREVAILING WAGE RATES


~NOTICE~

TO ALL CONTRACTING AGENCIES

Please be advised that Connecticut General Statutes Section 31-53, requires the contracting agency to certify to the Department of Labor, the total dollar amount of work to be done in connection with such public works project, regardless of whether such project consists of one or more contracts.

Please find the attached "Contracting Agency Certification Form" to be completed and returned to the Department of Labor, Wage and Workplace Standards Division, Public Contract Compliance Unit.

Inquiries can be directed to (860)263-6543.

CONNECTICUT DEPARTMENT OF LABOR WAGE AND WORKPLACE STANDARDS DIVISION CONTRACT COMPLIANCE UNIT

CONTRACTING AGENCY CERTIFICATION FORM

I,	, acting in my official of	capacity as
	representative	title
for	, located at	
con	tracting agency	address
do hereby ce	ertify that the total dollar amount of work to	be done in connection with
	, located at	
proje	ect name and number	address
shall be \$, which includes all work,	regardless of whether such project
consists of o	one or more contracts.	
	CONTRACTOR INFO	RMATION
Name:		
Address:		
Authorized I	Representative:	
Approximate	e Starting Date:	
Approximate	e Completion Date:	
S	ignature	Date
Return To:	Connecticut Department of Labor	
	Wage & Workplace Standards Division Contract Compliance Unit	
	200 Folly Brook Blvd.	
	Wethersfield, CT 06109	
Date Issued:		

Sec. 31-55a Page 1 of 1

Statute 31-55a

You are here: DOL Web Site Wage and Workplace Standards Statute 31-55a

- Special Notice -

To All State and Political Subdivisions, Their Agents, and Contractors

Connecticut General Statute 31-55a - Annual adjustments to wage rates by contractors doing state work.

Each contractor that is awarded a contract on or after October 1, 2002, for (1) the construction of a state highway or bridge that falls under the provisions of section 31-54 of the general statutes, or (2) the construction, remodeling, refinishing, refurbishing, rehabilitation, alteration or repair of any public works project that falls under the provisions of section 31-53 of the general statutes shall contact the Labor Commissioner on or before July first of each year, for the duration of such contract, to ascertain the prevailing rate of wages on an hourly basis and the amount of payment or contributions paid or payable on behalf of each mechanic, laborer or worker employed upon the work contracted to be done, and shall make any necessary adjustments to such prevailing rate of wages and such payment or contributions paid or payable on behalf of each such employee, effective each July first.

- The prevailing wage rates applicable to any contract or subcontract awarded on or after October 1, 2002 are subject to annual adjustments each July 1st for the duration of any project which was originally advertised for bids on or after October 1, 2002.
- Each contractor affected by the above requirement shall pay the annual adjusted prevailing wage rate that is in effect each July 1st, as posted by the Department of Labor.
- It is the *contractor's* responsibility to obtain the annual adjusted prevailing wage rate increases directly from the Department of Labor's Web Site. The annual adjustments will be posted on the Department of Labor Web page: www.ctdol.state.ct.us. For those without internet access, please contact the division listed below.
- The Department of Labor will continue to issue the initial prevailing wage rate schedule to the Contracting Agency for the project. All subsequent annual adjustments will be posted on our Web Site for contractor access.

Any questions should be directed to the Contract Compliance Unit, Wage and Workplace Standards Division, Connecticut Department of Labor, 200 Folly Brook Blvd., Wethersfield, CT 06109 at (860)263-6790.

←-- Workplace Laws

Published by the Connecticut Department of Labor, Project Management Office

Last Updated: April 22, 2010

CONNECTICUT DEPARTMENT OF LABOR WAGE AND WORKPLACE STANDARDS DIVISION

CONTRACTORS WAGE CERTIFICATION FORM

I,	0	f	
Officer, Owner, Aut	horized Rep.	Company Name	
do hereby certify that the		~	
		Company Name	
·		Street	
-		City	
and all of its subcontracto	rs will pay all worke	rs on the	
	Project Name and N	Number	
	Street and City		
the wages as listed in the sis attached hereto).	schedule of prevailin	g rates required for such proj	ect (a copy of which
		Signed	
Subscribed and sworn to b	pefore me this	day of	
	_	Notary Public	
Wage & W 200 Folly	ut Department of Lal Vorkplace Standards Brook Blvd. eld, CT 06109		
Rate Schedule Issued (L	Oate):		

Informational Bulletin

THE 10-HOUR OSHA CONSTRUCTION SAFETY AND HEALTH COURSE

(applicable to public building contracts entered into *on or after July 1, 2007*, where the total cost of all work to be performed is at least \$100,000)

- (1) This requirement was created by Public Act No. 06-175, which is codified in Section 31-53b of the Connecticut General Statutes (pertaining to the prevailing wage statutes);
- (2) The course is required for public building construction contracts (projects funded in whole or in part by the state or any political subdivision of the state) entered into on or after July 1, 2007;
- (3) It is required of private employees (not state or municipal employees) and apprentices who perform manual labor for a general contractor or subcontractor on a public building project where the total cost of all work to be performed is at least \$100,000;
- (4) The ten-hour construction course pertains to the ten-hour Outreach Course conducted in accordance with federal OSHA Training Institute standards, and, for telecommunications workers, a ten-hour training course conducted in accordance with federal OSHA standard, 29 CFR 1910.268;
- (5) The internet website for the federal OSHA Training Institute is http://www.osha.gov/fso/ote/training/edcenters/fact_sheet.html;
- (6) The statutory language leaves it to the contractor and its employees to determine who pays for the cost of the ten-hour Outreach Course;
- (7) Within 30 days of receiving a contract award, a general contractor must furnish proof to the Labor Commissioner that all employees and apprentices performing manual labor on the project will have completed such a course;
- (8) Proof of completion may be demonstrated through either: (a) the presentation of a *bona fide* student course completion card issued by the federal OSHA Training Institute; *or* (2) the presentation of documentation provided to an employee by a trainer certified by the Institute pending the actual issuance of the completion card;
- (9) Any card with an issuance date more than 5 years prior to the commencement date of the construction project shall not constitute proof of compliance;

- (10) Each employer shall affix a copy of the construction safety course completion card to the certified payroll submitted to the contracting agency in accordance with Conn. Gen. Stat. § 31-53(f) on which such employee's name first appears;
- (11) Any employee found to be in non-compliance shall be subject to removal from the worksite if such employee does not provide satisfactory proof of course completion to the Labor Commissioner by the fifteenth day after the date the employee is determined to be in noncompliance;
- (12) Any such employee who is determined to be in noncompliance may continue to work on a public building construction project for a maximum of fourteen consecutive calendar days while bringing his or her status into compliance;
- (13) The Labor Commissioner may make complaint to the prosecuting authorities regarding any employer or agent of the employer, or officer or agent of the corporation who files a false certified payroll with respect to the status of an employee who is performing manual labor on a public building construction project;
- (14) The statute provides the minimum standards required for the completion of a safety course by manual laborers on public construction contracts; any contractor can exceed these minimum requirements; and
- (15) Regulations clarifying the statute are currently in the regulatory process, and shall be posted on the CTDOL website as soon as they are adopted in final form.
- Any questions regarding this statute may be directed to the Wage and Workplace Standards Division of the Connecticut Labor Department via the internet website of http://www.ctdol.state.ct.us/wgwkstnd/wgemenu.htm; or by telephone at (860)263-6790.

THE ABOVE INFORMATION IS PROVIDED EXCLUSIVELY AS AN EDUCATIONAL RESOURCE, AND IS NOT INTENDED AS A SUBSTITUTE FOR LEGAL INTERPRETATIONS WHICH MAY ULTMATELY ARISE CONCERNIG THE CONSTRUCTION OF THE STATUTE OR THE REGULATIONS.

Sec. 31-53b. Construction safety and health course. New miner training program. Proof of completion required for mechanics, laborers and workers on public works projects. Enforcement, Regulations, Exceptions, (a) Each contract for a public works project entered into on or after July 1, 2009, by the state or any of its agents, or by any political subdivision of the state or any of its agents, described in subsection (g) of section 31-53, shall contain a provision requiring that each contractor furnish proof with the weekly certified payroll form for the first week each employee begins work on such project that any person performing the work of a mechanic, laborer or worker pursuant to the classifications of labor under section 31-53 on such public works project, pursuant to such contract, has completed a course of at least ten hours in duration in construction safety and health approved by the federal Occupational Safety and Health Administration or, has completed a new miner training program approved by the Federal Mine Safety and Health Administration in accordance with 30 CFR 48 or, in the case of telecommunications employees, has completed at least ten hours of training in accordance with 29 CFR 1910.268.

- (b) Any person required to complete a course or program under subsection (a) of this section who has not completed the course or program shall be subject to removal from the worksite if the person does not provide documentation of having completed such course or program by the fifteenth day after the date the person is found to be in noncompliance. The Labor Commissioner or said commissioner's designee shall enforce this section.
- (c) Not later than January 1, 2009, the Labor Commissioner shall adopt regulations, in accordance with the provisions of chapter 54, to implement the provisions of subsections (a) and (b) of this section. Such regulations shall require that the tenhour construction safety and health courses required under subsection (a) of this section be conducted in accordance with federal Occupational Safety and Health Administration Training Institute standards, or in accordance with Federal Mine Safety and Health Administration Standards or in accordance with 29 CFR 1910.268, as appropriate. The Labor Commissioner shall accept as sufficient proof of compliance with the provisions of subsection (a) or (b) of this section a student course completion card issued by the federal Occupational Safety and Health Administration Training Institute, or such other proof of compliance said commissioner deems appropriate, dated no earlier than five years before the commencement date of such public works project.
- (d) This section shall not apply to employees of public service companies, as defined in section 16-1, or drivers of commercial motor vehicles driving the vehicle on the public works project and delivering or picking up cargo from public works projects provided they perform no labor relating to the project other than the loading and unloading of their cargo.

(P.A. 06-175, S. 1; P.A. 08-83, S. 1.)

History: P.A. 08-83 amended Subsec. (a) by making provisions applicable to public works project contracts entered into on or after July 1, 2009, replacing provision re total cost of work with reference to Sec. 31-53(g), requiring proof in certified payroll form that new mechanic, laborer or worker has completed a 10-hour or more construction safety course and adding provision re new miner training program, amended Subsec. (b) by substituting "person" for "employee" and adding "or program", amended Subsec. (c) by adding "or in accordance with Federal Mine

Safety and Health Administration Standards" and setting new deadline of January 1, 2009, deleted former Subsec. (d) re "public building", added new Subsec. (d) re exemptions for public service company employees and delivery drivers who perform no labor other than delivery and made conforming and technical changes, effective January 1, 2009.

Notice

To All Mason Contractors and Interested Parties Regarding Construction Pursuant to Section 31-53 of the Connecticut General Statutes (Prevailing Wage)

The Connecticut Labor Department Wage and Workplace Standards Division is empowered to enforce the prevailing wage rates on projects covered by the above referenced statute.

Over the past few years the Division has withheld enforcement of the rate in effect for workers who operate a forklift on a prevailing wage rate project due to a potential jurisdictional dispute.

The rate listed in the schedules and in our Occupational Bulletin (see enclosed) has been as follows:

Forklift Operator:

- Laborers (Group 4) Mason Tenders operates forklift solely to assist a mason to a maximum height of nine feet only.
- Power Equipment Operator (Group 9) operates forklift to assist any trade and to assist a mason to a height over nine feet.

The U.S. Labor Department conducted a survey of rates in Connecticut but it has not been published and the rate in effect remains as outlined in the above Occupational Bulletin.

Since this is a classification matter and not one of jurisdiction, effective January 1, 2007 the Connecticut Labor Department will enforce the rate on each schedule in accordance with our statutory authority.

Your cooperation in filing appropriate and accurate certified payrolls is appreciated.

Information Bulletin Occupational Classifications

The Connecticut Department of Labor has the responsibility to properly determine "job classification" on prevailing wage projects covered under C.G.S. Section 31-53.

Note: This information is intended to provide a sample of some occupational classifications for guidance purposes only. It is not an all-inclusive list of each occupation's duties. This list is being provided only to highlight some areas where a contractor may be unclear regarding the proper classification.

Below are additional clarifications of specific job duties performed for certain classifications:

Asbestos Insulator

Handle, install, apply, fabricate, distribute, prepare, alter, repair, or dismantle
heat and frost insulation, including penetration and fire stopping work on all
penetration fire stop systems.

Carpenter

- Assembly and installation of modular fumiture/fumiture systems.
 [New] a. Free-standing furniture is not covered. This includes: student chairs, study top desks, book box desks, computer furniture, dictionary stand, atlas stand, wood shelving, two- position information access station, file cabinets, storage cabinets, tables, etc.
- Applies fire stopping materials on fire resistive joint systems only.
- Installation of insulated material of all types whether blown, nailed or attached in other ways to walls, ceilings and floors of buildings.
- Installation of curtain/window walls only where attached to wood or metal studs.

Cleaning Laborer

 The clean up of any construction debris and the general cleaning, including sweeping, wash down, mopping, wiping of the construction facility, washing, polishing, dusting, etc., prior to the issuance of a certificate of occupancy falls under the Labor classification.

Delivery Personnel (Revised)

- If delivery of supplies/building materials is to one common point and stockpiled there, prevailing wages are not required. If the delivery personnel are involved in the distribution of the material to multiple locations within the construction site then they would have to be paid prevailing wages for the type of work performed: laborer, equipment operator, electrician, ironworker, plumber, etc.
- An example of this would be where delivery of drywall is made to a building and the delivery personnel distribute the drywall from one "stockpile" location to further sub-locations on each floor. Distribution of material around a construction site is the job of a laborer/tradesman and not a delivery personnel.

Electrician

- Installation or maintenance of telecommunication, LAN wiring or computer equipment.
- Low voltage wiring.

Fork Lift Operator

- Laborers Group 4) Mason Tenders operates forklift solely to assist a mason to a maximum height of nine (9) feet only.
- Power Equipment Operator Group 9 operates forklift to assist any trade, and to assist a mason to a height over nine (9) feet.

Glaziers

- Installs light metal sash, head sills, and 2-story aluminum storefronts.
- Installation of aluminum window walls and curtain walls is the 'Soidtwork of the Glaziers and Ironworkers classification which requires either a blended rate or equal composite workforce.

Ironworkers

- Handling, sorting, and installation of reinforcing steel (rebar).
- Installation of aluminum window walls and curtain walls is the "joint work" of the Glaziers and Ironworkers classification which requires either a blended rate or equal composite workforce. Insulated metal and insulated composite panels are still installed by the Ironworker.
- Metal bridge rail (traffic), metal bridge handrail, and decorative security fence installation.

Insulator

Installing fire stopping systems/materials for "Penetration Firestop Systems":
transit to cables, electrical conduits, insulated pipes, sprinkler pipe penetrations,
ductwork behind radiation, electrical cable trays, fire rated pipe penetrations,
natural polypropylene, HVAC ducts, plumbing bare metal, telephone and
communication wires, and boiler room ceilings. Past practice using the
applicable licensed trades, Plumber, Sheet Metal, Sprinkler Fitter, and
Electrician, is not inconsistent with the Insulator classification and would be
permitted.

Lead Paint Removal

- Painter Rate
 - 1. Removal of lead paint from bridges.
 - 2. Removal of lead paint as preparation of any surface to be repainted.
 - 3. Where removal is on a Demolition project prior to reconstruction.
- Laborer Rate
 - 1. Removal of lead paint from any surface NOT to be repainted.
 - 2. Where removal is on a *TOTAL* Demolition project only.

Roofers

• Preparation of surface, tear-off and/or removal of any type of roofing, and/or clean-up of any areas where a roof is to be relaid.

Sheet Metal Worker

• Fabrication, handling, assembling, erecting, altering, repairing, etc. of coated metal material panels and composite metal material panels when used on building exteriors and interiors as soffits, facia, louvers, partitions, wall panel siding, canopies, cornice, column covers, awnings, beam covers, cladding, sun shades, lighting troughs, spires, ornamental roofing, metal ceilings, mansards, copings, ornamental and ventilation hoods, vertical and horizontal siding panels, trim, etc. The sheet metal classification also applies to the vast variety of coated metal material panels and composite metal material panels that have evolved over the years as an alternative to conventional ferrous and non-ferrous metals like steel, iron, tin, copper, brass, bronze, aluminum, etc. Insulated metal and insulated composite panels are still installed by the Iron Worker. Fabrication, handling, assembling, erecting, altering, repairing, etc. of architectural metal roof, standing seam roof, composite metal roof, metal and composite bathroom/toilet partitions, aluminum gutters, metal and composite lockers and shelving, kitchen equipment, and walk-in coolers.

Truck Drivers

- Truck Drivers delivering asphalt are covered under prevailing wage while on the site and directly involved in the paving operation.
- Material men and deliverymen are not covered under prevailing wage as long as they are not directly involved in the construction process. If, they unload the material, they would then be covered by prevailing wage for the classification they are performing work in: laborer, equipment operator, etc.
- Hauling material off site is not covered provided they are not dumping it at a location outlined above.
- Driving a truck on site and moving equipment or materials on site would be considered covered work, as hs is part of the construction process.

Any questions regarding the proper classification should be directed to the Contract Compliance Unit, Wage and Workplace Standards Division, Connecticut Department of Labor, 200 Folly Brook Blvd, Wethersfield, CT 06 109 at (860) 263-6543.

Project: Slocomb Property Soil Remediation

Minimum Rates and Classifications for Heavy/Highway Construction

ID#: **H** 17847

Connecticut Department of Labor Wage and Workplace Standards Division

By virtue of the authority vested in the Labor Commissioner under provisions of Section 31-53 of the General Statutes of Connecticut, as amended, the following are declared to be the prevailing rates and welfare payments and will apply only where the contract is advertised for bid within 20 days of the date on which the rates are established. Any contractor or subcontractor not obligated by agreement to pay to the welfare and pension fund shall pay this amount to each employee as part of his/her hourly wages.

Project Number: Project Town: Glastonbury

FAP Number: State Number:

Project: Slocomb Property Soil Remediation

CLASSIFICATION Hourly Rate Benefits

01) Asbestos/Toxic Waste Removal Laborers: Asbestos removal and encapsulation (except its removal from mechanical systems which are not to be scrapped), toxic waste removers, blasters. **See Laborers Group 5 and 7**

1) Boilermaker 33.79 34% + 8.96

1a) Bricklayer, Cement Masons, Cement Finishers, Plasterers, Stone Masons 32.50 25.81

2) Carpenters, Piledrivermen 29.65 21.00

Project: Slocomb Property Soil Remediation		
2a) Diver Tenders	29.65	21.00
2) D:	20.11	21.00
3) Divers	38.11	21.00
4) Painters: (Bridge Construction) Brush, Roller, Blasting (Sand, Water, etc.),	42.75	16.90
Spray		
4a) Painters: Brush and Roller	30.22	16.90
4b) Painters: Spray Only	33.22	16.90
4c) Painters: Steel Only	30.47	15.40
4d) Painters: Blast and Spray	33.22	16.90
,		

Project: Slocomb Property Soil Remediation		
4e) Painters: Tanks, Tower and Swing	32.22	16.90
5) Electrician (Trade License required: E-1,2 L-5,6 C-5,6 T-1,2 L-1,2 V-1,2,7,8,9)	37.10	22.12
6) Ironworkers: (Ornamental, Reinforcing, Structural, and Precast Concrete Erection)	33.50	27.98 + a
7) Plumbers (Trade License required: (P-1,2,6,7,8,9 J-1,2,3,4 SP-1,2) and Pipefitters (Including HVAC Work) (Trade License required: S-1,2,3,4,5,6,7,8 B-1,2,3,4 D-1,2,3,4 G-1, G-2, G-8, G-9)	38.67	25.56
LABORERS Last updated 4/11/12		
8) Group 1: Laborer (Unskilled), Common or General, acetylene burner, concrete specialist	26.40	17.15
9) Group 2: Chain saw operators, fence and guard rail erectors, pneumatic tool operators, powdermen, air tool operator	26.65	17.15

Project: Slocomb Property Soil Remediation		
10) Group 3: Pipelayers	26.90	17.15
11) Group 4: Jackhammer/Pavement breaker (handheld); mason tenders	26.90	17.15
(cement/concrete), catch basin builders, asphalt rakers, air track operators, block pavers and curb setters		
10) C	20.40	17 15
12) Group 5: Toxic waste removal (non-mechanical systems)	28.40	17.15
13) Group 6: Blasters	28.15	17.15
Group 7: Asbestos Removal, non-mechanical systems (does not include leaded	27.40	17.15
joint pipe)		
Group 8: Traffic control signalmen	16.00	17.15
LADODEDG (TUNNEL GONGTDUGTION EDGE AND GUILLE		
LABORERS (TUNNEL CONSTRUCTION, FREE AIR). Shield Drive and Liner Plate Tunnels in Free Air Last updated 4/11/12		

Project: Slocomb Property Soil Remediation		
13a) Miners, Motormen, Mucking Machine Operators, Nozzle Men, Grout Men, Shaft & Tunnel Steel & Rodmen, Shield & Erector, Arm Operator, Cable Tenders	31.28	17.15 + a
13b) Brakemen, Trackmen	30.37	17.15 + a
CLEANING, CONCRETE AND CAULKING TUNNELLast updated 4/11/12		
14) Concrete Workers, Form Movers, and Strippers	30.37	17.15 + a
15) Form Erectors	30.68	17.15 + a
ROCK SHAFT LINING, CONCRETE, LINING OF SAME AND TUNNEL IN FREE AIR:Last updated 4/11/12		
16) Brakemen, Trackmen, Tunnel Laborers, Shaft Laborers	30.37	17.15 + a

Project: Slocomb Property Soil Remediation		
17) Laborers Topside, Cage Tenders, Bellman	30.26	17.15 + a
18) Miners	31.28	17.15 + a
TUNNELS, CAISSON AND CYLINDER WORK IN COMPRESSED AIR:		
Last updated 4/11/12		
18a) Blaster	37.41	17.15 + a
10a) Blaster	37.41	17.15 T u
10) Brokemen Treekmen Creutmen Lehenere Outside Leek Tender Course	27.22	17.15 + a
19) Brakemen, Trackmen, Groutman, Laborers, Outside Lock Tender, Gauge Tenders	37.22	17.13 + a
20) Change House Attendants, Powder Watchmen, Top on Iron Bolts	35.35	17.15 + a
21) Mucking Machine Operator	37.97	17.15 + a

Project: Slocomb Property Soil Remediation		
TRUCK DRIVERS(*see note below)		
Two axle trucks	27.88	18.27 + a
Three axle trucks; two axle ready mix	27.98	18.27 + a
Three axle ready mix	28.03	18.27 + a
Three axie ready thix	20.03	10.27 T d
Four axle trucks, heavy duty trailer (up to 40 tons)	28.08	18.27 + a
Four axle ready-mix	28.13	18.27 + a
	20.22	10.25
Heavy duty trailer (40 tons and over)	28.33	18.27 + a

Project: Slocomb Property Soil Remediation		
Specialized earth moving equipment other than conventional type on-the road trucks and semi-trailer (including Euclids)	28.13	18.27 + a
POWER EQUIPMENT OPERATORS		
Group 1: Crane handling or erecting structural steel or stone, hoisting engineer (2 drums or over), front end loader (7 cubic yards or over), Work Boat 26 ft. & Over. (Trade License Required)	36.05	21.55 + a
Group 2: Cranes (100 ton rate capacity and over); Backhoe/Excavator over 2 cubic yards; Piledriver (\$3.00 premium when operator controls hammer). (Trade License Required)	35.73	21.55 + a
Group 3: Excavator/Backhoe under 2 cubic yards; Cranes (under 100 ton rated capacity), Gradall; Master Mechanic; Hoisting Engineer (all types of equipment where a drum and cable are used to hoist or drag material regardless of motive power of operation), Rubber Tire Excavator (Drott-1085 or similar); Grader Operator; Bulldozer Fine Grade (slopes, shaping, laser or GPS, etc.). (Trade License Required)	34.99	21.55 + a
Group 4: Trenching Machines; Lighter Derrick; Concrete Finishing Machine; CMI Machine or Similar; Koehring Loader (Skooper)	34.60	21.55 + a
Group 5: Specialty Railroad Equipment; Asphalt Paver; Asphalt Spreader; Asphalt Reclaiming Machine; Line Grinder; Concrete Pumps; Drills with Self Contained Power Units; Boring Machine; Post Hole Digger; Auger; Pounder; Well Digger; Milling Machine (over 24" Mandrell)	34.01	21.55 + a

Project: Slocomb Property Soil Remediation		
Group 5 continued: Side Boom; Combination Hoe and Loader; Directional Driller.	34.01	21.55 + a
Group 6: Front End Loader (3 up to 7 cubic yards); Bulldozer (rough grade dozer).	33.70	21.55 + a
Group 7: Asphalt Roller; Concrete Saws and Cutters (ride on types); Vermeer Concrete Cutter; Stump Grinder; Scraper; Snooper; Skidder; Milling Machine (24" and Under Mandrel).	33.36	21.55 + a
Group 8: Mechanic, Grease Truck Operator, Hydroblaster, Barrier Mover, Power Stone Spreader; Welder; Work Boat under 26 ft.; Transfer Machine.	32.96	21.55 + a
Group 9: Front End Loader (under 3 cubic yards), Skid Steer Loader regardless of attachments (Bobcat or Similar); Fork Lift, Power Chipper; Landscape Equipment (including hydroseeder).	32.53	21.55 + a
Group 10: Vibratory Hammer, Ice Machine, Diesel and Air Hammer, etc.	30.49	21.55 + a
Group 11: Conveyor, Earth Roller; Power Pavement Breaker (whiphammer), Robot Demolition Equipment.	30.49	21.55 + a

Project: Slocomb Property Soil Remediation		
Group 12: Wellpoint Operator.	30.43	21.55 + a
Group 13: Compressor Battery Operator.	29.85	21.55 + a
Group 14: Elevator Operator; Tow Motor Operator (Solid Tire No Rough Terrain).	28.71	21.55 + a
Group 15: Generator Operator; Compressor Operator; Pump Operator; Welding Machine Operator; Heater Operator.	28.30	21.55 + a
Group 16: Maintenance Engineer/Oiler	27.65	21.55 + a
Group 17: Portable asphalt plant operator; portable crusher plant operator; portable concrete plant operator.	31.96	21.55 + a
Group 18: Power Safety Boat; Vacuum Truck; Zim Mixer; Sweeper; (minimum for any job requiring CDL license).	29.54	21.55 + a

Project: Slocomb Property Soil Remediation		
**NOTE: SEE BELOW		
LINE CONSTRUCTION(Railroad Construction and Maintenance)Last		
updated 9/3/2010		
20) Lineman, Cable Splicer, Dynamite Man	44.36	3% + 13.70
21) Heavy Equipment Operator	39.92	3% + 13.70
22) Equipment Operator, Tractor Trailer Driver, Material Men	37.71	3% + 13.70
22) Equipment operator, Tractor Trailer Briver, Tractor	37.71	3,0 1 13.70
23) Driver Groundmen	33.27	3% + 13.70
LINE CONSTRUCTIONLast updated 4/17/09		

Project: Slocomb Property Soil Remediation		
24) Driver Groundmen	30.92	6.5% + 9.70
25) Groundmen	22.67	6.5% + 6.20
26) Heavy Equipment Operators	37.10	6.5% + 10.70
27) Linemen, Cable Splicers, Dynamite Men	41.22	6.5% + 12.20
28) Material Men, Tractor Trailer Drivers, Equipment Operators	35.04	6.5% + 10.45

Project: Slocomb Property Soil Remediation

Welders: Rate for craft to which welding is incidental.

*Note: Hazardous waste removal work receives additional \$1.25 per hour for truck drivers.

**Note: Hazardous waste premium \$3.00 per hour over classified rate

Crane with 150 ft. boom (including jib) - \$1.50 extra

Crane with 200 ft. boom (including jib) - \$2.50 extra

Crane with 250 ft. boom (including jib) - \$5.00 extra

Crane with 300 ft. boom (including jib) - \$7.00 extra

Crane with 400 ft. boom (including jib) - \$10.00 extra

All classifications that indicate a percentage of the fringe benefits must be calculated at the percentage rate times the "base hourly rate".

Apprentices duly registered under the Commissioner of Labor's regulations on "Work Training Standards for Apprenticeship and Training Programs" Section 31-51-d-1 to 12, are allowed to be paid the appropriate percentage of the prevailing journeymen hourly base and the full fringe benefit rate, providing the work site ratio shall not be less than one full-time journeyperson instructing and supervising the work of each apprentice in a specific trade.

~~Connecticut General Statute Section 31-55a: Annual Adjustments to wage rates by contractors doing state work ~~

The Prevailing wage rates applicable to this project are subject to annual adjustments each July 1st for the duration of the project.

Each contractor shall pay the annual adjusted prevailing wage rate that is in effect each July 1st, as posted by the Department of Labor.

It is the contractor's responsibility to obtain the annual adjusted prevailing wage rate increases directly from the Department of Labor's website.

The annual adjustments will be posted on the Department of Labor's Web page: www.ct.gov/dol.

The Department of Labor will continue to issue the initial prevailing wage rate schedule to the Contracting Agency for the project.

All subsequent annual adjustments will be posted on our Web Site for contractor access.

Project: Slocomb Property Soil Remediation

Effective October 1, 2005 - Public Act 05-50: any person performing the work of any mechanic, laborer, or worker shall be paid prevailing wage

All Person who perform work ON SITE must be paid prevailing wage for the appropriate mechanic, laborer, or worker classification.

All certified payrolls must list the hours worked and wages paid to All Persons who perform work ON SITE regardless of their ownership i.e.: (Owners, Corporate Officers, LLC Members, Independent Contractors, et. al)

Reporting and payment of wages is required regardless of any contractual relationship alleged to exist between the contractor and such person.

~~Unlisted classifications needed for work not included within the scope of the classifications listed may be added after award only as provided in the labor standards contract clause (29 CFR 5.5 (a) (1) (ii)).

Please direct any questions which you may have pertaining to classification of work and payment of prevailing wages to the Wage and Workplace Standards Division, telephone (860)263-6790.

CONNECTICUT DEPARTMENT OF LABOR Wage and Workplace Standards Division

FOOTNOTES

Please Note: If the "Benefits" listed on the schedule for the following occupations includes a letter(s) (+ a or + a+b for instance), refer to the information below.

Benefits to be paid at the appropriate prevailing wage rate for the listed occupation.

If the "Benefits" section for the occupation lists only a dollar amount, disregard the information below.

Bricklayers, Cement Masons, Cement Finishers, Plasters, Stone Masons (Building Construction)

(Residential- Hartford, Middlesex, New Haven, New London and Tolland Counties)

a. Paid Holiday: Employees shall receive 4 hours for Christmas Eve holiday provided the employee works the regularly scheduled day before and after the holiday. Employers may schedule work on Christmas Eve and employees shall receive pay for actual hours worked in addition to holiday pay.

Bricklayer (Residential- Fairfield County)

a. Paid Holiday: If an employee works on Christmas Eve until noon he shall be paid for 8 hours.

Electricians

Fairfield County: West of the Five Mile River in Norwalk

a. \$2.00 per hour not to exceed \$14.00 per day.

Elevator Constructors: Mechanics

- a. Paid Holidays: New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, Christmas Day, plus the Friday after Thanksgiving.
- b. Vacation: Employer contributes 8% of basic hourly rate for 5 years or more of service or 6% of basic hourly rate for 6 months to 5 years of service as vacation pay credit.

Glaziers

a. Paid Holidays: Labor Day and Christmas Day.

Power Equipment Operators

(Heavy and Highway Construction & Building Construction)

a. Paid Holidays: New Year's Day, Good Friday, Memorial day, Independence Day, Labor Day, Thanksgiving Day and Christmas Day, provided the employee works 3 days during the week in which the holiday falls, if scheduled, and if scheduled, the working day before and the working day after the holiday. Holidays falling on Saturday may be observed on Saturday, or if the employer so elects, on the preceding Friday.

Ironworkers

a. Paid Holiday: Labor Day provided employee has been on the payroll for the 5 consecutive workdays prior to Labor Day.

Laborers (Tunnel Construction)

a. Paid Holidays: New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day and Christmas Day. No employee shall be eligible for holiday pay when he fails, without cause, to work the regular workday preceding the holiday or the regular workday following the holiday.

Roofers

a. Paid Holidays: July 4th, Labor Day, and Christmas Day provided the employee is employed 15 days prior to the holiday.

Sprinkler Fitters

a. Paid Holidays: Memorial Day, July 4th, Labor Day, Thanksgiving Day and Christmas Day, provided the employee has been in the employment of a contractor 20 working days prior to any such paid holiday.

Truck Drivers

(Heavy and Highway Construction & Building Construction)

a. Paid Holidays: New Year's Day, Memorial Day, Independence Day, Labor Day, Thanksgiving Day, Christmas day, and Good Friday, provided the employee has at least 31 calendar days of service and works the last scheduled day before and the first scheduled day after the holiday, unless excused.

APPENDIX B

TECHNICAL SPECIFICATIONS SECTIONS 1 THROUGH V

SECTION 1 – ENVIRONMENTAL HEALTH AND SAFETY

PART 1 – GENERAL

1.1 RELATED DOCUMENTS:

- A. General provisions of the Contract, including the Environmental Summary apply to this Section.
- B. Analytical data tables and maps included in the RAP (Appendix E) and waste characterization data (Appendix C) apply to this section.
- C. All other specifications included in the Contract Documents apply to this section.

1.2 GENERAL

- A. This specification shall be read in conjunction with project specifications, drawings, and photographs indicating the precise extent of work and the use and location of specific materials.
- B. The Contractor shall make a pre-bid field visit to verify all work shown or not shown on the drawings. The owner will notify the Contractor of the date and time of the pre-bid field visit.
- C. For the purpose of this bid, the work specified in this section shall involve preparation, of and adherence to a Health and Safety Plan.

1.3 SUMMARY

Under this item the Contractor shall establish protocols and provide procedures to protect worker's health and safety as it relates to proposed remedial activities when permitted in the presence of regulated soils, OSHA Hazardous Materials regulated substances, or otherwise environmentally sensitive conditions. THE PROVISIONS OF WORKER HEALTH AND SAFETY PROTOCOLS THAT ADDRESS POTENTIAL AND/OR ACTUAL RISK OF EXPOSURE TO SITE-SPECIFIC HAZARDS POSED TO CONTRACTOR EMPLOYEES AND SUBCONTRACTORS IS SOLELY THE RESPONSIBILITY OF THE CONTRACTOR. The areas where contaminants may pose a risk to worker health and safety include, but are not limited to, the following:

• Excavation of soils impacted with petroleum and VOCs and metals with concentrations greater than RSR criteria.

It shall be the responsibility of the Contractor to take any appropriate action necessary to protect nearby residents and site employees from migration of material generated during site remediation (including dust and runoff) and to prevent migration of any impacted materials from the site to the extent practicable. As noted in the Environmental

Summary, the site, though unoccupied, is surrounding by residential properties. Health and Safety requirements shall be monitored closely.

1.4 COMPLIANCE DOCUMENTS

- A. The Contractor shall comply with all federal, state and/or local laws and regulations including, but not limited to the documents cited below:
 - 1. Occupational Safety and Health Administration (OSHA) regulations:
 - a) 29 CRF, Part 1904, Recording and Reporting Occupations Injuries and Illnesses
 - b) 29 CFR, Part 1910, Occupational Safety and Health Standards, including "Hazwoper" Section 1910.120 and "HazComm" Section 1910.1200
 - c) 29 CFR, Part 1926, Construction Standards
 - 2. U.S. Department of Transportation regulations (codified in 49 CFR)
 - 3. U.S. Environmental Protection Agency (EPA) regulations (codified in 40 CFR)
 - 4. Regulations of Connecticut State Agencies Sections 22a-133k-1 to 22a-133k-3 (Remediation Standard Regulations)
 - 5. All other federal, state, and/or local regulations and statutes as applicable.

1.5 RELATED DOCUMENTS

- A. Section 2 Soil Erosion and Sediment Control
- B. Section 3 Dust and Odor Control
- C. Section 4 Excavation, Backfilling, and Grading
- D. Section 5 Loading, Transportation and Disposal

1.6 DEFINITIONS:

A. "Connecticut Regulated Waste" (regulated) soils are defined as soil that has been affected by a release of a substance. For the purposes of this specification, the site soils that will be excavated are regulated as it has been determined that they contain concentrations of ETPH and VOCs above RSR criteria. These site soils have been impacted by a release of petroleum or by releases from former industrial processes. Although the identified soils contain concentrations of compounds above what is considered naturally occurring levels or above RSR criteria, the soils are not considered to be hazardous waste as defined by federal and state regulations, including Connecticut's "Contained-In" policy. Based on a

- particular state's contained-in policies, it is possible that these soils may be considered "Connecticut Regulated Waste" for disposal in Connecticut, but may be considered "RCRA Hazardous Waste" in other states.
- B. "RCRA Hazardous Waste" soils are defined for the purpose of this specification as those soils that contain elevated concentrations of substances above hazardous levels as specified in 40 CFR 261.3 or levels of compounds which are constituents of hazardous waste which exceed a state's RCRA contained-in policy criteria.
- C. "Natural" soils are defined as soil in which all substances naturally occurring therein are present in concentrations not exceeding the concentrations of such substances occurring naturally in the environment and in which soil no other substance is analytically detectable as defined in Sections 22a-209-1 and 22a-133k-1 of the Regulations of Connecticut State Agencies.
- D. "Special Handling" shall mean the methods used to demolish, excavate, grade, load, move, transport, store, dispose, fill, utilize, manage, or otherwise handle regulated and/or RCRA Hazardous Waste Material, such that (1) the spillage, loss, commingling, or uncontrolled deposition of such material is minimized; (2) personal exposure to contaminants present in such a material are minimized; and (3) the adverse impacts to the community and the surrounding environment from contaminants present in such a material are minimized.

PART 2 - PRODUCTS

A. The materials designated in the accepted HASP shall conform to the following pertinent articles of the Code of Federal Regulations (CFR): 29 CFR 1926 and 29 CFR 1910.

PART 3 – EXECUTION

3.1 IMPLEMENTATION PROCEDURES

A. The contractor shall be responsible for the preparation of a written HASP, which addresses the relative risk of exposure to documented hazards present within the limits of the project site. The HASP shall establish health and safety protocols, which address the relative risks of exposure to regulated substances in accordance with the 29 CFR 1910.120 and 29 CFR 1926.65. Such protocols shall only address those concerns directly related to site conditions. The HASP shall include provisions to prevent migration of all impacted soils from the site (i.e. dust suppression components, etc.) and include all appropriate actions to protect nearby residents and site employees from impacts resulting from site remediation activities. No physical aspects of the work shall begin until a HASP is submitted to the Consultant. Although the Consultant will verify that the HASP has been prepared, and may opt to provide comments, no formal approval of the HASP will be provided. The Contractor is solely responsible

for protecting the health and safety of its workers and subcontractors in accordance with State and Federal law. The contract time in accordance with the Contract Documents and Specifications will begin on the date stipulated in the Notice to Proceed or other contract acceptance documents.

- B. The HASP shall be developed by a qualified person designated by the Contractor as the Health and Safety Manager (HSM).
- C. The HASP shall be maintained on site by the Contractor and shall be kept current with construction activities and actual site conditions. All elements regulated by 29 CFR 1910.120(b)(4), including but not limited to the following, shall be addressed in the HASP.
 - 1. Implementation schedule for HASP elements.
 - 2. The assignment of a qualified HSM
 - 3. The assignment of a Health and Safety Officer (HSO)
 - 4. Health and safety personnel requirements, responsibilities, and authorities
 - 5. Relevant site information defining areas of environmental concerns
 - 6. Hazard assessment of general site conditions, and hazard assessment of individual areas of environmental concern
 - 7. Personal protection equipment (PPE) and chemical protective clothing (CPC)
 - 8. Training requirements (OSHA 29 CFR 1910.120, 40 hour and 8 hour courses).
 - 9. Medical considerations/Medical Surveillance Program
 - 10. Monitoring procedures and exposure action levels
 - 11. Monitoring and control plan for potential contact with Connecticut Regulated Waste (CRW), and RCRA Hazardous Waste.
 - 12. Procedures for upgrading or downgrading CPC/PPE
 - 13. Operational health and safety requirements
 - 14. Personnel and equipment decontamination and disposal procedures
 - 15. Contingency planning for emergency response procedures
 - 16. Work zone site controls for areas of environmental concern
 - 17. Dust controls
 - 18. Engineering controls
 - 19. Equipment support
 - 20. HASP revision, review, and coordination procedures
 - 21. Signature page for all on-site workers subject to the HASP
- D. The HASP shall be recognized as a flexible document, which shall be subject to revisions and amendments, as required, in response to actual site conditions, changes in work methods, and/or alterations in the relative risks present. Revisions shall be submitted to the Consultant prior to the implementation of such changes and work cannot commence in areas requiring revision of the HASP.
- E. The Contractor shall provide a competent HSO on site as identified in the HASP, who is capable of identifying existing and potential hazards at the project site or

working conditions which are unsanitary, hazardous, or dangerous to employees and who has authorization as identified in the HASP to take prompt corrective measures to eliminate or control them. The qualifications of the HSO shall include completion of management and supervisory training requirements of 29 CFR 1910(e)(4) or 29 CFR 1926.65(e)(4). In addition, the HSO shall have a minimum of one year of working experience at hazardous waste sites; a working knowledge of federal and state safety regulations; specialized training or documented experience (one year minimum) in the proper use of air monitoring instruments, air sampling methods and procedures; and certification of training in first aid and CPR by a recognized accepted organization such as the American Red Cross. The Contractor shall submit for review the qualifications of the HSM and HSO.

- F. The Contractor's HSO responsibilities shall be detailed in the written HASP and shall include, but not be limited to, the following.
 - 1. Directing and implementing the HASP.
 - 2. Ensuring that all project personnel have been adequately trained in the recognition and avoidance of unsafe conditions and the regulations applicable to the work environment to control or eliminate any hazards or other exposure to illness or injury (OSHA 29 CFR 1926.21). All personnel shall be adequately trained in procedures outlined in the Contractor's written HASP.
 - 3. Authorizing Stop Work Orders, which shall be executed upon the determination of an imminent health and safety concern.
 - 4. Contacting the Contractor's safety management personnel and the Project Environmental Consultant immediately upon the issuance of a Stop Work Order when the HSO has made the determination of an imminent health and safety concern.
 - 5. Authorization work to resume upon approval from the Contractor's safety management personnel.
 - 6. Directing activities, as defined in the Contractor's written HASP, during emergency situations.
 - 7. Providing monitoring as identified in the HASP.
- G. The Contractor must provide personal protective equipment (PPE) as stipulated in the Contractor's HASP during the performance of work in an area identified as potentially posing a risk to worker health and safety for workers employed by the Contractor and Subcontractors.
- H. The Contractor shall inform all on-site workers and subcontractors of all site safety rules, known or potential hazards, and emergency response procedures.
- I. All construction-related activities performed by the Contractor within site limits as identified on the Contract Drawings, or in other areas where site conditions may pose a risk to worker health and safety and/or the environment, shall be performed in conformance with 29 CFR Part 1926 and 29 CFR Part 1910. Work

- shall be performed in conformance to Hazardous Waste Site Operations and Emergency Response Protocols, where appropriate.
- J. The Contractor shall be responsible for the implementation of the HASP throughout the performance of work within the project limits as identified in the Contract Documents, by the Consultant, or by the HASP. In work locations and areas identified as having a potential risk to worker health and safety measure, the Contractor shall be prepared to immediately implement the appropriate health and safety measures, including but not limited to the use of engineering controls, personal protection equipment and site work zone controls. The Contractor shall be solely responsible for the health and safety of all on-site workers during the progress of work.
- K. Failure to fully comply with the Specifications, including the HASP, and all applicable OSHA regulations will result in immediate cessation of activities until compliance with the HASP is achieved. Failure to achieve compliance will result in dismissal from the project and forfeiture of payments for all work performed while not in compliance with the above-mentioned documents and regulations.

PART 4 - MEASUREMENT AND PAYMENT

All site work described in this section shall be included in the LUMP SUM price for the work, and shall include all materials, labor, and work incidental thereto. This LUMP SUM price shall be provided on Line 1 of the attached Bid Form.

END OF SECTION 1

SECTION 2 – SOIL EROSION AND SEDIMENT CONTROLS

PART 1 – GENERAL

1.7 RELATED DOCUMENTS:

- A. General provisions of the Contract, including the Environmental Summary apply to this Section.
- B. Analytical data tables and maps included in the RAP and Appendix C apply to this section.
- C. Conditions #1 and #2 of the approval document from the Town of Glastonbury Conservation Commission/Inland Wetlands Agency (Appendix D) applies to this section.
- D. All other specifications included in the Contract Documents apply to this section.

1.8 GENERAL

- A. This specification shall be read in conjunction with project specifications, drawings, and photographs indicating the precise extent of work and the use and location of specific materials.
- B. The Contractor shall make a pre-bid field visit to verify all work shown or not shown on the drawings.
- C. For the purpose of this bid, the work specified in this section shall involve all initial and final work related to installation of erosion controls, including but not limited to: providing all labor, equipment, and supplies necessary to install silt fencing, hay bails, and an anti-tracking pad. Includes removal and disposal of all materials at project end.
- D. Hours of operation at the site will be limited to Monday through Friday, 7:00 a.m. to 3:30 p.m.

1.9 SUMMARY

- A. Due to the proximity of the site to Roaring Brook, measures must be taken to prevent erosion and potential mobilization of impacted soils into Roaring Brook during excavation and while unstabilized soils are exposed.
- B. The site is located in a developed residential area, and as such, a component of the erosion control plan is to prevent soils from leaving the site attached to equipment and vehicles and creating a release in public rights of way.

C. The site is subject to the conditions contained in an inland wetlands and watercourses permit issued by the Town. Compliance with the conditions of the permit is required.

1.10 COMPLIANCE DOCUMENTS

- A. The Contractor shall comply with all federal, state and/or local laws and regulations including, but not limited to the documents cited below:
 - 1. Occupational Safety and Health Administration (OSHA) regulations:
 - a) 29 CRF, Part 1904, Recording and Reporting Occupations Injuries and Illnesses
 - b) 29 CFR, Part 1910, Occupational Safety and Health Standards, including "Hazwoper" Section 1910.120 and "HazComm" Section 1910.1200
 - c) 29 CFR, Part 1926, Construction Standards
 - 2. U.S. Department of Transportation regulations (codified in 49 CFR)
 - 3. U.S. Environmental Protection Agency (EPA) regulations (codified in 40 CFR)
 - 4. Regulations of Connecticut State Agencies Sections 22a-133k-1 to 22a-133k-3 (Remediation Standard Regulations)
 - 5. Town of Glastonbury Building Zone Regulations Section 19.
 - 6. Town of Glastonbury Conservation Commission and Inland Wetlands and Watercourses Agency Approval Document (Appendix D).
 - 7. All other federal, state, and/or local regulations and statutes as applicable.

1.11 QUALITY ASSURANCE

A. The Contractor shall install all soil erosion and sediment controls in accordance with the site plan, the Connecticut DEEP guidelines for soil erosion and sediment control, the Town of Glastonbury Building Zone Regulations, the Conservation Commission/Inland Wetlands approval (Appendix D), and manufacturer's recommendations. The Contractor shall provide the Project Environmental Consultant the opportunity to visually inspect all installed controls.

PART 2 - PRODUCTS

A. The Contractor shall provide materials and equipment required to implement this Section, including but not limited to the following products:

- 1. Erosion Control Measures: Provide adequate silt fencing, siltsacks, and other necessary erosion control measures to surround all excavation areas, as shown of Figure EV.1 of the specifications.
- 2. Silt fence: provide an adequate quantity of silt fence to protect the shoreline along the eastern property boundary and an area along the site entrance as shown on EV.1.
- 3. Siltsack Sediment Control Devices: Install siltsacks at existing catch basins as shown on Figure EV.1 and in Appendix D.
- 4. Stone for anti-tracking pad shall be 2-inch stone conforming to ConnDOT 816 Division III Section M0.1

PART 3 – EXECUTION

- A. The Contractor shall install erosion controls in accordance with ConnDOT 816 Division II Sections 2.18 and 2.19
- B. The Contractor shall install silt fencing along the bank of Roaring Brook as shown on Figure EV.1 and Appendix D.
- C. The Contractor shall install an anti-tracking pad composed of 2-inch crushed stone at the entrance of the site (in accordance with the site plan) prior to the commencement of field activities. All vehicles entering or leaving the site shall pass over the anti-tracking pad.
- D. The Contractor shall install and maintain siltsack sediment control devices at four existing catch basins.
- E. Following installation of the silt fencing, siltsacks, and anti-tracking pad, and prior to initiation of remedial actions, the contractor shall allow for the inspection of these controls by the Town of Glastonbury Environmental Planner.
- F. The Contractor shall inspect the erosion and sediment control measures daily during the activities to ensure that they continue to function as designed.
- G. The Contractor shall remove and properly dispose of all erosion controls upon completion of the project.

3.2 EQUIPMENT

- A. All equipment shall be provided to the work site free of contamination. The Contractor shall provide the Project Environmental Consultant with certification of decontamination for all equipment prior to mobilization on the site.
- B. The Contractor shall decontaminate all equipment which comes in contact with regulated material, either directly or indirectly, (i.e., excavation, equipment), prior to beginning excavation of natural (unregulated) soils if so directed by the Project

Environmental Consultant. Heavy equipment, such as vehicles and large power tools, shall have dirt and grit physically removed. The equipment shall then be steam cleaned or washed under high pressure water spray, scrubbed with a water/mild soap solution (if required by the Project Environmental Consultant), rinsed, and air dried. Light equipment such as hand tools and sampling equipment shall be rinsed, scrubbed with a water/mild soap solution, rinsed again, and air dried. Equipment decontamination shall be performed at a designated decontamination area set up in a location to be coordinated with the Project Environmental Consultant.

PART 4 - MEASUREMENT AND PAYMENT

A. All site work described in this section shall be included in the LUMP SUM price under Line 2 of the attached Bid Form (Appendix B), and shall include all materials, tools, equipment, labor, and work incidental thereto.

END OF SECTION 2

SECTION 3 – DUST AND ODOR CONTROL

PART 1 – GENERAL

1.1 RELATED DOCUMENTS:

- A. Drawings and general provisions of the Contract, including the Environmental Summary apply to this Section.
- B. Analytical data tables and maps included in the RAP and Appendix C apply to this section.
- C. All other specifications included in the Contract Documents apply to this section.

1.2 SUMMARY

- A. The Contractor shall conduct excavation operations and maintain the project site in a manner that minimizes the creation and dispersion of dust, and limits volatile organic compound (VOC) and associated odor emissions. Dust control shall be used during the entire project. VOC emission control shall be used during contaminated soil excavation and handling in VOC and ETPH release areas of the site (where petroleum product will be excavated). The purpose of these measures is to minimize the potential exposure of non-project personnel to airborne contaminants emanating from project activities.
- B. Hours of operation at the site will be limited to Monday through Friday, 7:00 a.m. to 3:30 p.m.

1.3 COMPLIANCE DOCUMENTS

- A. The Contractor shall comply with all federal, state and/or local laws and regulations including, but not limited to the documents cited below:
 - 1. Occupational Safety and Health Administration (OSHA) regulations:
 - a) 29 CRF, Part 1904, Recording and Reporting Occupations Injuries and Illnesses
 - b) 29 CFR, Part 1910, Occupational Safety and Health Standards, including "Hazwoper" Section 1910.120 and "HazComm" Section 1910.1200
 - c) 29 CFR, Part 1926, Construction Standards
 - 2. U.S. Department of Transportation regulations (codified in 49 CFR)
 - 3. U.S. Environmental Protection Agency (EPA) regulations (codified in 40 CFR)

- 4. Regulations of Connecticut State Agencies Sections 22a-133k-1 to 22a-133k-3 (Remediation Standard Regulations)
- 5. All other federal, state, and/or local regulations and statutes as applicable.

PART 2 – PRODUCTS

2.1 – VOLATILE EMISSIONS CONTROL:

A. The Contractor shall use the following materials to control volatile emissions at the project site. All materials shall be applied by the Contractor in accordance with manufacturer's recommendations. The Contractor shall submit product information to the Consultant. Products shall be non-toxic and designed for this specific use.

1. Polyethylene Plastic Sheeting

The Contractor shall provide and apply polyethylene plastic sheeting with a minimum thickness of six millimeters that would be used as the first and primary method for containing VOC emissions at the project site. If the plastic sheeting is insufficient in containing VOC emissions, then the following methods described below shall be used.

2. Foam Concentrate

If needed, the Contractor shall provide and apply foam concentrate that is designed for and is capable of temporarily (under 24 hours) suppressing VOC emissions at the project site.

3. Foam Stabilizer

If needed based on the product used, the Contractor shall provide foam stabilizer that is designed to extend the duration of effectiveness of the foam concentrate in areas where prolonged emission suppression is required.

PART 3 – EXECUTION

3.1 – Dust Control

A. The Contractor shall apply water or other approved materials to the site when dust control is necessary, according to action levels specified in the Remedial Action Plan. These materials shall be applied without interfering with excavation equipment or site operations and without creating nuisance conditions such as ponding or runoff.

3.2 – Volatile and Odor Emission Control

A. If volatile organic emissions as measured at the perimeter of the exclusion zone exceed an action level of 18 ppm total VOCs, as measured by the Consultant, or if objectionable odors persist at the perimeter, a temporary plastic sheet shall be applied to the source area. Areas where plastic sheeting may be necessary include the open active excavation, the excavating bucket, and the stockpile. If the plastic sheeting is insufficient in suppressing VOC emissions, then temporary foam blanket shall be applied. The temporary foam shall be capable of suppressing vapors for a period up to 24 hours. If the 18 ppm action level is exceeded and an open excavation exists at the completion of the work day, permanent foam capable of suppressing vapors for a period in excess of 24 hours shall be applied to the excavation. Foam application shall be made to potential VOC source areas as often as necessary to maintain airborne concentrations below the 18 ppm action level and/or reduce objectionable odors to the extent necessary.

1.01 PART 4 - MEASUREMENT AND PAYMENT

A. All dust emissions control efforts described in this section shall be included in the LUMP SUM price under Line 3 of the attached Bid Form, and shall include all materials, labor, and work incidental thereto. Labor, materials, and equipment associated with odor controls will be paid on a per 55-gallon drum of odor suppressing foam basis (Line D of the Bid Form).

END OF SECTION 3

SECTION 4 – EXCAVATION, BACKFILL, AND GRADING

PART 1 – GENERAL

1.1 RELATED DOCUMENTS:

- A. Drawings and general provisions of the Contract, including the Environmental Summary apply to this Section.
- B. Analytical data tables and maps included in the RAP and Appendix C apply to this section.
- C. All other specifications included in the Contract Documents apply to this section.

1.2 GENERAL

- A. The Contractor shall make a pre-bid field visit to verify all work shown or not shown on the drawings. The Project Environmental Consultant will notify the contractor of the date and time of the pre-bid field visit.
- B. For the purpose of this bid, the work specified in this section shall involve excavation and disposal of concrete slabs and asphalt pavement overlying the remedial areas, stockpiling the concrete and asphalt for later disposal/recycling by the Owner, excavation of regulated soil, and backfilling of excavations in areas identified in Figure EV.1. Site background and analytical data are further detailed in the RAP.
- C. Hours of operation at the site will be limited to Monday through Friday, 7:00 a.m. to 3:30 p.m.

1.3 SUMMARY

- A. Certain soils at the site need to be removed in order to achieve compliance with Connecticut Remediation Standard Regulation (RSR) criteria. The procedures outlined below shall be followed during the excavation of soils at the subject site. These contain elevated concentrations ETPH and VOCs at concentrations that are in excess of RSR criteria and will be remediated as part of this project.
- B. The Contractor shall remove the remaining concrete slabs (estimated at approximately 9,800 square feet) and asphalt pavement (estimated at approximately 1,500 square feet) overlying the excavation areas. The concrete and asphalt shall be broken into management pieces (3 feet minus) and stockpiled on-site for later disposal/recycling by the Owner. The impacted soil shall be direct loaded into trucks for shipping to the selected waste disposal facility. The Consultant has pre-characterized soils within the proposed remediation areas and has provided the analytical data in Attachment C. Prior to initiation of

- remediation activities, the Contractor will propose a disposal facility that the Owner will evaluate to determine if it is acceptable.
- C. The Contractor shall excavate impacted soil from four areas depicted on Figure EV.1, which are summarized as follows:
 - RA 1 Western Building Area VOCs were identified in soil beneath the western portion of the former building at concentrations exceeding RSR criteria. An estimate of approximately 650 cy of impacted soil shall be excavated from an approximately 2,900 square foot area to the depth of the seasonal low water table, approximately six feet below grade in this area located in the western portion of the site.
 - RA 3 Former 12,000 Gallon Underground Storage Tank (UST) and Storage Area An estimate of approximately 400 cy of soil shall be excavated from an approximately 1,300 square foot area to the depth of the seasonal low water table (approximately eight feet below grade) located beneath the remaining concrete slab of the former building in the central portion of the site. Demolition and disposal of the remaining concrete slab will be required to remediate this area.
 - RA 4 Eastern Building Area VOCs have been detected in soil beneath the eastern portion of the former building (two locations) at concentrations that exceed RSR criteria. These areas are identified as RA-4A and RA-4B on Figure 2 of the RAP. An estimate of approximately 350 cy of soil shall be excavated from a total area of approximately 1,400 square feet to the depth of the seasonal low water table, approximately six feet below grade. Demolition and disposal of the remaining concrete slab will be required to remediate this area.
- D. The excavations shall remain open pending the results of post-excavation samples collected from the limits of the excavation. The Consultant will provide analytical data within two business days of sample collection. The Contractor shall provide temporary construction fencing to encircle each open excavation while confirmatory data is pending. The contractor shall not be due any delay related payment due to the waiting period while analytical data is being obtained. The Consultant will provide direction based on the results of the post-excavation samples. The excavations will be backfilled and compacted upon notice from the Consultant that remediation is complete in each area.
- E. The Contractor shall provide trucks to transport clean fill material from the Town of Glastonbury Bulky Waste facility located at 1145 Tryon Street in Glastonbury, CT. The clean fill will loaded onto the Contractor's trucks by the Town.
- F. The Contractor shall conduct all activities with care. Releases of contaminated or hazardous materials caused by the Contractor's negligence will be remediated at the sole expense of the Contractor.

G. At the end of the remediation activities, the Contractor shall remove all equipment and materials from the site and restore the site in accordance with the contract documents and to a condition approved by the Owner.

1.3 COMPLIANCE DOCUMENTS

- A. The Contractor shall comply with all federal, state and/or local laws and regulations including, but not limited to the documents cited below:
 - 1. Occupational Safety and Health Administration (OSHA) regulations:
 - a) 29 CRF, Part 1904, Recording and Reporting Occupations Injuries and Illnesses
 - b) 29 CFR, Part 1910, Occupational Safety and Health Standards, including "Hazwoper" Section 1910.120 and "HazComm" Section 1910.1200
 - c) 29 CFR, Part 1926, Construction Standards
 - 2. U.S. Department of Transportation regulations (codified in 49 CFR)
 - 3. U.S. Environmental Protection Agency (EPA) regulations (codified in 40 CFR)
 - 4. Regulations of Connecticut State Agencies Sections 22a-133k-1 to 22a-133k-3 (Remediation Standard Regulations)
 - 5. Conditions of the Town of Glastonbury's "Approved Wetlands Permit Motion" contained in Appendix D.
 - 6. All other federal, state, and/or local regulations and statutes as applicable.

1.4 DEFINITIONS:

- A. "Connecticut Regulated Waste" (regulated) soils are defined as soil that has been affected by a release of a substance. For the purposes of this specification, the site soils that will be excavated are regulated as it has been determined that they contain concentrations of ETPH and/or VOCs above RSR criteria. These site soils have been impacted by a release of petroleum and/or releases during historical manufacturing processes. Although the identified soils contain concentrations of ETPH and VOCs above what is considered naturally occurring levels or above RSR criteria, the soils are not considered to be hazardous waste as defined by federal and state regulations, including Connecticut's "Contained-In Policy" based on existing data.
- B. "RCRA Hazardous Waste Material" soils are defined for the purpose of this specification as those soils that contain elevated concentrations of substances above hazardous levels as specified in 40 CFR 261.3.

C. "Natural" soils are defined as soil in which all substances naturally occurring therein are present in concentrations not exceeding the concentrations of such substances occurring naturally in the environment and in which soil no other substance is analytically detectable as defined in Sections 22a-209-1 and 22a-133k-1 of the Regulations of Connecticut State Agencies.

1.5 QUALITY ASSURANCE

- A. The Contractor shall coordinate all site excavation activities with the Project Environmental Consultant to ensure proper management of all soils. No soil shall be excavated from the site without at least one day prior notification to, and written authorization from, the Project Environmental Consultant. The Contractor shall be responsible for all remedial activities and costs related to the unauthorized disposal of regulated soils in unauthorized locations.
- B. There is no guarantee that additional contaminants or higher concentrations of contaminants (in comparison to what is indicated in the RAP) will not be encountered. In addition to dealing with the known soil impacts, the Contractor shall be prepared in the event that unsuspected contamination or other environmental concerns are encountered. If the Contractor locates grossly impacted material (other than that specified) that is believed to be regulated, the Contractor shall immediately cease work in the area and contact the Consultant. The Consultant shall collect samples in order to characterize the material and provide the information to the Contractor. The Contractor shall then manage the material as directed by the Consultant.

PART 2 – PRODUCTS

- A. The Contractor shall provide materials and equipment required to implement this Section, including but not limited to the following products:
 - 1. Plastic Sheet: Provide polyethylene sheet with minimum thickness of six millimeters. For use as a liner and cover for any stockpiles of regulated soil that are created and that will remain at the site overnight or for extended periods.
 - 2. Reinforced Plastic Tarps. Provided reinforced plastic tarps to secure the tops of any stockpiles.
 - 3. Sand bags to secure polyethylene sheeting shall have a minimum weight of 20 pounds.
 - 4. Any and all heavy equipment (loaders, backhoes, compactors, etc).
 - 5. Temporary construction fencing shall be orange plastic mesh, at least 48" inches high, and staked at 6-foot intervals, or as needed to provide structural support to prevent collapse of the fence fabric.

PART 3 - EXECUTION

3.1 DELIVERY OF CLEAN FILL

A. The Contractor shall transport approximately 1,400 cubic yards of clean fill from the Town of Glastonbury's Bulky Waste facility located at 1145 Tryon Street in Glastonbury to the site where a stockpile will be established.

3.2 EXCAVATION:

- A. The Contractor shall notify the Consultant at least 24-hours before excavation and removal of any regulated soil. This will include documentation of a call-before-you-dig (CBYD) notification of the site ensuring that the Contractor will have knowledge of utilities in all areas of excavation. The Contractor shall coordinate with the owner to identify any privately owned subsurface utilities and to obtain an excavation permit.
- B. The Contractor shall attempt to minimize impact on traffic patterns and parking availability at the site during remediation activities.
- C. The Contractor shall remove the remaining concrete slab (approximately 9,800 square feet) and asphalt (approximately 1,500 square feet) to access the area of remediation. Concrete and asphalt shall be broken into pieces no larger than three feet in diameter and stockpiled on-site by the Contractor. Disposal of these materials is not include in this contract.
- D. Soils within the proposed excavation areas are considered to be "regulated soil" based on the existing data. It is anticipated that a total of 1,400 cubic yards (2,100 tons) of soil will be excavated from the site for loading, transportation, and off-site disposal.
- E. The Contractor shall install temporary construction fencing around any open excavation at the end of every day.
- F. Upon completion of excavation of each remediation area, the Consultant will collect confirmatory soil samples from the excavation limits for laboratory analysis. The results will be used to determine if the targeted soils were adequately removed to meet remedial goals. Results will be available within two business days following sample collection. Based on the results of the testing, it is possible that additional soil will need to be removed. As such, the Contractor shall excavate additional soils as directed by the Consultant if necessary.
- G. The Contractor shall protect and support all utilities within any excavation. Damage to utilities caused by excavation shall be the sole responsibility of the contractor.

- H. The Contractor shall protect and support fencing in the vicinity of any excavation. Damage to fencing caused by excavation shall be the sole responsibility of the contractor.
- I. The Contractor shall backfill each excavation with clean fill provided by the Town. The fill shall be placed in loose layers not more than six inches (6") thick and compacted by a minimum of four (4) passes of a heavy, manually –operated, vibratory plate or drum compactor.
- J. The Contractor shall perform additional excavation beyond the limits shown on Figure EV.1 if required and as directed by the Consultant.

3.3 STOCKPILING

- A. Stockpiling of regulated soil is not anticipated. However, stockpiling of clean fill, as well as concrete and asphalt will be needed. It is also possible that stockpiling of regulated soils may be required. The Contractor shall establish a stockpile area, or areas, in coordination with the owner.
- B. All regulated stockpiled soil shall be underlain and covered by plastic sheets and reinforced plastic tarp of sufficient size to ensure that seepage of soil or water is prevented. The existing ground surface must be cleared of debris and protrusions and/or a layer of clean sand with a minimum thickness of four inches must be placed between the plastic sheet and the ground in the staging area to protect the plastic. The cover shall be held in place of tires, sandbags, or similar weights to prevent wind damage to the cover. The piles shall be completely surrounded by hay bales, if so directed by the Consultant.
- C. If there is seepage of liquid from the pile(s), the Contractor shall place granular absorbent material sufficient to eliminate surface runoff from the pile(s).
- D. The stockpiling areas shall be inspected regularly by the Contractor to ensure that the cover or other containment structure has not been damaged, and that there is no apparent leakage from the pile. If the plastic cover has been damaged, or there is evidence of seepage from the piles, the Contractor shall replace the cover material or absorbent barriers as needed. It is the Contractor's responsibility to protect the piles from releasing contaminants to the environment throughout the duration of the project.
- E. The Contractor shall provide all labor, tools, materials, and equipment necessary for temporary stockpiling and containment of the concrete/asphalt and/or soil.
- F. The Contractor shall provide all labor, tools, materials, and equipment necessary restore the temporary stockpile location to pre-excavation conditions.
- 3.4 DEWATERING (IF REQUIRED)

- A. Dewatering is not anticipated to be required to complete the remedial excavations. However, post-excavation sampling may indicate the need to extend the remedial excavations below the water table.
- B. If dewatering is necessary, the Contractor shall obtain all appropriate state and local permits, provide dewatering equipment, provide treatment equipment necessary to meet discharge permit parameters, and conduct and monitor the discharge in accordance with permit requirements.

3.5 EQUIPMENT

- A. All equipment shall be provided to the work site free of contamination.
- B. The Contractor shall decontaminate all equipment that comes in contact with regulated material, either directly or indirectly, (i.e., excavation, equipment), prior to beginning excavation of natural (unregulated) soils if so directed by the Consultant. Heavy equipment, such as vehicles and large power tools, shall have dirt and grit physically removed. The equipment shall then be steam cleaned or washed under high pressure water spray, scrubbed with a water/mild soap solution (if required by the Consultant), rinsed, and air dried. Light equipment such as hand tools and sampling equipment shall be rinsed, scrubbed with a water/mild soap solution, rinsed again, and air dried. Equipment decontamination shall be performed at a designated decontamination area set up in a location to be coordinated with the Consultant.

PART 4 - MEASUREMENT AND PAYMENT

- A. All work associated with transportation of clean fill to the site shall be paid on a lump sum basis and should be entered on Line 4 of the attached bid form. All work associated with excavation and stockpiling of concrete and asphalt shall be paid on a lump sum basis and should be entered on Line 5 of the attached bid form. All work associated with excavation of regulated soils shall also be paid on a lump sum basis and should be entered on Line 6 of the bid form. Unit costs for excavation of additional soil beyond the estimated 1,400 cubic yards of soil in the base bid shall be provided on the Bid Form on Line A (Add/Alternate Items). Unit costs for transportation and stockpiling of additional clean fill beyond the estimated 1,400 cubic yards bid shall be provided on the Bid Form on Line B (Add/Alternate Items). Dewatering, if needed, will be paid for on a per day basis to include all permitting, pumping, treatment, and sampling required by the permit(s). The unit cost for dewatering shall be provided on the Bid Form on Line E.
- B. There is no guarantee that additional compounds or higher levels of contamination than what is identified in the RAP and Appendix C will not be encountered. The Contractor shall provide the appropriate personal protective equipment and clothing for the health and safety of workers. Workers shall be

properly trained for such occurrences, for whatever environmental conditions are encountered when moving, excavating, handling or stockpiling soil. Costs for same shall be considered part of the base contract amount. Any loss of productivity, efficiency, and other indirect costs that result from working under any environmental conditions encountered shall be borne solely by the Contractor, and no additional time shall be granted the Contractor due to same.

END OF SECTION 4

SECTION 5 - LOADING, TRANSPORTATION, AND DISPOSAL

PART 1 - GENERAL

1.1 RELATED DOCUMENTS

- A. Drawings and general provisions of the Contract, including the Environmental Summary apply to this Section.
- B. Analytical data tables and maps included in the RAP and Appendix C apply to this section.
- C. All other specifications included in the Contract Documents apply to this section.

1.2 GENERAL

- A. The Contractor shall make a pre-bid field visit to verify all work shown or not shown on the drawings. The Project Environmental Consultant will notify the contractor of the date and time of the pre-bid field visit.
- B. For the purpose of this bid, the work specified in this section shall involve all necessary work for loading, transportation, tipping fees, and disposal surcharges associated with the proper disposal of regulated waste from the site. The ultimate disposal location shall be selected by the Contractor and approved by the Consultant.
- C. For the purpose of this bid, it is assumed that all excavated soil will meet the definition of a Connecticut regulated waste. The Contractor shall propose a disposal facility licensed and suitable for disposal of the regulated soils based on the soil analytical data provided in Attachment D. The final disposal location shall be approved by the Owner and Consultant.
- D. Hours of operation at the site will be limited to Monday through Friday, 7:00 a.m. to 3:30 p.m.

1.3 SUMMARY

- A. For the purpose of this bid, the work specified in this section shall involve the loading, transportation and disposal of regulated and/or hazardous soils to off-site permitted treatment/disposal facilities.
- B. The Consultant will coordinate with the Contractor for authorization for disposal of the soil with the selected disposal facility and generation of manifests, Materials Shipping and Record Logs, or other required documents. These documents shall be present within each truck during transport. Copies of these documents shall be provided to the Project Environmental Consultant.

- C. The Contractor shall coordinate scheduling of disposal activities with the disposal facility and the Consultant.
- D. The Owner will be the designated Generator of the regulated soil waste.
- E. The Contractor shall include all tipping fees or other disposal related costs with their bid. The Contractor shall also provide unit costs for loading, transportation, and disposal costs above and beyond the lump sum amount.

1.4 COMPLIANCE DOCUMENTS

- A. The Subcontractor shall comply with all federal, state and/or local laws and regulations including, but not limited to the documents cited below:
 - 1. Occupational Safety and Health Administration (OSHA) regulations;
 - 2. U.S. Department of Transportation regulations (codified in 49 CFR);
 - 3. U.S. Environmental Protection Agency (EPA) regulations (codified in 40 CFR);
 - 4. Regulations of Connecticut State Agencies 22a-432 (Connecticut Regulated Waste) and:
 - 5. All other federal, state, and/or local regulations and statutes as applicable.

PART 2 - PRODUCTS (Not Used)

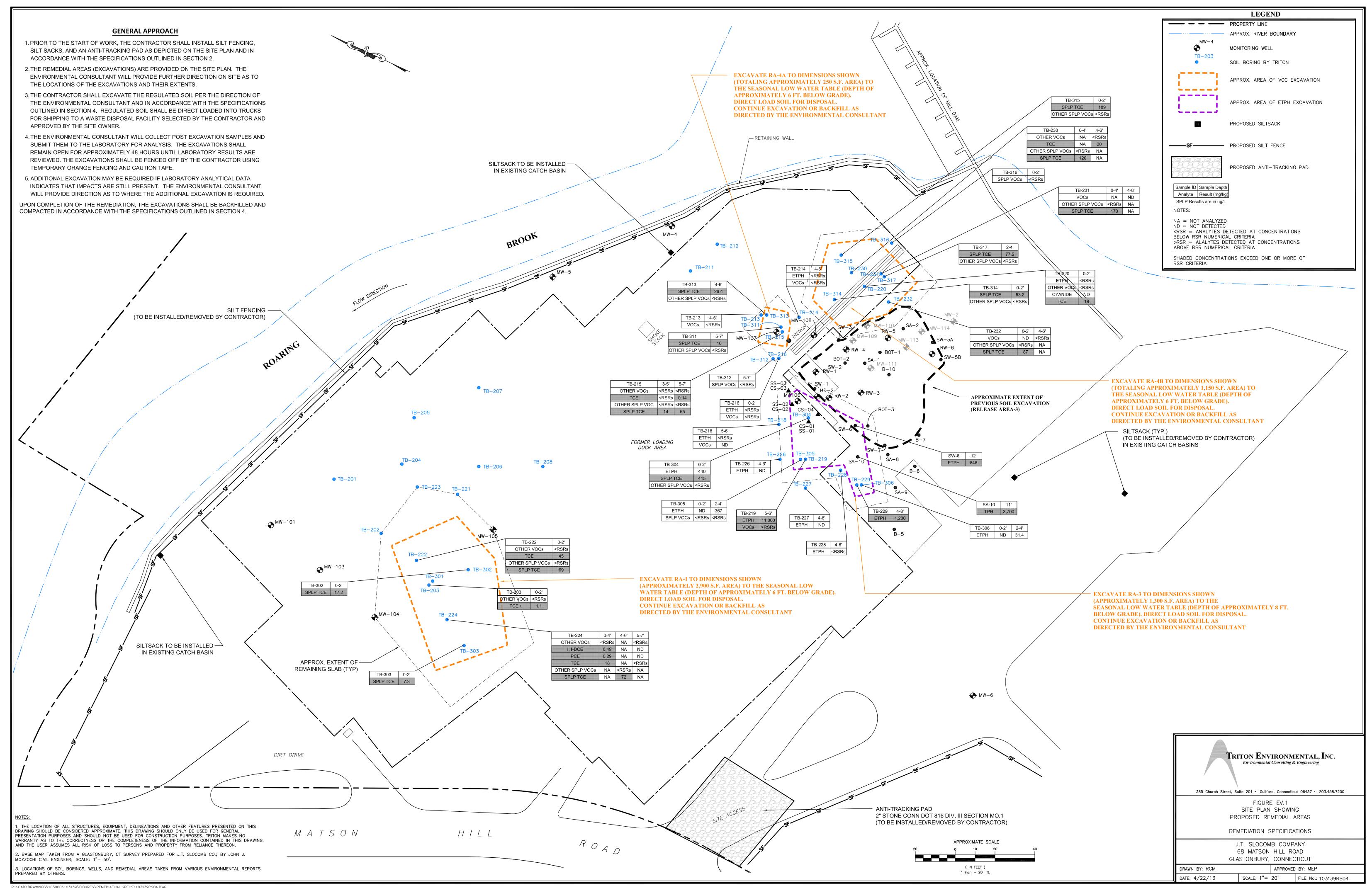
PART 3 - EXECUTION

3.1 CONTAMINATED SOIL LOADING

A. As specified in Section 4, it is anticipated that regulated soils will be direct loaded into dump truck for immediate transport to the selected disposal facility. It is possible that some soils will be stockpiled. Under either scenario, the Contractor shall carefully load the soil onto trucks for transport such that there is no release of the excavated soil onto surrounding soils. The Contractor shall coordinate all loading activities with the Consultant so as to minimize the amount of time regulated soil remains on site and to prevent delays to the site work. The Contractor shall remove all wastes within two weeks from completion of the excavation activities if stockpiled on site. The Contractor shall provide all labor and equipment for regulated soil loading onto trucks.

3.2 TRANSPORTATION

- A. The Contractor shall provide at least 24-hour notice to the Consultant prior to the transport of any material off site. Delays caused by failure to provide adequate notice are solely the responsibility of the Contractor.
- B. All vehicles used to transport regulated soil shall have a metal dump body free from any holes. Absorbent material shall be added to the dump body as needed so that no free liquid is present. The materials shall be covered during transport to prevent loss of soil and/or dust out of the dump body.
- C. Transport vehicles and loading/unloading procedures shall meet all appropriate state and federal DOT standards.
- D. Bulk solids shall be kept several inches below the top of the truck container.
- E. The load shall be secured to prevent shifting or release during transport.
- F. The Contractor shall transport and dispose of soils at an appropriately permitted disposal facility(s) approved in writing by the Project Environmental Consultant.
- G. The Contractor shall be solely responsible for any and all spills or leaks during the performance of this contract that occur as a result of or are contributed to by the actions of its employees or subcontractors. The Contractor shall assume all costs for the cleanup of such spills or leaks to the satisfaction of the Owner and regulators in a manner that complies with applicable federal, state and local laws and regulations.
- H. The Contractor shall provide the name and telephone number of at least one responsible individual and alternate, who will service to respond to operational problems and/or emergencies on a 24-hour basis. The Contractor shall agree that notice to his designated representative shall constitute notice to the Contractor and shall agree to be bonded by any commitments or representations made by the representative.


3.3 RECORDKEEPING

- A. As required and in coordination with the Consultant, the Contractor (and subcontracted transporters, if applicable) shall cooperate in the maintenance of material shipment records required by the disposal facilities and the State of Connecticut.
- B. The Contractor shall provide weight tickets and other paperwork provided by the facility to the Consultant within 24 hours of each load.
- C. Material Shipping and Record Logs or other related documents shall be provided to the Contractor by the Consultant. The Contractor shall maintain a copy of the Material Shipping and Record Log in each truck during transport of the regulated soil to the landfill.

PART 4 - MEASUREMENT AND PAYMENT

All work described in this section shall be provided as a Unit Price (per ton) bid and shall include all materials, tools, equipment, labor, and work incidental thereto. Payment will be based on weight of soil as measured on the certified scale of the disposal facility. This Unit Price shall be provided on Line 7 of the attached Bid Form. Should future data indicate that disposal of hazardous wastes are required, payment shall be on a per ton basis as an add/alternative item. The cost for hazardous waste transportation and disposal shall be entered onto Line C of the Bid Form (Add/Alternate Items).

END OF SECTION 5

APPENDIX C WASTE CHARACTERIZATION DATA

APPENDIX C

Summary of Waste Characterization Data

44 and 68 Matson Hill Road, Glastonbury, CT

	Client Sample ID:		WC-1	WC-2	WC-3	WC-4
	Release Area:	Connecticut	RA-1	RA-4A/4B	RA-3	RA-3
	Lab Sample ID:	Contained-In	MC19052-1	MC19052-2	MC19083-1	MC19083-2
	Date Sampled:	Value	3/15/2013	3/15/2013	3/18/2013	3/18/2013
Compound	Matrix:	(mg/kg)	Soil	Soil	Soil	Soil
GC/MS Volatiles (SW846 8260B)						
Benzene	mg/kg	2	ND (0.030)	0.1	ND (0.026)	ND (0.017)
Chloroethane	mg/kg	NE	ND (0.300)	5.5	ND (0.260)	ND (0.170)
1,1-Dichloroethane	mg/kg	140	ND (0.120)	13.8	ND (0.100)	0.684
1,2-Dichloroethane	mg/kg	2	ND (0.120)	0.247	ND (0.100)	ND (0.069)
1,1-Dichloroethene	mg/kg	14	ND (0.120)	0.708	ND (0.100)	ND (0.069)
cis-1,2-Dichloroethene	mg/kg	140	0.233	3.95	ND (0.100)	0.377
trans-1,2-Dichloroethene	mg/kg	200	ND (0.120)	0.724	ND (0.100)	ND (0.069)
Naphthalene	mg/kg	560	0.329	ND (0.430)	ND (0.260)	ND (0.170)
Tetrachloroethene	mg/kg	10	2.38	ND (0.170)	ND (0.100)	0.92
1,1,1-Trichloroethane	mg/kg	400	0.475	13.0	ND (0.100)	ND (0.069)
Trichloroethene	mg/kg	10	8.43	7.99	ND (0.100)	1.32
Vinyl chloride	mg/kg	4	ND (0.120)	0.178	ND (0.100)	ND (0.069)
GC/MS Semi-volatiles (SW846 82	· '					
Anthracene	mg/kg	4000	0.156	ND (0.140)	ND (0.110)	ND (0.110)
Benzo(a)anthracene	mg/kg	100	0.586	ND (0.140)	ND (0.110)	0.194
Benzo(a)pyrene	mg/kg	100	0.503	ND (0.140)	ND (0.110)	0.202
Benzo(b)fluoranthene	mg/kg	100	0.737	0.327	ND (0.110)	0.353
Benzo(g,h,i)perylene	mg/kg	NE	0.309	ND (0.140)	ND (0.110)	0.15
Benzo(k)fluoranthene	mg/kg	100	0.248	ND (0.140)	ND (0.110)	0.141
Carbazole	mg/kg	NE	0.127	ND (0.140)	ND (0.110)	ND (0.110)
Chrysene	mg/kg	NE	0.567	0.198	ND (0.110)	0.277
Fluoranthene	mg/kg	560	1.47	0.296	ND (0.110)	0.515
Indeno(1,2,3-cd)pyrene	mg/kg	NE	0.27	ND (0.140)	ND (0.110)	0.147
2-Methylnaphthalene	mg/kg	NE	ND (0.110)	1.25	ND (0.110)	ND (0.110)
Naphthalene	mg/kg	560	ND (0.110)	0.573	ND (0.110)	ND (0.110)
Phenanthrene	mg/kg	400	1.13	0.27	ND (0.110)	0.278
Pyrene	mg/kg	400	1.08	0.22	ND (0.110)	0.449
Extractable Total Petroleum Hyd			120	6.40	1520	5.400
CT-ETPH (C9-C36)	mg/kg	NA	129	648	1520	5490
Polychlorinated Biphenyls (PCBs	<i>.</i>	NIA	ND (110)	ND (140)	ND (110)	ND (110)
Total PCBs	ug/kg	NA	ND (110)	ND (140)	ND (110)	ND (110)
Total Metals Analysis	п	NIA	2.1	5.1	4.0	2.0
Arsenic	mg/kg	NA NA	2.1	5.1	<1.0	3.8
Barium	mg/kg	NA NA	1.9	73.5 3.3	29 1.5	47.8 2.3
Cadmium	mg/kg		33			
Chromium Lead	mg/kg mg/kg	NA NA	50.9	1130 241	9.2 11.3	74.9 82.8
Mercury Selenium	mg/kg mg/kg	NA NA	0.08 <0.97	0.12 1.8	<0.033	<0.037 <0.98
Silver	mg/kg mg/kg	NA NA	2.3	<0.54	<0.50	<0.49
General Chemistry	mg/kg	INA	2.3	<0.34	<0.30	<u> </u>
Cyanide Reactivity	mg/kg	NA	<1.7	<2.1	<1.7	<1.7
Ignitability (Flashpoint)	Deg. F	NA NA	>230	>230	>230	>230
Paint Filter Test	ml/100g	NA NA	<0.50 a	<0.50 ^a	<0.50 ^a	<0.50 ^a
Solids, Percent	//////////////////////////////////////	NA NA	<0.50 89.1	69.1	<0.50 89.7	<0.50 86.1
Specific Conductivity	umhos/cm	NA NA	345	205	42.9	102
Sulfide Reactivity	mg/kg	NA NA	<56	<72	<56	<58
pH	su	NA NA	9.2	7.1	7.2	6.7
TCLP Metals Analysis	5 u	1111	1 7.2	7.1	7.2	5.7
Lead	mg/l	NA	0.015	0.069	0.019	0.15
Notes:	9/1	1	0.015	0.007	0.017	0.13

Only parameters detected are shown

ND = not detected at the reporting limit shown.

Connecticut's "Contained-In" Policy limit is equal to 100 times the GA Pollutant Mobility Criteria contained in the DEEP's RSRs.

Appendix C

Summary of Theoretical Maximum TCLP Results

Waste Characterization Samples

44 and 68 Matson Hill Road, Glastonbury, CT

	Client Sample ID:	WC-1	WC-2	WC-3	WC-4			
	Release Area	RA-1	RA-4A/4B	RA-3	RA-3			
	Lab Sample ID:	MC19052-1	MC19052-2	MC19083-1	MC19083-2			
	Date Sampled:	3/15/2013	3/15/2013	3/18/2013	3/18/2013			
Compound	Matrix:	Soil	Soil	Soil	Soil	TC Value*		
GC/MS Volatiles (SW846	8260B)							
Benzene mg/L 0.0015 0.005 0.0013 0.00085 0.5								
Chloroethane	mg/L	0.015	0.275	0.013	0.0085	NE		
1,1-Dichloroethane	mg/L	0.006	0.69	0.005	0.0342	NE		
1,2-Dichloroethane	mg/L	0.006	0.01235	0.005	0.00345	0.5		
1,1-Dichloroethene	mg/L	0.006	0.0354	0.005	0.00345	0.7		
cis-1,2-Dichloroethene	mg/L	0.01165	0.1975	0.005	0.01885	NE		
trans-1,2-Dichloroethene	mg/L	0.006	0.0362	0.005	0.00345	NE		
Naphthalene	mg/L	0.01645	0.0215	0.005	0.0085	NE		
Tetrachloroethene	mg/L	0.119	0.0085	0.005	0.046	0.7		
1,1,1-Trichloroethane	mg/L	0.02375	0.65	0.005	0.00345	NE		
Trichloroethene	mg/L	0.4215	0.3995	0.005	0.066	0.5		
Vinyl chloride	mg/L	0.006	0.0089	0.005	0.00345	0.2		
Metals Analysis								
Arsenic	mg/L	0.105	0.255	0.05	0.19	5.0		
Barium	mg/L	2.45	3.675	1.45	2.39	100		
Cadmium	mg/L	0.095	0.165	0.075	0.115	1.0		
Chromium	mg/L	1.65	56.5	0.46	3.745	5.0		
Lead	mg/L	0.015	0.069	0.019	0.15	5.0		
Mercury	mg/L	0.004	0.006	0.00165	0.00185	0.2		
Selenium	mg/L	0.0485	0.09	0.05	0.049	1.0		
Silver Notes:	mg/L	0.115	0.027	0.025	0.0245	5.0		

Notes:

Maximum theoretical TCLP values calculated using "20-times rule" where mass results are divided by 20.

For compounds which were non-detect by mass analysis, the detection limit was divided by 20.

For lead, the actual TCLP results are indicated for all samples. Actual TCLP chromium results listed for WC-2.

*TC Value = Toxicity Characteristic value under 40 CFR Part 261.24.

04/01/13

Technical Report for

Triton Environmental, Inc.

68 Matson Hill Road, Glastonbury, CT

103139

Accutest Job Number: MC19052

Sampling Date: 03/15/13

Report to:

Triton Environmental, Inc. 385 Church Street Suite 201 Guilford, CT 06437 mpaulsson@tritonenvironmental.com

ATTN: Mark Paulsson

Total number of pages in report: 89

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Matthew Morrell 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) WI (399080220) ISO 17025:2005 (L2235)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	7
Section 4: Sample Results	9
4.1: MC19052-1: WC-1	10
4.2: MC19052-1A: WC-1	20
4.3: MC19052-2: WC-2	
4.4: MC19052-2A: WC-2	31
Section 5: Misc. Forms	32
5.1: Chain of Custody	33
5.2: RCP Form	35
5.3: Sample Tracking Chronicle	
Section 6: GC/MS Volatiles - QC Data Summaries	38
6.1: Method Blank Summary	39
6.2: Blank Spike/Blank Spike Duplicate Summary	
6.3: Internal Standard Area Summaries	45
6.4: Surrogate Recovery Summaries	
Section 7: GC/MS Semi-volatiles - QC Data Summaries	
7.1: Method Blank Summary	48
7.2: Blank Spike Summary	
7.3: Internal Standard Area Summaries	54
7.4: Surrogate Recovery Summaries	55
Section 8: GC Semi-volatiles - QC Data Summaries	
8.1: Method Blank Summary	
8.2: Blank Spike Summary	59
8.3: Surrogate Recovery Summaries	
Section 9: Metals Analysis - QC Data Summaries	
9.1: Prep QC MP20643: As,Ba,Cd,Cr,Pb,Se,Ag	
9.2: Prep QC MP20665: Hg	
9.3: Prep QC MP20682: Pb	
Section 10: General Chemistry - QC Data Summaries	
10.1: Method Blank and Spike Results Summary	
10.2: Duplicate Results Summary	89

Sample Summary

Triton Environmental, Inc.

Job No: MC19052

68 Matson Hill Road, Glastonbury, CT Project No: 103139

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
MC19052-1	03/15/13	10:10 DSM	03/19/13	SO	Soil	WC-1
MC19052-1A	03/15/13	10:10 DSM	03/19/13	SO	Soil	WC-1
MC19052-2	03/15/13	15:35 DSM	03/19/13	SO	Soil	WC-2
MC19052-2A	03/15/13	15:35 DSM	03/19/13	SO	Soil	WC-2

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Triton Environmental, Inc. Job No MC19052

Site: 68 Matson Hill Road, Glastonbury, CT Report Date 4/1/2013 4:51:27 PM

2 Sample(s) were collected on 03/15/2013 and were received at Accutest on 03/19/2013 properly preserved, at 0.9 Deg. C and intact. These Samples received an Accutest job number of MC19052. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix SO Batch ID: MSK2233

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Blank Spike Recovery(s) for 2-Hexanone are outside control limits. Blank Spike meets program technical requirements.
- Continuing calibration check standard MSK2233-CC2209 for trichlorofluoromethane exceed 30% Difference. This check standard met RCP criteria.
- Initial calibration verification standard MSK2209-ICV2209 for acetone exceeds 35% Difference.
- BSD Recovery(s) for Bromomethane, 2-Hexanone, Trichlorofluoromethane are outside control limits. Blank Spike meets program technical requirements.

Extractables by GCMS By Method SW846 8270C

Matrix SO Batch ID: OP32429

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Blank Spike Recovery(s) for Aniline are outside control limits. Blank Spike meets program technical requirements.
- Quadratic regression is employed for initial calibration standard MSU623-ICC623 for N-Nitroso-di-n-propylamine, 2,4-Dinitrophenol, Carbazole, Di-n-butylphthalate.
- Initial calibration verification MSU625-ICV623 for Hexachlorocyclopentadiene, 3,3'-Dichlorobenzidine, 2,4,6-Tribromophenol exceed 35% Difference

Extractables by GC By Method CT-ETPH 7/06

Matrix SO Batch ID: OP32428

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Extractables by GC By Method SW846 8082

Matrix SO Batch ID: OP32431

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

4 of 89
ACCUTEST
MC19052
LABORATORIE

Metals By Method SW846 6010C

Matrix LEACHATE

Batch ID: MP20682

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) MC19052-1AMS, MC19052-1AMSD, MC19052-1ASDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Lead are outside control limits for sample MP20682-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
- Only Lead requested.

Matrix SO

Batch ID: MP20643

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) MC19032-12SDL were used as the QC samples for metals.
- Only selected metals requested.

Metals By Method SW846 7471B

Matrix SO

Batch ID: MP20665

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method EPA 120.1M

Matrix SO

Batch ID: GN42081

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) MC19052-1DUP were used as the QC samples for Specific Conductivity.

Wet Chemistry By Method SW846 9045D

Matrix SO

Batch ID: GN42078

Sample(s) MC19052-1DUP were used as the QC samples for pH.

Wet Chemistry By Method SW846 9095

Matrix SO

Batch ID: GN42092

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) MC19052-1DUP were used as the QC samples for Paint Filter Test.
- MC19052-1, -2 for Paint Filter Test: No Free Liquid Detected.

Wet Chemistry By Method SW846 CHAP7

Matrix SO Batch ID: GP15757

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Matrix SO Batch ID: GP15758

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report (MC19052).

Summary of Hits Job Number: MC19052

Account: Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

Collected: 03/15/13

Lab Sample ID Client Sampl Analyte	e ID Result/ Qual	RL	MDL	Units	Method
MC19052-1 WC-1					
cis-1,2-Dichloroethene	233	120		ug/kg	SW846 8260B
Naphthalene	329	300		ug/kg	SW846 8260B
Tetrachloroethene	2380	120		ug/kg	SW846 8260B
1,1,1-Trichloroethane	475	120		ug/kg	SW846 8260B
Trichloroethene	8430	120		ug/kg	SW846 8260B
Anthracene	156	110		ug/kg	SW846 8270C
Benzo(a)anthracene	586	110		ug/kg	SW846 8270C
Benzo(a)pyrene	503	110		ug/kg	SW846 8270C
Benzo(b)fluoranthene	737	110		ug/kg	SW846 8270C
Benzo(g,h,i)perylene	309	110		ug/kg	SW846 8270C
Benzo(k)fluoranthene	248	110		ug/kg	SW846 8270C
Carbazole	127	110		ug/kg	SW846 8270C
Chrysene	567	110		ug/kg	SW846 8270C
Fluoranthene	1470	110		ug/kg	SW846 8270C
Indeno(1,2,3-cd)pyrene	270	110		ug/kg	SW846 8270C
Phenanthrene	1130	110		ug/kg	SW846 8270C
Pyrene	1080	110		ug/kg	SW846 8270C
CT-ETPH (C9-C36)	129	18		mg/kg	CT-ETPH 7/06
Arsenic	2.1	0.97		mg/kg	SW846 6010C
Barium	49.0	4.8		mg/kg	SW846 6010C
Cadmium	1.9	0.39		mg/kg	SW846 6010C
Chromium	33.0	0.97		mg/kg	SW846 6010C
Lead	50.9	0.97		mg/kg	SW846 6010C
Mercury	0.080	0.036		mg/kg	SW846 7471B
Silver	2.3	0.48		mg/kg	SW846 6010C
Ignitability (Flashpoint)	> 230			Deg. F	SW846 1020
Paint Filter Test ^a	< 0.50	0.50		ml/100g	SW846 9095
Specific Conductivity	345	0.50		umhos/cm	EPA 120.1M
pH	9.2	0.50		su	SW846 9045D
MC19052-1A WC-1					
Lead	0.015	0.010		mg/l	SW846 6010C
MC19052-2 WC-2					
Benzene	100	43		ug/kg	SW846 8260B
Chloroethane	5500	430		ug/kg ug/kg	SW846 8260B
1,1-Dichloroethane	13800	170		ug/kg ug/kg	SW846 8260B
1,2-Dichloroethane	247	170		ug/kg ug/kg	SW846 8260B
1,1-Dichloroethene	708	170		ug/kg ug/kg	SW846 8260B
cis-1,2-Dichloroethene	3950	170		ug/kg ug/kg	SW846 8260B
trans-1,2-Dichloroethene	724	170		ug/kg ug/kg	SW846 8260B
u uno-1,2-Diemorocuicie	124	170		ug/ Kg	5 11 040 02000

Summary of Hits Job Number: MC19052

Account: Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

Collected: 03/15/13

Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
1,1,1-Trichloroethane	13000	170		ug/kg	SW846 8260B
Trichloroethene	7990	170		ug/kg	SW846 8260B
Vinyl chloride	178	170		ug/kg ug/kg	SW846 8260B
Benzo(b)fluoranthene	327	140		ug/kg ug/kg	SW846 8270C
Chrysene	198	140		ug/kg ug/kg	SW846 8270C
Fluoranthene	296	140		ug/kg ug/kg	SW846 8270C
2-Methylnaphthalene	1250	140		ug/kg ug/kg	SW846 8270C
Naphthalene	573	140		ug/kg ug/kg	SW846 8270C
Phenanthrene	270	140		ug/kg ug/kg	SW846 8270C
Pyrene	220	140		ug/kg ug/kg	SW846 8270C
CT-ETPH (C9-C36)	648	24		mg/kg	CT-ETPH 7/06
Arsenic	5.1	1.1		mg/kg	SW846 6010C
Barium	73.5	5.4		mg/kg	SW846 6010C
Cadmium	3.3	0.44			SW846 6010C
Chromium	1130	1.1		mg/kg	SW846 6010C
	241	1.1		mg/kg	SW846 6010C
Lead	0.12	0.041		mg/kg	
Mercury	1.8			mg/kg	SW846 7471B
Selenium		1.1		mg/kg	SW846 6010C
Ignitability (Flashpoint)	> 230	0.50		Deg. F	SW846 1020
Paint Filter Test ^a	< 0.50	0.50		ml/100g	SW846 9095
Specific Conductivity	205	0.50		umhos/cm	EPA 120.1M
pH	7.1			su	SW846 9045D
MC19052-2A WC-2					
Lead	0.069	0.010		mg/l	SW846 6010C

⁽a) No Free Liquid Detected.

Sample Results
Report of Analysis

Client Sample ID: WC-1

 Lab Sample ID:
 MC19052-1
 Date Sampled:
 03/15/13

 Matrix:
 SO - Soil
 Date Received:
 03/19/13

 Method:
 SW846 8260B
 Percent Solids:
 89.1

Project: 68 Matson Hill Road, Glastonbury, CT

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 K68256.D 1 03/25/13 GK n/a n/a MSK2233

Run #2

Initial Weight Final Volume Methanol Aliquot

Run #1 10.6 g 10.0 ml 100 ul

Run #2

VOA RCP List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	300	ug/kg	
107-13-1	Acrylonitrile	ND	1500	ug/kg	
71-43-2	Benzene	ND	30	ug/kg	
108-86-1	Bromobenzene	ND	300	ug/kg	
75-27-4	Bromodichloromethane	ND	120	ug/kg	
75-25-2	Bromoform	ND	120	ug/kg	
74-83-9	Bromomethane	ND	120	ug/kg	
78-93-3	2-Butanone (MEK)	ND	300	ug/kg	
104-51-8	n-Butylbenzene	ND	300	ug/kg	
135-98-8	sec-Butylbenzene	ND	300	ug/kg	
98-06-6	tert-Butylbenzene	ND	300	ug/kg	
75-15-0	Carbon disulfide	ND	300	ug/kg	
56-23-5	Carbon tetrachloride	ND	120	ug/kg	
108-90-7	Chlorobenzene	ND	120	ug/kg	
75-00-3	Chloroethane	ND	300	ug/kg	
67-66-3	Chloroform	ND	120	ug/kg	
74-87-3	Chloromethane	ND	300	ug/kg	
95-49-8	o-Chlorotoluene	ND	300	ug/kg	
106-43-4	p-Chlorotoluene	ND	300	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	300	ug/kg	
124-48-1	Dibromochloromethane	ND	120	ug/kg	
106-93-4	1,2-Dibromoethane	ND	120	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	120	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	120	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	120	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	120	ug/kg	
75-34-3	1,1-Dichloroethane	ND	120	ug/kg	
107-06-2	1,2-Dichloroethane	ND	120	ug/kg	
75-35-4	1,1-Dichloroethene	ND	120	ug/kg	
156-59-2	cis-1,2-Dichloroethene	233	120	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	120	ug/kg	
78-87-5	1,2-Dichloropropane	ND	120	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

4

Report of Analysis

Client Sample ID: WC-1 Lab Sample ID: MC19

 Lab Sample ID:
 MC19052-1
 Date Sampled:
 03/15/13

 Matrix:
 SO - Soil
 Date Received:
 03/19/13

 Method:
 SW846 8260B
 Percent Solids:
 89.1

Project: 68 Matson Hill Road, Glastonbury, CT

VOA RCP List

CAS No.	Compound	Result	RL	Units	Q
142-28-9	1,3-Dichloropropane	ND	300	ug/kg	
594-20-7	2,2-Dichloropropane	ND	300	ug/kg	
563-58-6	1,1-Dichloropropene	ND	300	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	120	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	120	ug/kg	
100-41-4	Ethylbenzene	ND	120	ug/kg	
76-13-1	Freon 113	ND	300	ug/kg	
87-68-3	Hexachlorobutadiene	ND	300	ug/kg	
591-78-6	2-Hexanone	ND	300	ug/kg	
98-82-8	Isopropylbenzene	ND	300	ug/kg	
99-87-6	p-Isopropyltoluene	ND	300	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	120	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	300	ug/kg	
74-95-3	Methylene bromide	ND	300	ug/kg	
75-09-2	Methylene chloride	ND	120	ug/kg	
91-20-3	Naphthalene	329	300	ug/kg	
103-65-1	n-Propylbenzene	ND	300	ug/kg	
100-42-5	Styrene	ND	300	ug/kg	
630-20-6	1,1,1,2-Tetrachloroethane	ND	300	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	120	ug/kg	
127-18-4	Tetrachloroethene	2380	120	ug/kg	
109-99-9	Tetrahydrofuran	ND	590	ug/kg	
108-88-3	Toluene	ND	300	ug/kg	
110-57-6	Trans-1,4-Dichloro-2-Butene	ND	300	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	300	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	300	ug/kg	
71-55-6	1,1,1-Trichloroethane	475	120	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	120	ug/kg	
79-01-6	Trichloroethene	8430	120	ug/kg	
75-69-4	Trichlorofluoromethane	ND	120	ug/kg	
96-18-4	1,2,3-Trichloropropane	ND	300	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	300	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	300	ug/kg	
75-01-4	Vinyl chloride	ND	120	ug/kg	
	m, p-Xylene	ND	120	ug/kg	
95-47-6	o-Xylene	ND	120	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
1868-53-7	Dibromofluoromethane	106%		70-13	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: WC-1

 Lab Sample ID:
 MC19052-1
 Date Sampled:
 03/15/13

 Matrix:
 SO - Soil
 Date Received:
 03/19/13

 Method:
 SW846 8260B
 Percent Solids:
 89.1

Project: 68 Matson Hill Road, Glastonbury, CT

VOA RCP List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	102%		70-130%
460-00-4	4-Bromofluorobenzene	98%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: WC-1 Lab Sample ID: MC19052-1

 Lab Sample ID:
 MC19052-1
 Date Sampled:
 03/15/13

 Matrix:
 SO - Soil
 Date Received:
 03/19/13

 Method:
 SW846 8270C
 SW846 3546
 Percent Solids:
 89.1

Project: 68 Matson Hill Road, Glastonbury, CT

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1U13233.D104/01/13NS03/28/13OP32429MSU675

Run #2

Initial Weight Final Volume

Run #1 20.3 g 1.0 ml

Run #2

ABN RCP List

CAS No.	Compound	Result	RL	Units	Q
95-57-8	2-Chlorophenol	ND	280	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	550	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	550	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	550	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1100	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	550	ug/kg	
95-48-7	2-Methylphenol	ND	550	ug/kg	
106-44-5	4-Methylphenol	ND	550	ug/kg	
88-75-5	2-Nitrophenol	ND	550	ug/kg	
100-02-7	4-Nitrophenol	ND	1100	ug/kg	
87-86-5	Pentachlorophenol	ND	550	ug/kg	
108-95-2	Phenol	ND	280	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	550	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	550	ug/kg	
83-32-9	Acenaphthene	ND	110	ug/kg	
208-96-8	Acenaphthylene	ND	110	ug/kg	
62-53-3	Aniline	ND	550	ug/kg	
120-12-7	Anthracene	156	110	ug/kg	
56-55-3	Benzo(a)anthracene	586	110	ug/kg	
50-32-8	Benzo(a)pyrene	503	110	ug/kg	
205-99-2	Benzo(b)fluoranthene	737	110	ug/kg	
191-24-2	Benzo(g,h,i)perylene	309	110	ug/kg	
207-08-9	Benzo(k)fluoranthene	248	110	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	280	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	280	ug/kg	
91-58-7	2-Chloronaphthalene	ND	280	ug/kg	
106-47-8	4-Chloroaniline	ND	550	ug/kg	
86-74-8	Carbazole	127	110	ug/kg	
218-01-9	Chrysene	567	110	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	280	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	280	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	280	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: WC-1 Lab Sample ID: MC19052-1

Date Sampled: 03/15/13 Matrix: SO - Soil **Date Received:** 03/19/13 **Percent Solids:** 89.1

Method: SW846 8270C SW846 3546

Project: 68 Matson Hill Road, Glastonbury, CT

ABN RCP List

CAS No.	Compound	Result	RL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	280	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	550	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	550	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	280	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	110	ug/kg	
132-64-9	Dibenzofuran	ND	110	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	280	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	280	ug/kg	
84-66-2	Diethyl phthalate	ND	280	ug/kg	
131-11-3	Dimethyl phthalate	ND	280	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	280	ug/kg	
206-44-0	Fluoranthene	1470	110	ug/kg	
86-73-7	Fluorene	ND	110	ug/kg	
118-74-1	Hexachlorobenzene	ND	280	ug/kg	
87-68-3	Hexachlorobutadiene	ND	280	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	550	ug/kg	
67-72-1	Hexachloroethane	ND	280	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	270	110	ug/kg	
78-59-1	Isophorone	ND	280	ug/kg	
91-57-6	2-Methylnaphthalene	ND	110	ug/kg	
88-74-4	2-Nitroaniline	ND	550	ug/kg	
99-09-2	3-Nitroaniline	ND	550	ug/kg	
100-01-6	4-Nitroaniline	ND	550	ug/kg	
91-20-3	Naphthalene	ND	110	ug/kg	
98-95-3	Nitrobenzene	ND	280	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	280	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	280	ug/kg	
82-68-8	Pentachloronitrobenzene	ND	550	ug/kg	
85-01-8	Phenanthrene	1130	110	ug/kg	
129-00-0	Pyrene	1080	110	ug/kg	
110-86-1	Pyridine	ND	550	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	550	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	280	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
367-12-4	2-Fluorophenol	69%		30-13	30%
4165-62-2	Phenol-d5	65%		30-13	
118-79-6	2,4,6-Tribromophenol	95%		30-13	
4165-60-0	Nitrobenzene-d5	69%		30-13	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ N = Indicates presumptive evidence of a compound

Date Sampled: 03/15/13 **Date Received:** 03/19/13

Percent Solids: 89.1

Report of Analysis

Client Sample ID: WC-1 Lab Sample ID: MC19052-1

 Matrix:
 SO - Soil

 Method:
 SW846 8270C
 SW846 3546

Project: 68 Matson Hill Road, Glastonbury, CT

ABN RCP List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	73%		30-130%
1718-51-0	Terphenyl-d14	78%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: WC-1 Lab Sample ID: MC19052-1

Project: 68 Matson Hill Road, Glastonbury, CT

Date Sampled: 03/15/13 Matrix: SO - Soil **Date Received:** 03/19/13 Method: SW846 8082 SW846 3546 **Percent Solids:** 89.1

		File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
]	Run #1	BB46588.D	1	03/30/13	CZ	03/28/13	OP32431	GBB2803	
]	Run #2								

	Initial Weight	Final Volume
Run #1	15.3 g	10.0 ml
Run #2	-	

CT Polychlorinated Biphenyls RCP List

CAS No.	Compound	Result	RL	Units Q
12674-11-2 11104-28-2	Aroclor 1016 Aroclor 1221	ND ND	110 110	ug/kg ug/kg
11141-16-5 53469-21-9	Aroclor 1232 Aroclor 1242	ND ND	110 110	ug/kg ug/kg
12672-29-6	Aroclor 1248	ND	110	ug/kg
11097-69-1 11096-82-5	Aroclor 1254 Aroclor 1260	ND ND	110 110	ug/kg ug/kg
37324-23-5 11100-14-4	Aroclor 1262 Aroclor 1268	ND ND	110 110	ug/kg ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	89%		30-150%
877-09-8	Tetrachloro-m-xylene	88%		30-150%
2051-24-3	Decachlorobiphenyl	142%		30-150%
2051-24-3	Decachlorobiphenyl	147%		30-150%

ND = Not detected J = Indicates an estimated value

RL = Reporting Limit B = Indicates analyte found in associated method blank E = Indicates value exceeds calibration range N = Indicates presumptive evidence of a compound

Report of Analysis

By

KN

Client Sample ID: WC-1 Lab Sample ID: MC19052-1 Matrix: SO - Soil

File ID

BI19791.D

Method: CT-ETPH 7/06 SW846 3546

Project: 68 Matson Hill Road, Glastonbury, CT

DF

1

Date Sampled: 03/15/13 **Date Received:** 03/19/13 **Percent Solids:** 89.1

Prep Date Analytical Batch Prep Batch 03/28/13 OP32428 **GBI712**

Run #1 Run #2

> **Initial Weight Final Volume**

Run #1 1.0 ml 15.7 g

Run #2

CAS No. Compound Result RLUnits Q

> CT-ETPH (C9-C36) 129 18 mg/kg

Analyzed

03/29/13

CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits

84-15-1 o-Terphenyl 83% 50-137%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: WC-1 Lab Sample ID: MC19052-1 Matrix: SO - Soil

Date Sampled: 03/15/13 Date Received: 03/19/13 Percent Solids: 89.1

Project: 68 Matson Hill Road, Glastonbury, CT

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	2.1	0.97	mg/kg	1	03/21/13	03/21/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Barium	49.0	4.8	mg/kg	1	03/21/13	03/21/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Cadmium	1.9	0.39	mg/kg	1	03/21/13	03/21/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Chromium	33.0	0.97	mg/kg	1	03/21/13	03/21/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Lead	50.9	0.97	mg/kg	1	03/21/13	03/21/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Mercury	0.080	0.036	mg/kg	1	03/25/13	03/26/13 EM	SW846 7471B ³	SW846 7471B ⁵
Selenium	< 0.97	0.97	mg/kg	1	03/21/13	03/21/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Silver	2.3	0.48	mg/kg	1	03/21/13	03/22/13 EAL	SW846 6010C ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA15373
(2) Instrument QC Batch: MA15377
(3) Instrument QC Batch: MA15381
(4) Prep QC Batch: MP20643
(5) Prep QC Batch: MP20665

Report of Analysis

Client Sample ID: WC-1 Lab Sample ID: MC19052-1 Matrix: SO - Soil

Date Sampled: 03/15/13Date Received: 03/19/13Percent Solids: 89.1

Project: 68 Matson Hill Road, Glastonbury, CT

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Reactivity	< 1.7	1.7	mg/kg	1	03/25/13 16:30	CF	SW846 CHAP7
Ignitability (Flashpoint)	> 230	1.,	Deg. F	1	03/29/13	BF	SW846 1020
Paint Filter Test ^a	< 0.50	0.50	ml/100g	1	03/22/13 17:00	CF	SW846 9095
Solids, Percent	89.1		%	1	03/22/13	HS	SM21 2540 B MOD.
Specific Conductivity	345	0.50	umhos/cm	1	03/22/13	MA	EPA 120.1M
Sulfide Reactivity	< 56	56	mg/kg	1	03/25/13	CF	SW846 CHAP7
pН	9.2		su	1	03/22/13	MA	SW846 9045D

(a) No Free Liquid Detected.

Client Sample ID: WC-1

 Lab Sample ID:
 MC19052-1A
 Date Sampled:
 03/15/13

 Matrix:
 SO - Soil
 Date Received:
 03/19/13

 Percent Solids:
 89.1

Project: 68 Matson Hill Road, Glastonbury, CT

Metals Analysis, SPLP Leachate SW846 1312

Analyte	Result	MCL RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	0.015	0.010	mg/l	1	03/28/13	03/28/13 EAL	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA15393(2) Prep QC Batch: MP20682

RL = Reporting Limit

MCL = Maximum Contamination Level (not available)

4

Report of Analysis

Client Sample ID: WC-2

 Lab Sample ID:
 MC19052-2
 Date Sampled:
 03/15/13

 Matrix:
 SO - Soil
 Date Received:
 03/19/13

 Method:
 SW846 8260B
 Percent Solids:
 69.1

Project: 68 Matson Hill Road, Glastonbury, CT

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 K68257.D 1 03/25/13 GKn/aMSK2233 n/a Run #2

Initial Weight Final Volume Methanol Aliquot
Run #1 11.5 g 10.0 ml 100 ul
Run #2

VOA RCP List

CAS No.	Compound	Result	RL	Units	Q
67-64-1	Acetone	ND	430	ug/kg	
107-13-1	Acrylonitrile	ND	2100	ug/kg	
71-43-2	Benzene	100	43	ug/kg	
108-86-1	Bromobenzene	ND	430	ug/kg	
75-27-4	Bromodichloromethane	ND	170	ug/kg	
75-25-2	Bromoform	ND	170	ug/kg	
74-83-9	Bromomethane	ND	170	ug/kg	
78-93-3	2-Butanone (MEK)	ND	430	ug/kg	
104-51-8	n-Butylbenzene	ND	430	ug/kg	
135-98-8	sec-Butylbenzene	ND	430	ug/kg	
98-06-6	tert-Butylbenzene	ND	430	ug/kg	
75-15-0	Carbon disulfide	ND	430	ug/kg	
56-23-5	Carbon tetrachloride	ND	170	ug/kg	
108-90-7	Chlorobenzene	ND	170	ug/kg	
75-00-3	Chloroethane	5500	430	ug/kg	
67-66-3	Chloroform	ND	170	ug/kg	
74-87-3	Chloromethane	ND	430	ug/kg	
95-49-8	o-Chlorotoluene	ND	430	ug/kg	
106-43-4	p-Chlorotoluene	ND	430	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	430	ug/kg	
124-48-1	Dibromochloromethane	ND	170	ug/kg	
106-93-4	1,2-Dibromoethane	ND	170	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	170	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	170	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	170	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	170	ug/kg	
75-34-3	1,1-Dichloroethane	13800	170	ug/kg	
107-06-2	1,2-Dichloroethane	247	170	ug/kg	
75-35-4	1,1-Dichloroethene	708	170	ug/kg	
156-59-2	cis-1,2-Dichloroethene	3950	170	ug/kg	
156-60-5	trans-1,2-Dichloroethene	724	170	ug/kg	
78-87-5	1,2-Dichloropropane	ND	170	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: WC-2 Lab Sample ID: MC19052-2 **Date Sampled:** 03/15/13 Matrix: SO - Soil **Date Received:** 03/19/13 Method: SW846 8260B **Percent Solids:** 69.1

68 Matson Hill Road, Glastonbury, CT **Project:**

VOA RCP List

CAS No.	Compound	Result	RL	Units Q)
142-28-9	1,3-Dichloropropane	ND	430	ug/kg	
594-20-7	2,2-Dichloropropane	ND	430	ug/kg	
563-58-6	1,1-Dichloropropene	ND	430	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	170	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	170	ug/kg	
100-41-4	Ethylbenzene	ND	170	ug/kg	
76-13-1	Freon 113	ND	430	ug/kg	
87-68-3	Hexachlorobutadiene	ND	430	ug/kg	
591-78-6	2-Hexanone	ND	430	ug/kg	
98-82-8	Isopropylbenzene	ND	430	ug/kg	
99-87-6	p-Isopropyltoluene	ND	430	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	170	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	430	ug/kg	
74-95-3	Methylene bromide	ND	430	ug/kg	
75-09-2	Methylene chloride	ND	170	ug/kg	
91-20-3	Naphthalene	ND	430	ug/kg	
103-65-1	n-Propylbenzene	ND	430	ug/kg	
100-42-5	Styrene	ND	430	ug/kg	
630-20-6	1,1,1,2-Tetrachloroethane	ND	430	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	170	ug/kg	
127-18-4	Tetrachloroethene	ND	170	ug/kg	
109-99-9	Tetrahydrofuran	ND	850	ug/kg	
108-88-3	Toluene	ND	430	ug/kg	
110-57-6	Trans-1,4-Dichloro-2-Butene	ND	430	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	430	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	430	ug/kg	
71-55-6	1,1,1-Trichloroethane	13000	170	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	170	ug/kg	
79-01-6	Trichloroethene	7990	170	ug/kg	
75-69-4	Trichlorofluoromethane	ND	170	ug/kg	
96-18-4	1,2,3-Trichloropropane	ND	430	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	430	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	430	ug/kg	
75-01-4	Vinyl chloride	178	170	ug/kg	
	m,p-Xylene	ND	170	ug/kg	
95-47-6	o-Xylene	ND	170	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1868-53-7	Dibromofluoromethane	118%		70-1309	6

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 3 of 3

Report of Analysis

 Client Sample ID:
 WC-2

 Lab Sample ID:
 MC19052-2
 Date Sampled:
 03/15/13

 Matrix:
 SO - Soil
 Date Received:
 03/19/13

 Method:
 SW846 8260B
 Percent Solids:
 69.1

Project: 68 Matson Hill Road, Glastonbury, CT

VOA RCP List

CAS No.	S No. Surrogate Recoveries		Run# 2	Limits
2037-26-5	Toluene-D8	116%		70-130%
460-00-4	4-Bromofluorobenzene	105%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: WC-2 Lab Sample ID: MC19052-2

Date Sampled: 03/15/13 **Matrix:** SO - Soil **Date Received:** 03/19/13 Method: SW846 8270C SW846 3546 Percent Solids: 69.1

Project: 68 Matson Hill Road, Glastonbury, CT

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** Run #1 U13234.D 1 04/01/13 NS 03/28/13 OP32429 MSU675

Run #2

Final Volume Initial Weight

Run #1 1.0 ml 20.8 g

Run #2

ABN RCP List

CAS No.	Compound	Result	RL	Units	Q
95-57-8	2-Chlorophenol	ND	350	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	700	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	700	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	700	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1400	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	700	ug/kg	
95-48-7	2-Methylphenol	ND	700	ug/kg	
106-44-5	4-Methylphenol	ND	700	ug/kg	
88-75-5	2-Nitrophenol	ND	700	ug/kg	
100-02-7	4-Nitrophenol	ND	1400	ug/kg	
87-86-5	Pentachlorophenol	ND	700	ug/kg	
108-95-2	Phenol	ND	350	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	700	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	700	ug/kg	
83-32-9	Acenaphthene	ND	140	ug/kg	
208-96-8	Acenaphthylene	ND	140	ug/kg	
62-53-3	Aniline	ND	700	ug/kg	
120-12-7	Anthracene	ND	140	ug/kg	
56-55-3	Benzo(a)anthracene	ND	140	ug/kg	
50-32-8	Benzo(a)pyrene	ND	140	ug/kg	
205-99-2	Benzo(b)fluoranthene	327	140	ug/kg	
191-24-2	Benzo(g,h,i)perylene	ND	140	ug/kg	
207-08-9	Benzo(k)fluoranthene	ND	140	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	350	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	350	ug/kg	
91-58-7	2-Chloronaphthalene	ND	350	ug/kg	
106-47-8	4-Chloroaniline	ND	700	ug/kg	
86-74-8	Carbazole	ND	140	ug/kg	
218-01-9	Chrysene	198	140	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	350	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	350	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	350	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Date Sampled: 03/15/13

Date Received: 03/19/13

69.1

Percent Solids:

Report of Analysis

Client Sample ID: WC-2 Lab Sample ID: MC19052-2 Matrix: SO - Soil

Method: SW846 8270C SW846 3546

Project: 68 Matson Hill Road, Glastonbury, CT

ABN RCP List

CAS No.	Compound	Result	RL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	350	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	700	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	700	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	350	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	140	ug/kg	
132-64-9	Dibenzofuran	ND	140	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	350	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	350	ug/kg	
84-66-2	Diethyl phthalate	ND	350	ug/kg	
131-11-3	Dimethyl phthalate	ND	350	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	350	ug/kg	
206-44-0	Fluoranthene	296	140	ug/kg	
86-73-7	Fluorene	ND	140	ug/kg	
118-74-1	Hexachlorobenzene	ND	350	ug/kg	
87-68-3	Hexachlorobutadiene	ND	350	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	700	ug/kg	
67-72-1	Hexachloroethane	ND	350	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	140	ug/kg	
78-59-1	Isophorone	ND	350	ug/kg	
91-57-6	2-Methylnaphthalene	1250	140	ug/kg	
88-74-4	2-Nitroaniline	ND	700	ug/kg	
99-09-2	3-Nitroaniline	ND	700	ug/kg	
100-01-6	4-Nitroaniline	ND	700	ug/kg	
91-20-3	Naphthalene	573	140	ug/kg	
98-95-3	Nitrobenzene	ND	350	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	350	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	350	ug/kg	
82-68-8	Pentachloronitrobenzene	ND	700	ug/kg	
85-01-8	Phenanthrene	270	140	ug/kg	
129-00-0	Pyrene	220	140	ug/kg	
110-86-1	Pyridine	ND	700	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	700	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	350	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
367-12-4	2-Fluorophenol	62%		30-1	30%
4165-62-2	Phenol-d5	59%		30-1	30%
118-79-6	2,4,6-Tribromophenol	76%		30-1	30%
4165-60-0	Nitrobenzene-d5	62%		30-1	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 3 of 3

Date Sampled: 03/15/13 **Date Received:** 03/19/13

69.1

Percent Solids:

Report of Analysis

Client Sample ID: WC-2 Lab Sample ID: MC19052-2 Matrix: SO - Soil

Method: SW846 8270C SW846 3546

Project: 68 Matson Hill Road, Glastonbury, CT

ABN RCP List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	68%		30-130%
1718-51-0	Terphenyl-d14	62%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: WC-2 Lab Sample ID: MC19052-2 Matrix:

Method:

Project: 68 Matson Hill Road, Glastonbury, CT

Date Sampled: 03/15/13 SO - Soil **Date Received:** 03/19/13 SW846 8082 SW846 3546 **Percent Solids:** 69.1

		File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch	
]	Run #1	BB46589.D	1	03/30/13	CZ	03/28/13	OP32431	GBB2803	
]	Run #2								

	Initial Weight	Final Volume
Run #1	15.4 g	10.0 ml
Run #2		

CT Polychlorinated Biphenyls RCP List

CAS No.	Compound	Result RL		Units Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1 11096-82-5 37324-23-5	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254 Aroclor 1260 Aroclor 1262	ND	140 140 140 140 140 140 140 140	ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg ug/kg
11100-14-4	Aroclor 1268	ND	140	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	78% 57% 114% 112%		30-150% 30-150% 30-150% 30-150%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: WC-2 Lab Sample ID: MC19052-2 Matrix: SO - Soil

 Matrix:
 SO - Soil

 Method:
 CT-ETPH 7/06 SW846 3546

Project: 68 Matson Hill Road, Glastonbury, CT

Date Sampled: 03/15/13
Date Received: 03/19/13
Percent Solids: 69.1

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch Run #1 BI19789.D 1 03/29/13 KN 03/28/13 OP32428 GBI712

Run #2

Initial Weight Final Volume
Run #1 15.2 g 1.0 ml

Run #2

CAS No. Compound Result RL Units Q

CT-ETPH (C9-C36) 648 24 mg/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

84-15-1 o-Terphenyl 74% 50-137%

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: WC-2 Lab Sample ID: MC19052-2 Matrix: SO - Soil

Date Sampled: 03/15/13Date Received: 03/19/13Percent Solids: 69.1

Project: 68 Matson Hill Road, Glastonbury, CT

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	5.1	1.1	mg/kg	1	03/21/13	03/21/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Barium	73.5	5.4	mg/kg	1	03/21/13	03/21/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Cadmium	3.3	0.44	mg/kg	1	03/21/13	03/21/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Chromium	1130	1.1	mg/kg	1	03/21/13	03/21/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Lead	241	1.1	mg/kg	1	03/21/13	03/21/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Mercury	0.12	0.041	mg/kg	1	03/25/13	03/26/13 ЕМ	SW846 7471B ³	SW846 7471B ⁵
Selenium	1.8	1.1	mg/kg	1	03/21/13	03/21/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Silver	< 0.54	0.54	mg/kg	1	03/21/13	03/22/13 EAL	SW846 6010C ²	SW846 3050B ⁴

(1) Instrument QC Batch: MA15373
(2) Instrument QC Batch: MA15377
(3) Instrument QC Batch: MA15381
(4) Prep QC Batch: MP20643
(5) Prep QC Batch: MP20665

Report of Analysis

Client Sample ID: WC-2 Lab Sample ID: MC19052-2 Matrix: SO - Soil

Date Sampled: 03/15/13Date Received: 03/19/13Percent Solids: 69.1

Project: 68 Matson Hill Road, Glastonbury, CT

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Reactivity	< 2.1	2.1	mg/kg	1	03/25/13 16:30	CF	SW846 CHAP7
Ignitability (Flashpoint)	> 230		Deg. F	1	03/29/13	BF	SW846 1020
Paint Filter Test ^a	< 0.50	0.50	ml/100g	1	03/22/13 17:00	CF	SW846 9095
Solids, Percent	69.1		%	1	03/22/13	HS	SM21 2540 B MOD.
Specific Conductivity	205	0.50	umhos/cm	1	03/22/13	MA	EPA 120.1M
Sulfide Reactivity	< 72	72	mg/kg	1	03/25/13	CF	SW846 CHAP7
pH	7.1		su	1	03/22/13	MA	SW846 9045D

(a) No Free Liquid Detected.

4

Report of Analysis

Client Sample ID: WC-2

 Lab Sample ID:
 MC19052-2A
 Date Sampled:
 03/15/13

 Matrix:
 SO - Soil
 Date Received:
 03/19/13

 Percent Solids:
 69.1

Project: 68 Matson Hill Road, Glastonbury, CT

Metals Analysis, SPLP Leachate SW846 1312

Analyte	Result	MCL RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	0.069	0.010	mg/l	1	03/28/13	03/28/13 EAL	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA15393(2) Prep QC Batch: MP20682

RL = Reporting Limit

MCL = Maximum Contamination Level (not available)

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- RCP Form
- Sample Tracking Chronicle

CHAIN OF CUSTODY Accutest Laboratories of New England

PAGE __OF __

LABORATORIES		495	Technolog	gy Cent	ter Wes	t, Build	ding	One				reusex	· riackiii	9 "				1	Order Co.				
		IE	L. 508-48 w	1-6200 ww.acc			51-7	/53				Accutes	i Quote	H				Accute	nt Job #	nc	100	つち	2
Client / Reporting Information				ject Inf									Ren	uestec	l Ana	lysis (See 1					ر ر	Matrix Codes
Company Name Tr. ton Environmental In Street Address	Project Name	Matson H		*												1313 (siscery	3		DW - Drinking Water GW - Ground Water
Street Accross Sies Church Street City Siate Zip Chilcout CT CGU37 Project Contact Mpaulsson@ E-mail This penvironmen kel. Com Phone # Fax #	68 Mor	8 Mortson Hill Road				Billing Information (If different from Report to)													14/2	7		WW - Water SW - Surface Water SO - Soil	
authorse et 06437	a laston	buy, C	T																١,	7	Son		SL- Sludge SED-Sediment
Project Contact in pauls son@ E-mail	Project#	G		Street	t Address								_		6				3	رغ	73		OI - Oil LIQ - Other Liquid
Phone # Fax #	Client PO#	7.700		City			S	late		Zip		270	0		×	15		ĺ	-8	٠,	704		AIR - Air SOL - Other Solid
203-458-720c 203-458-72C Sampler(s) Name(s) / Phone #	10	3139P0	12.						PO#			20	28]	8080	Metals	+	4	Conclusiona	3	(sulfide,	×	WP - Wipe FB-Field Blank
Down M. He / Mar & Poulsson 203-458-720	Project Manager Moul	Paulsso		Attent	lion:	r	1					и		7	n	N 8	400			liquids (Pantfille	Reachulty (Leac	EB- Equipment Blank RB- Rinse Blank TB-Trip Blank
			Collection	T			Н		-	red Bottle		SVOC) Cs	ЕТРН	PCB	RURAS	Plast	-	دنو	3	-5	9	
Accutest Sample # Field ID / Point of Collection	MEOH/DI Vial #	Date	Time	Sampled by		# of bottles	를 ²	HNO3	H2SO NONE	DI Was	ENCOR! Bisulfate	ટ્ર	\$	E	7	æ	Ü	Hd	Specific	578	3	dids	LAB USE ONLY
-1 wc-1		3/15/13		554	50	4			×	×	X	$ \mathbf{X} $	χ	X	X	Υ	X	X	X	X	X	X	
-2 WC-Z		3/15/13	15:35	DSU	50	4	Ш		X	×	3	X	X	×	\times	\times	X	X	X	X	\vee	\times	
		· '				·			Ш		Ш												
								\perp	$\perp \downarrow$	$\perp \perp$													
				<u> </u>					$\perp \! \! \perp \! \! \! \! \! \perp$	11													
							Ш	\perp	\perp	$\perp \downarrow \downarrow$	$\perp \downarrow$												
				<u> </u>				$\perp \downarrow$	44	11	\perp												
							Ш			11		\dashv											
								\coprod	$\perp \! \! \perp$		$\perp \downarrow$	_											
								$\bot \bot$	$\perp \downarrow$	44	44	_			_					_	_	_	0F3 9D
							4	\sqcup	\perp	\perp	$\perp \mid$					_				_		_	
			70-10-15-0-XX			Dete	Della	orable.	Inform		Ш								Special	1		\perp	
Turnaround Time (Business days) A	approved By (Acci	test PM): / Date:			Commerci					NYASP	Catego	y A		0000000	240400		omme	711657	pecia	msuc	CHOIS	. Serialists	
Std. 10 Business Days Std. 5 Business Days (By Contract only)					Commerci FULLT1 (-	NYASP State Fo		уВ	-				-						
5 Day RUSH						Tenes 2+4	.,			EDD Fo			_ [
3 Day EMERGENCY 2 Day EMERGENCY		***************************************			ИА МСР	Commerci	-1 * 4 7 -		_	Other		~	İ										
1 Day EMERGENCY						Commerci				Summar	y		ŀ										7
Emergency & Rush T/A data available VIA Lablink	- Com-	ple Custody mus	at he decum		Janu oon		malas				- 11							n Gravine	one elemen		_	-7/	
Refinquished by Sampler: Date Time:	3an	Received By:	st be docum	ented be	HOW BACI		Relinqu			7 V/J	n, men	ung c	ourier	D	ate Tim	14	30	Received	1 By:	7	-	$\overline{}$	4
3/15/13	1200	1 totan	221	cog	3		2	1	M	<u> </u>					3 /	4_/	3	2	W.	44	//		
Relinquished by Sampler: 3 P 3 19	13/90	Received By:				- 1	Relinqu 4	Ashed 6	By:					P	ate Tim	e:		Receivad 4	By:				
Relinquished by: Date Time:		Received By:					Custod	y Seal (,			tast ot intact		reserved	where	applicat	oie			On Ice		Cooler Te	тр. 92

MC19052: Chain of Custody Page 1 of 2

Cooler Temp.

45

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: MC1905	52 Client: TF	RITON ENVIRONMENTAI	Immediate Client Serv	vices Action Required:	No
Date / Time Received: 3/19/20	13	Delivery Method:	Client Service Act	ion Required at Login:	No
Project: 68 MATSON HILL RD		No. Coolers:	Airbill #'s:		
Cooler Security Y or 1. Custody Seals Present: ✓ 2. Custody Seals Intact: ✓	7 N 3. COC Press 4. Smpl Dates/T		Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree:	Y or N ✓ □ ✓ □ ✓ □	
Temp criteria achieved: Cooler temp verification: Cooler media: Quality Control _Preservation	Infared gun Ice (bag) Y or N N/A		Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample:	Y or N ✓ □ Intact	
2. Trip Blank listed on COC:3. Samples preserved properly:			Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	Y or N	N/A
Comments					
Accutest Laboratories V:508.481.6200		495 Technology Cente F: 508.481			oorough, M

MC19052: Chain of Custody Page 2 of 2

N.

U

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Laboratory Name: Accutest New England Client: Triton Environmental, Inc.

Project Location: 68 Matson Hill Road, Glastonbury, CT Project Number: 103139

Sampling Date(s): 3/15/2013

Laboratory Sample ID(s): MC19052-1, MC19052-2, MC19052-1A, MC19052-2A

Methods: Refer to case narrative.

Methods:	Refer to case narrative.		
1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents)?	Yes 🔽	No 🗖
1A	Where all the method specified preservation and holding time requirements met?	Yes 🔽	No 🔲
1B	VPH and EPH mehods only: Was the VPH or EPH method conducted without significant modifications (See section 11.3 of respective methods)	Yes 🗖	No 🗆
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Yes 🔽	No 🗖
3	Were samples received at an appropriate temperature (<6° C)?	Yes 🔽	No 🗖
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	Yes 🗖	No 🗹
5	a) Were reporting limits specified or referenced on the chain-of-custody?	Yes 🗖	No 🔽
	b) Were these reporting limits met?	Yes \square	No 🔽
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes 🗖	No 🔽
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	Yes 🗹	No 🗖

Note: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

l, the undersigned, attest under pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized

Signature: Position: Lab Director

Printed Name: Reza Tand Date: 4/1/2013
Accutest New England

Internal Sample Tracking Chronicle

Triton Environmental, Inc.

MC19052 Job No:

68 Matson Hill Road, Glastonbury, CT Project No: 103139

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
MC19052-1 WC-1	Collected: 15-MAR-13	10:10 By: DSM	Receiv	ved: 19-MAR-	-13 By	<i>"</i> :
MC19052-1 MC19052-1 MC19052-1 MC19052-1 MC19052-1 MC19052-1 MC19052-1 MC19052-1 MC19052-1 MC19052-1 MC19052-1	SW846 6010C EPA 120.1M SW846 9045D SM21 2540 B MOD. SW846 6010C SW846 9095 SW846 CHAP7 SW846 CHAP7 SW846 8260B SW846 7471B SW846 1020 CT-ETPH 7/06 SW846 8082 SW846 8270C	21-MAR-13 18:22 22-MAR-13 22-MAR-13 22-MAR-13 13:25 22-MAR-13 17:00 25-MAR-13 16:30 25-MAR-13 18:08 26-MAR-13 13:47 29-MAR-13 29-MAR-13 19:43 30-MAR-13 17:09 01-APR-13 13:51	MA HS EAL CF CF GF GK EM BF KN CZ	21-MAR-13 21-MAR-13 25-MAR-13 25-MAR-13 28-MAR-13 28-MAR-13 28-MAR-13	DA CF CF EM PA AJ	AS,BA,CD,CR,PB,SE SCON PH % SOL AG PNTFIL SREAC CREAC V8260RCP HG IGN BCTTPH P8082RCP AB8270RCP
	Collected: 15-MAR-13			ved: 19-MAR-		
MC19052-2 MC19052-2	SW846 6010C EPA 120.1M SW846 9045D SM21 2540 B MOD.	21-MAR-13 18:26 22-MAR-13 22-MAR-13 22-MAR-13	EAL MA MA HS	21-MAR-13	DA	AS,BA,CD,CR,PB,SE SCON PH %SOL
MC19052-2 MC19052-2 MC19052-2 MC19052-2 MC19052-2 MC19052-2 MC19052-2 MC19052-2 MC19052-2	SW846 6010C SW846 9095 SW846 CHAP7 SW846 CHAP7 SW846 8260B SW846 7471B SW846 1020 CT-ETPH 7/06 SW846 8082 SW846 8270C	22-MAR-13 13:29 22-MAR-13 17:00 25-MAR-13 16:30 25-MAR-13 18:35 26-MAR-13 13:51 29-MAR-13 29-MAR-13 19:14 30-MAR-13 17:29 01-APR-13 14:14	CF CF CF GK EM BF KN CZ NS	21-MAR-13 25-MAR-13 25-MAR-13 25-MAR-13 28-MAR-13 28-MAR-13 28-MAR-13	CF CF EM PA AJ AJ	AG PNTFIL SREAC CREAC V8260RCP HG IGN BCTTPH P8082RCP AB8270RCP
MC19052-1	AS W846 6010C	28-MAR-13 22:13	EAL	28-MAR-13	DA	ЕРВ

5.3

Internal Sample Tracking Chronicle

Triton Environmental, Inc.

Job No: MC19052

68 Matson Hill Road, Glastonbury, CT Project No: 103139

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes	

MC19052-24Collected: 15-MAR-13 15:35 By: DSM Received: 19-MAR-13 By:

WC-2

MC19052-2**&**W846 6010C 28-MAR-13 22:33 EAL 28-MAR-13 DA **EPB**

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Internal Standard Area Summaries
- Surrogate Recovery Summaries

Method: SW846 8260B

Method Blank Summary Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample MSK2233-MB	File ID K68240.D	DF 1	Analyzed 03/25/13	By GK	Prep Date n/a	Prep Batch n/a	Analytical Batch MSK2233

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	Units Q
67-64-1	Acetone	ND	250	ug/kg
107-13-1	Acrylonitrile	ND	1300	ug/kg
71-43-2	Benzene	ND	25	ug/kg
108-86-1	Bromobenzene	ND	250	ug/kg
75-27-4	Bromodichloromethane	ND	100	ug/kg
75-25-2	Bromoform	ND	100	ug/kg
74-83-9	Bromomethane	ND	100	ug/kg
78-93-3	2-Butanone (MEK)	ND	250	ug/kg
104-51-8	n-Butylbenzene	ND	250	ug/kg
135-98-8	sec-Butylbenzene	ND	250	ug/kg
98-06-6	tert-Butylbenzene	ND	250	ug/kg
75-15-0	Carbon disulfide	ND	250	ug/kg
56-23-5	Carbon tetrachloride	ND	100	ug/kg
108-90-7	Chlorobenzene	ND	100	ug/kg
75-00-3	Chloroethane	ND	250	ug/kg
67-66-3	Chloroform	ND	100	ug/kg
74-87-3	Chloromethane	ND	250	ug/kg
95-49-8	o-Chlorotoluene	ND	250	ug/kg
106-43-4	p-Chlorotoluene	ND	250	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane	ND	250	ug/kg
124-48-1	Dibromochloromethane	ND	100	ug/kg
106-93-4	1,2-Dibromoethane	ND	100	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	100	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	100	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	100	ug/kg
75-71-8	Dichlorodifluoromethane	ND	100	ug/kg
75-34-3	1,1-Dichloroethane	ND	100	ug/kg
107-06-2	1,2-Dichloroethane	ND	100	ug/kg
75-35-4	1,1-Dichloroethene	ND	100	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	100	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	100	ug/kg
78-87-5	1,2-Dichloropropane	ND	100	ug/kg
142-28-9	1,3-Dichloropropane	ND	250	ug/kg
594-20-7	2,2-Dichloropropane	ND	250	ug/kg
563-58-6	1,1-Dichloropropene	ND	250	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	100	ug/kg

Page 2 of 3

Method: SW846 8260B

Method Blank Summary Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample MSK2233-MB	File ID K68240.D	DF 1	Analyzed 03/25/13	By GK	Prep Date n/a	Prep Batch n/a	Analytical Batch MSK2233

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	Units Q
10061-02-6	trans-1,3-Dichloropropene	ND	100	ug/kg
100-41-4	Ethylbenzene	ND	100	ug/kg
76-13-1	Freon 113	ND	250	ug/kg
87-68-3	Hexachlorobutadiene	ND	250	ug/kg
591-78-6	2-Hexanone	ND	250	ug/kg
98-82-8	Isopropylbenzene	ND	250	ug/kg
99-87-6	p-Isopropyltoluene	ND	250	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	100	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	250	ug/kg
74-95-3	Methylene bromide	ND	250	ug/kg
75-09-2	Methylene chloride	ND	100	ug/kg
91-20-3	Naphthalene	ND	250	ug/kg
103-65-1	n-Propylbenzene	ND	250	ug/kg
100-42-5	Styrene	ND	250	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	250	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	100	ug/kg
127-18-4	Tetrachloroethene	ND	100	ug/kg
109-99-9	Tetrahydrofuran	ND	500	ug/kg
108-88-3	Toluene	ND	250	ug/kg
110-57-6	Trans-1,4-Dichloro-2-Butene	ND	250	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	250	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	250	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	100	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	100	ug/kg
79-01-6	Trichloroethene	ND	100	ug/kg
75-69-4	Trichlorofluoromethane	ND	100	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	250	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	250	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	250	ug/kg
75-01-4	Vinyl chloride	ND	100	ug/kg
	m,p-Xylene	ND	100	ug/kg
95-47-6	o-Xylene	ND	100	ug/kg

Page 3 of 3

Method: SW846 8260B

Method Blank Summary Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc.
Project: 68 Matson Hill Road, Glastonbury, CT

Sample MSK2233-MB	File ID K68240.D	DF 1	Analyzed 03/25/13	By GK	Prep Date n/a	Prep Batch n/a	Analytical Batch MSK2233

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	113%	70-130%
2037-26-5	Toluene-D8	105%	70-130%
460-00-4	4-Bromofluorobenzene	100%	70-130%

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
MSK2233-BS	K68237.D	1	03/25/13	GK	n/a	n/a	MSK2233
MSK2233-BSD	K68238.D	1	03/25/13	GK	n/a	n/a	MSK2233

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	BSD ug/kg	BSD %	RPD	Limits Rec/RPD
	•	0 0	8 8		0 0			
67-64-1	Acetone	2500	3240	130	2950	118	9	70-130/25
107-13-1	Acrylonitrile	2500	2270	91	2290	92	1	70-130/25
71-43-2	Benzene	2500	2570	103	2580	103	0	70-130/25
108-86-1	Bromobenzene	2500	2630	105	2650	106	1	70-130/25
75-27-4	Bromodichloromethane	2500	2880	115	2890	116	0	70-130/25
75-25-2	Bromoform	2500	2580	103	2600	104	1	70-130/25
74-83-9	Bromomethane	2500	3130	125	3270	131* a	4	70-130/25
78-93-3	2-Butanone (MEK)	2500	1880	75	1830	73	3	70-130/25
104-51-8	n-Butylbenzene	2500	2660	106	2690	108	1	70-130/25
135-98-8	sec-Butylbenzene	2500	2540	102	2590	104	2	70-130/25
98-06-6	tert-Butylbenzene	2500	2620	105	2640	106	1	70-130/25
75-15-0	Carbon disulfide	2500	2560	102	2620	105	2	70-130/25
56-23-5	Carbon tetrachloride	2500	3090	124	3120	125	1	70-130/25
108-90-7	Chlorobenzene	2500	2540	102	2610	104	3	70-130/25
75-00-3	Chloroethane	2500	3210	128	3260	130	2	70-130/25
67-66-3	Chloroform	2500	2860	114	2850	114	0	70-130/25
74-87-3	Chloromethane	2500	3040	122	3160	126	4	70-130/25
95-49-8	o-Chlorotoluene	2500	2450	98	2470	99	1	70-130/25
106-43-4	p-Chlorotoluene	2500	2560	102	2560	102	0	70-130/25
96-12-8	1,2-Dibromo-3-chloropropane	2500	2190	88	2110	84	4	70-130/25
124-48-1	Dibromochloromethane	2500	2760	110	2760	110	0	70-130/25
106-93-4	1,2-Dibromoethane	2500	2590	104	2600	104	0	70-130/25
95-50-1	1,2-Dichlorobenzene	2500	2440	98	2470	99	1	70-130/25
541-73-1	1,3-Dichlorobenzene	2500	2600	104	2610	104	0	70-130/25
106-46-7	1,4-Dichlorobenzene	2500	2530	101	2550	102	1	70-130/25
75-71-8	Dichlorodifluoromethane	2500	3190	128	3230	129	1	70-130/25
75-34-3	1,1-Dichloroethane	2500	2750	110	2800	112	2	70-130/25
107-06-2	1,2-Dichloroethane	2500	2910	116	2830	113	3	70-130/25
75-35-4	1,1-Dichloroethene	2500	2960	118	3060	122	3	70-130/25
156-59-2	cis-1,2-Dichloroethene	2500	2640	106	2690	108	2	70-130/25
156-60-5	trans-1,2-Dichloroethene	2500	2660	106	2740	110	3	70-130/25
78-87-5	1,2-Dichloropropane	2500	2560	102	2590	104	1	70-130/25
142-28-9	1,3-Dichloropropane	2500	2570	103	2550	102	1	70-130/25
594-20-7	2,2-Dichloropropane	2500	2950	118	2990	120	1	70-130/25
563-58-6	1,1-Dichloropropene	2500	2860	114	2890	116	1	70-130/25
10061-01-5	cis-1,3-Dichloropropene	2500	2630	105	2600	104	1	70-130/25

^{* =} Outside of Control Limits.

Page 2 of 3

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSK2233-BS	K68237.D	1	03/25/13	GK	n/a	n/a	MSK2233
MSK2233-BSD	K68238.D	1	03/25/13	GK	n/a	n/a	MSK2233

The QC reported here applies to the following samples:

		Spike	BSP	BSP	BSD	BSD		Limits
CAS No.	Compound	ug/kg	ug/kg	%	ug/kg	%	RPD	Rec/RPD
10061-02-6	trans-1,3-Dichloropropene	2500	2890	116	2850	114	1	70-130/25
100-41-4	Ethylbenzene	2500	2710	108	2770	111	2	70-130/25
76-13-1	Freon 113	2500	2990	120	3080	123	3	70-130/25
87-68-3	Hexachlorobutadiene	2500	2910	116	2930	117	1	70-130/25
591-78-6	2-Hexanone	2500	1710	68* a	1660	66* a	3	70-130/25
98-82-8	Isopropylbenzene	2500	2550	102	2580	103	1	70-130/25
99-87-6	p-Isopropyltoluene	2500	2800	112	2830	113	1	70-130/25
1634-04-4	Methyl Tert Butyl Ether	2500	2610	104	2570	103	2	70-130/25
108-10-1	4-Methyl-2-pentanone (MIBK)	2500	2340	94	2340	94	0	70-130/25
74-95-3	Methylene bromide	2500	2750	110	2680	107	3	70-130/25
75-09-2	Methylene chloride	2500	2680	107	2750	110	3	70-130/25
91-20-3	Naphthalene	2500	1920	77	1880	75	2	70-130/25
103-65-1	n-Propylbenzene	2500	2480	99	2540	102	2	70-130/25
100-42-5	Styrene	2500	2540	102	2590	104	2	70-130/25
630-20-6	1,1,1,2-Tetrachloroethane	2500	2900	116	2930	117	1	70-130/25
79-34-5	1,1,2,2-Tetrachloroethane	2500	2420	97	2380	95	2	70-130/25
127-18-4	Tetrachloroethene	2500	2840	114	2920	117	3	70-130/25
109-99-9	Tetrahydrofuran	2500	2130	85	2010	80	6	70-130/25
108-88-3	Toluene	2500	2730	109	2770	111	1	70-130/25
110-57-6	Trans-1,4-Dichloro-2-Butene	2500	2710	108	2690	108	1	70-130/25
87-61-6	1,2,3-Trichlorobenzene	2500	2030	81	1980	79	2	70-130/25
120-82-1	1,2,4-Trichlorobenzene	2500	2460	98	2450	98	0	70-130/25
71-55-6	1,1,1-Trichloroethane	2500	3020	121	3030	121	0	70-130/25
79-00-5	1,1,2-Trichloroethane	2500	2580	103	2540	102	2	70-130/25
79-01-6	Trichloroethene	2500	2820	113	2840	114	1	70-130/25
75-69-4	Trichlorofluoromethane	2500	3250	130	3310	132* a	2	70-130/25
96-18-4	1,2,3-Trichloropropane	2500	2470	99	2400	96	3	70-130/25
95-63-6	1,2,4-Trimethylbenzene	2500	2600	104	2630	105	1	70-130/25
108-67-8	1,3,5-Trimethylbenzene	2500	2590	104	2590	104	0	70-130/25
75-01-4	Vinyl chloride	2500	3000	120	3230	129	7	70-130/25
	m,p-Xylene	5000	5220	104	5420	108	4	70-130/25
95-47-6	o-Xylene	2500	2570	103	2630	105	2	70-130/25

^{* =} Outside of Control Limits.

6.2.1

Page 3 of 3

Method: SW846 8260B

6

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

ID 1	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
237.D	1	03/25/13	GK	n/a	n/a	MSK2233
238.D	1	03/25/13	GK	n/a	n/a	MSK2233

The QC reported here applies to the following samples:

MC19052-1, MC19052-2

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
	Dibromofluoromethane	111%	112%	70-130%
	Toluene-D8	110%	111%	70-130%
	4-Bromofluorobenzene	101%	103%	70-130%

(a) Outside control limits. Blank Spike meets program technical requirements.

^{* =} Outside of Control Limits.

Volatile Internal Standard Area Summary

Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

 Check Std:
 MSK2233-CC2209
 Injection Date:
 03/25/13

 Lab File ID:
 K68236.D
 Injection Time:
 09:01

Instrument ID: GCMSK Method: SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
Check Std Upper Limit ^a Lower Limit ^b	200912 401824 100456	8.82 9.32 8.32	254471 508942 127236	9.67 10.17 9.17	147200 294400 73600	12.92 13.42 12.42		15.49 15.99 14.99	35079 70158 17540	6.40 6.90 5.90
Lab Sample ID	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
MSK2233-BS MSK2234-BS MSK2233-BSD MSK2234-MB MSK2233-MB ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ ZZZZ	215220 215220 222313 225168 225168 223633 220351 211715 211878 206241 238815 237299 236722 229163 240965 252535 253919 271696 274777 272819	8.82 8.82 8.82 8.82 8.82 8.83 8.83 8.83	270557 270557 283545 288909 288909 290476 281920 276362 270828 267528 309181 310479 306772 298637 307932 320253 332237 357181 353171 357253	9.67 9.67 9.67 9.67 9.67 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68	154518 154518 158771 154816 154816 152956 150972 145875 147077 143074 161788 162515 164169 160400 172693 175840 172602 183054 196700 185934	12.93 12.93 12.93 12.93 12.93 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94	147138 145928 141116 140668 140708 162359 162891 163366 159721 166054 170483 169093 173896 171598	15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50	40607 38892 40007	6.41 6.41 6.41 6.41 6.43 6.43 6.42 6.42 6.42 6.42 6.41 6.42 6.42 6.42 6.42 6.42 6.42 6.42 6.42
MC19052-1 MC19052-2 ZZZZZZ ZZZZZZ GP15725-LS2 ZZZZZZ	254396 257918 258552 245560 261224	8.83 8.83 8.83 8.83 8.83	330373 336816 340201 317431 342989	9.68 9.68 9.68 9.68 9.68	175782 175763 175930 174861 180610	12.94 12.94 12.94 12.94	176698 175570 175001	15.50 15.50 15.50 15.50	20531 27062 30696	6.48 6.47 6.45 6.44 6.42 6.42

IS 1 = Pentafluorobenzene IS 2 = 1,4-Difluorobenzene IS 3 = Chlorobenzene-D5 IS 4 = 1,4-Dichlorobenzene-d4 IS 5 = Tert Butyl Alcohol-D9

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.
- (c) Outside control limits. Target analytes not associated with this internal standard.

Volatile Surrogate Recovery Summary

Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

Method: SW846 8260B Matrix: SO

Samples and QC shown here apply to the above method

Lab Sample ID	Lab File ID	S1	S2	S3
MC19052-1	K68256.D	106.0	102.0	98.0
MC19052-2	K68257.D	118.0	116.0	105.0
MSK2233-BS	K68237.D	111.0	110.0	101.0
MSK2233-BSD	K68238.D	112.0	111.0	103.0
MSK2233-MB	K68240.D	113.0	105.0	100.0

Surrogate Recovery Compounds Limits

 S1 = Dibromofluoromethane
 70-130%

 S2 = Toluene-D8
 70-130%

 S3 = 4-Bromofluorobenzene
 70-130%

GC/MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Internal Standard Area Summaries
- Surrogate Recovery Summaries

Method Blank Summary Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP32429-MB	U13224.D	1	04/01/13	NS	03/28/13	OP32429	MSU675

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	Units Q
95-57-8	2-Chlorophenol	ND	240	ug/kg
59-50-7	4-Chloro-3-methyl phenol	ND	490	ug/kg
120-83-2	2,4-Dichlorophenol	ND	490	ug/kg
105-67-9	2,4-Dimethylphenol	ND	490	ug/kg
51-28-5	2,4-Dinitrophenol	ND	970	ug/kg
534-52-1	4,6-Dinitro-o-cresol	ND	490	ug/kg
95-48-7	2-Methylphenol	ND	490	ug/kg
106-44-5	4-Methylphenol	ND	490	ug/kg
88-75-5	2-Nitrophenol	ND	490	ug/kg
100-02-7	4-Nitrophenol	ND	970	ug/kg
87-86-5	Pentachlorophenol	ND	490	ug/kg
108-95-2	Phenol	ND	240	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	490	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	490	ug/kg
83-32-9	Acenaphthene	ND	97	ug/kg
208-96-8	Acenaphthylene	ND	97	ug/kg
62-53-3	Aniline	ND	490	ug/kg
120-12-7	Anthracene	ND	97	ug/kg
56-55-3	Benzo(a)anthracene	ND	97	ug/kg
50-32-8	Benzo(a)pyrene	ND	97	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	97	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	97	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	97	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	240	ug/kg
85-68-7	Butyl benzyl phthalate	ND	240	ug/kg
91-58-7	2-Chloronaphthalene	ND	240	ug/kg
106-47-8	4-Chloroaniline	ND	490	ug/kg
86-74-8	Carbazole	ND	97	ug/kg
218-01-9	Chrysene	ND	97	ug/kg
111-91-1	bis(2-Chloroethoxy)methane	ND	240	ug/kg
111-44-4	bis(2-Chloroethyl)ether	ND	240	ug/kg
108-60-1	bis(2-Chloroisopropyl)ether	ND	240	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	240	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	490	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	490	ug/kg
91-94-1	3,3'-Dichlorobenzidine	ND	240	ug/kg

Method Blank Summary Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample OP32429-MB	File ID U13224.D	DF 1	Analyzed 04/01/13	By NS	Prep Date 03/28/13	Prep Batch OP32429	Analytical Batch MSU675

The QC reported here applies to the following samples:

MC19052-1, MC19052-2

CAS No.	Compound	Result	RL	Units Q
53-70-3	Dibenzo(a,h)anthracene	ND	97	ug/kg
132-64-9	Dibenzofuran	ND	97	ug/kg
84-74-2	Di-n-butyl phthalate	ND	240	ug/kg
117-84-0	Di-n-octyl phthalate	ND	240	ug/kg
84-66-2	Diethyl phthalate	ND	240	ug/kg
131-11-3	Dimethyl phthalate	ND	240	ug/kg
117-81-7	bis(2-Ethylhexyl)phthalate	ND	240	ug/kg
206-44-0	Fluoranthene	ND	97	ug/kg
86-73-7	Fluorene	ND	97	ug/kg
118-74-1	Hexachlorobenzene	ND	240	ug/kg
87-68-3	Hexachlorobutadiene	ND	240	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	490	ug/kg
67-72-1	Hexachloroethane	ND	240	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	97	ug/kg
78-59-1	Isophorone	ND	240	ug/kg
91-57-6	2-Methylnaphthalene	ND	97	ug/kg
88-74-4	2-Nitroaniline	ND	490	ug/kg
99-09-2	3-Nitroaniline	ND	490	ug/kg
100-01-6	4-Nitroaniline	ND	490	ug/kg
91-20-3	Naphthalene	ND	97	ug/kg
98-95-3	Nitrobenzene	ND	240	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	240	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	240	ug/kg
82-68-8	Pentachloronitrobenzene	ND	490	ug/kg
85-01-8	Phenanthrene	ND	97	ug/kg
129-00-0	Pyrene	ND	97	ug/kg
110-86-1	Pyridine	ND	490	ug/kg
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	490	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	240	ug/kg
CAS No.	Surrogate Recoveries		Limit	s

CAS No. Surrogate Recoveries

367-12-4	2-Fluorophenol	72%	30-130%
4165-62-2	Phenol-d5	70%	30-130%
118-79-6	2,4,6-Tribromophenol	85%	30-130%

Method Blank Summary Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. 68 Matson Hill Road, Glastonbury, CT **Project:**

Sample OP32429-MB	File ID U13224.D	DF 1	Analyzed 04/01/13	By NS	Prep Date 03/28/13	Prep Batch OP32429	Analytical Batch MSU675

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries	Limits	
4165-60-0	Nitrobenzene-d5	74%	30-130%
321-60-8	2-Fluorobiphenyl	74%	30-130%
1718-51-0	Terphenyl-d14	75%	30-130%

Method: SW846 8270C

Blank Spike Summary Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample OP32429-BS	File ID U13225.D	DF 1	Analyzed 04/01/13	By NS	Prep Date 03/28/13	Prep Batch OP32429	Analytical Batch MSU675

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
95-57-8	2-Chlorophenol	4830	3270	68	30-130
59-50-7	4-Chloro-3-methyl phenol	4830	3780	78	30-130
120-83-2	2,4-Dichlorophenol	4830	3710	77	30-130
105-67-9	2,4-Dimethylphenol	4830	3450	71	30-130
51-28-5	2,4-Dinitrophenol	4830	4790	99	30-130
534-52-1	4,6-Dinitro-o-cresol	4830	4030	83	30-130
95-48-7	2-Methylphenol	4830	3220	67	30-130
106-44-5	4-Methylphenol	4830	3430	71	30-130
88-75-5	2-Nitrophenol	4830	3510	73	30-130
100-02-7	4-Nitrophenol	4830	3130	65	30-130
87-86-5	Pentachlorophenol	4830	3670	76	30-130
108-95-2	Phenol	4830	3110	64	30-130
95-95-4	2,4,5-Trichlorophenol	4830	3580	74	30-130
88-06-2	2,4,6-Trichlorophenol	4830	3440	71	30-130
83-32-9	Acenaphthene	2410	1800	75	40-140
208-96-8	Acenaphthylene	2410	1480	61	40-140
62-53-3	Aniline	2410	800	33* a	40-140
120-12-7	Anthracene	2410	1850	77	40-140
56-55-3	Benzo(a)anthracene	2410	1990	82	40-140
50-32-8	Benzo(a)pyrene	2410	1770	73	40-140
205-99-2	Benzo(b)fluoranthene	2410	1840	76	40-140
191-24-2	Benzo(g,h,i)perylene	2410	1950	81	40-140
207-08-9	Benzo(k)fluoranthene	2410	1840	76	40-140
101-55-3	4-Bromophenyl phenyl ether	2410	1970	82	40-140
85-68-7	Butyl benzyl phthalate	2410	2030	84	40-140
91-58-7	2-Chloronaphthalene	4830	3090	64	40-140
106-47-8	4-Chloroaniline	2410	1230	51	40-140
86-74-8	Carbazole	2410	1870	77	40-140
218-01-9	Chrysene	2410	1850	77	40-140
111-91-1	bis(2-Chloroethoxy)methane	2410	1760	73	40-140
111-44-4	bis(2-Chloroethyl)ether	2410	2220	92	40-140
108-60-1	bis(2-Chloroisopropyl)ether	2410	1740	72	40-140
7005-72-3	4-Chlorophenyl phenyl ether	2410	1880	78	40-140
121-14-2	2,4-Dinitrotoluene	4830	3800	79	40-140
606-20-2	2,6-Dinitrotoluene	4830	3460	72	40-140
91-94-1	3,3'-Dichlorobenzidine	2410	1560	65	40-140

^{* =} Outside of Control Limits.

Blank Spike Summary Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. 68 Matson Hill Road, Glastonbury, CT **Project:**

Sample OP32429-BS	File ID U13225.D	DF 1	Analyzed 04/01/13	By NS	Prep Date 03/28/13	Prep Batch OP32429	Analytical Batch MSU675

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
53-70-3	Dibenzo(a,h)anthracene	2410	1970	82	40-140
132-64-9	Dibenzofuran	2410	1880	78	40-140
84-74-2	Di-n-butyl phthalate	2410	1830	76	40-140
117-84-0	Di-n-octyl phthalate	2410	2150	89	40-140
84-66-2	Diethyl phthalate	2410	1980	82	40-140
131-11-3	Dimethyl phthalate	2410	1890	78	40-140
117-81-7	bis(2-Ethylhexyl)phthalate	2410	2050	85	40-140
206-44-0	Fluoranthene	2410	2030	84	40-140
86-73-7	Fluorene	2410	2020	84	40-140
118-74-1	Hexachlorobenzene	4830	3740	77	40-140
87-68-3	Hexachlorobutadiene	4830	3800	79	40-140
77-47-4	Hexachlorocyclopentadiene	4830	2530	52	40-140
67-72-1	Hexachloroethane	4830	3300	68	40-140
193-39-5	Indeno(1,2,3-cd)pyrene	2410	1930	80	40-140
78-59-1	Isophorone	4830	3390	70	40-140
91-57-6	2-Methylnaphthalene	2410	1940	80	40-140
88-74-4	2-Nitroaniline	2410	1920	80	40-140
99-09-2	3-Nitroaniline	2410	1480	61	40-140
100-01-6	4-Nitroaniline	2410	1710	71	40-140
91-20-3	Naphthalene	2410	1840	76	40-140
98-95-3	Nitrobenzene	4830	3320	69	40-140
621-64-7	N-Nitroso-di-n-propylamine	2410	1620	67	40-140
86-30-6	N-Nitrosodiphenylamine	2410	1750	72	40-140
82-68-8	Pentachloronitrobenzene	2410	2280	94	40-140
85-01-8	Phenanthrene	2410	1950	81	40-140
129-00-0	Pyrene	2410	1890	78	40-140
110-86-1	Pyridine	2410	1390	58	40-140
95-94-3	1,2,4,5-Tetrachlorobenzene	2410	2050	85	40-140
120-82-1	1,2,4-Trichlorobenzene	2410	1870	77	40-140
CAS No.	Surrogate Recoveries	BSP	Lin	nits	

CAB NO.	Surrogate Recoveries	DOI	Limits
367-12-4	2-Fluorophenol	74%	30-130%
4165-62-2	•	67%	30-130%
118-79-6	2,4,6-Tribromophenol	80%	30-130%

^{* =} Outside of Control Limits.

Page 3 of 3

Blank Spike Summary Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample OP32429-BS	File ID U13225.D	DF 1	Analyzed 04/01/13	By NS	Prep Date 03/28/13	Prep Batch OP32429	Analytical Batch MSU675

The QC reported here applies to the following samples: Method: SW846 8270C

MC19052-1, MC19052-2

CAS No.	Surrogate Recoveries	BSP	Limits
4165-60-0	Nitrobenzene-d5	71%	30-130%
321-60-8	2-Fluorobiphenyl	73%	30-130%
1718-51-0	Terphenyl-d14	79%	30-130%

(a) Outside control limits. Blank Spike meets program technical requirements.

^{* =} Outside of Control Limits.

Semivolatile Internal Standard Area Summary

Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

 Check Std:
 MSU675-CC623
 Injection Date:
 04/01/13

 Lab File ID:
 U13220.D
 Injection Time:
 08:51

Instrument ID: GCMSU **Method:** SW846 8270C

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT	IS 6 AREA	RT
Check Std Upper Limit ^a	151505 303010	3.08 3.58	546520 1093040	4.04 4.54	350259 700518	5.44 5.94	637820 1275640	6.65 7.15	688072 1376144	9.39	664453 1328906	10.93 11.43
Lower Limit b	75753	2.58	273260	3.54	175130	4.94	318910	6.15	344036	8.89	332227	10.43
Lab	IS 1		IS 2		IS 3		IS 4		IS 5		IS 6	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
OP32433-MB	180761	3.07	668589	4.04	410844	5.44	712846	6.65	839312	9.38	792330	10.92
OP32433-BS	188890	3.08	654625	4.04	410392	5.44	742680	6.65	831211	9.39	797157	10.93
OP32433-BSD	185546	3.08	678042	4.04	413258	5.44	751217	6.65	839602	9.39	802714	10.93
OP32429-MB	180905	3.07	656205	4.04	408764	5.44	705953	6.65	806741	9.38	757227	10.92
OP32429-BS	180410	3.08	643380	4.04	393062	5.44	717903	6.66	779478	9.39	770441	10.93
MC19052-1	159095	3.08	566367	4.05	359963	5.45	628902	6.67	715555	9.41	622166	10.96
MC19052-2	167616	3.08	591020	4.05	357917	5.45	631849	6.67	750781	9.41	676152	10.96
ZZZZZZ	133527	3.08	436637	4.05	270462	5.46	491505	6.68	587620	9.42	554580	10.97
ZZZZZZ	176823	3.08	608360	4.05	355845	5.46	617579	6.68	812564	9.41	711718	10.96
ZZZZZZ	171018	3.08	605811	4.05	363460	5.45	601824	6.68	586063	9.46	508257	11.04

IS 1 = 1,4-Dichlorobenzene-d4

IS 2 = Naphthalene-d8
IS 3 = Acenaphthene-D10
IS 4 = Phenanthrene-d10
IS 5 = Chrysene-d12
IS 6 = Perylene-d12

(a) Upper Limit = + 100% of check standard area; Retention time + 0.5 minutes.

(b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Semivolatile Surrogate Recovery Summary

Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Method: SW846 8270C Matrix: SO

Samples and QC shown here apply to the above method

Lab Sample ID	Lab File ID	S1	S2	S3	S4	S5	S6
MC19052-1	U13233.D	69.0	65.0	95.0	69.0	73.0	78.0
MC19052-2	U13234.D	62.0	59.0	76.0	62.0	68.0	62.0
OP32429-BS	U13225.D	74.0	67.0	80.0	71.0	73.0	79.0
OP32429-MB	U13224.D	72.0	70.0	85.0	74.0	74.0	75.0

Surrogate	Recovery
Compounds	Limits

S1 =	2-Fluorophenol	30-130%
S2 =	Phenol-d5	30-130%
S3 =	2,4,6-Tribromophenol	30-130%
S4 =	Nitrobenzene-d5	30-130%
S5 =	2-Fluorobiphenyl	30-130%
S6 =	Terphenyl-d14	30-130%

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries

Method Blank Summary

Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample OP32428-MB	File ID BI19785.D	DF 1	Analyzed 03/29/13	By KN	Prep Date 03/28/13	Prep Batch OP32428	Analytical Batch GBI712

Limits

The QC reported here applies to the following samples:

Method: CT-ETPH 7/06

MC19052-1, MC19052-2

CAS No.

CAS No. Compound Result RL Units Q

CT-ETPH (C9-C36) ND 16 mg/kg

84-15-1 o-Terphenyl 75% 50-137%

Surrogate Recoveries

Method: SW846 8082

Method Blank Summary Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. 68 Matson Hill Road, Glastonbury, CT **Project:**

Sample OP32431-MB	File ID DF BB46585A.D1	Analyzed 03/30/13	By CZ	Prep Date 03/28/13	Prep Batch OP32431	Analytical Batch GBB2803

The QC reported here applies to the following samples:

MC19052-1, MC19052-2

CAS No.	Compound	Result	RL	Units Q
12674-11-2	Aroclor 1016	ND	99	ug/kg
11104-28-2	Aroclor 1221	ND	99	ug/kg
11141-16-5	Aroclor 1232	ND	99	ug/kg
53469-21-9	Aroclor 1242	ND	99	ug/kg
12672-29-6	Aroclor 1248	ND	99	ug/kg
11097-69-1	Aroclor 1254	ND	99	ug/kg
11096-82-5	Aroclor 1260	ND	99	ug/kg
37324-23-5	Aroclor 1262	ND	99	ug/kg
11100-14-4	Aroclor 1268	ND	99	ug/kg

CAS No.	Surrogate Recoveries		Limits
877-09-8	Tetrachloro-m-xylene	96%	30-150%
877-09-8	Tetrachloro-m-xylene	97%	30-150%
2051-24-3	Decachlorobiphenyl	112%	30-150%
2051-24-3	Decachlorobiphenyl	112%	30-150%

Page 1 of 1

Blank Spike Summary Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. 68 Matson Hill Road, Glastonbury, CT **Project:**

Sample OP32428-BS	File ID BI19787.D	DF 1	Analyzed 03/29/13	By KN	Prep Date 03/28/13	Prep Batch OP32428	Analytical Batch GBI712

50-137%

The QC reported here applies to the following samples: **Method:** CT-ETPH 7/06

MC19052-1, MC19052-2

o-Terphenyl

84-15-1

CAS No.	Compound	Spike mg/kg	BSP mg/kg	BSP %	Limits
	СТ-ЕТРН (С9-С36)	44.8	36.5	81	60-120
CAS No.	Surrogate Recoveries	BSP	Lin	nits	

79%

* = Outside of Control Limits.

Page 1 of 1

Method: SW846 8082

Blank Spike Summary Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. 68 Matson Hill Road, Glastonbury, CT **Project:**

Sample OP32431-BS	File ID BB46586A	DF .D1	Analyzed 03/30/13	By CZ	Prep Date 03/28/13	Prep Batch OP32431	Analytical Batch GBB2803

The QC reported here applies to the following samples:

MC19052-1, MC19052-2

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
12674-11-2	Aroclor 1016	252	284	113	40-140
11104-28-2	Aroclor 1221		ND		40-140
11141-16-5	Aroclor 1232		ND		40-140
53469-21-9	Aroclor 1242		ND		40-140
12672-29-6	Aroclor 1248		ND		40-140
11097-69-1	Aroclor 1254		ND		40-140
11096-82-5	Aroclor 1260	252	304	121	40-140
37324-23-5	Aroclor 1262		ND		40-140
11100-14-4	Aroclor 1268		ND		40-140

CAS No.	Surrogate Recoveries	BSP	Limits
877-09-8	Tetrachloro-m-xylene	103%	30-150%
877-09-8	Tetrachloro-m-xylene	104%	30-150%
2051-24-3	Decachlorobiphenyl	108%	30-150%
2051-24-3	Decachlorobiphenyl	108%	30-150%

^{* =} Outside of Control Limits.

Page 1 of 1

Semivolatile Surrogate Recovery Summary

Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

Method: SW846 8082 Matrix: SO

Samples and QC shown here apply to the above method

Lab	Lab				
Sample ID	File ID	S1 a	S1 b	S2 a	S2 b
MC19052-1	BB46588.D	89.0	88.0	142.0	147.0
MC19052-2	BB46589.D	78.0	57.0	114.0	112.0
OP32431-BS	BB46586A.D	103.0	104.0	108.0	108.0
OP32431-MB	BB46585A.D	96.0	97.0	112.0	112.0

Surrogate Recovery Compounds Limits

S1 = Tetrachloro-m-xylene30-150% S2 = Decachlorobiphenyl30-150%

(a) Recovery from GC signal #1

(b) Recovery from GC signal #2

Semivolatile Surrogate Recovery Summary

Job Number: MC19052

Account: TRTCTG Triton Environmental, Inc.
Project: 68 Matson Hill Road, Glastonbury, CT

Method: CT-ETPH 7/06 Matrix: SO

Samples and QC shown here apply to the above method

Lab	Lab	
Sample ID	File ID	S1 a
MC19052-1	BI19791.D	83.0
MC19052-2	BI19789.D	74.0
OP32428-BS	BI19787.D	79.0
OP32428-MB	BI19785.D	75.0

Surrogate Recovery Compounds Limits

S1 = o-Terphenyl 50-137%

(a) Recovery from GC signal #1

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC19052 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20643 Matrix Type: SOLID

Methods: SW846 6010C Units: mg/kg

Prep Date:

03/21/13

Metal	RL	IDL	MDL	MB raw	final
Aluminum	20	1.5	3.6		
Antimony	1.0	.1	.15		
Arsenic	1.0	.15	.21	0.050	<1.0
Barium	5.0	.041	.073	0.040	<5.0
Beryllium	0.40	.017	.024		
Boron	10	.057	.11		
Cadmium	0.40	.023	.042	0.020	<0.40
Calcium	500	.52	6.3		
Chromium	1.0	.06	.095	0.030	<1.0
Cobalt	5.0	.025	.047		
Copper	2.5	.063	.56		
Gold	5.0	. 23	.43		
Iron	10	.38	.87		
Lead	1.0	.09	.17	0.12	<1.0
Lithium	500	2.3	8.3		
Magnesium	500	3.1	5.1		
Manganese	1.5	.015	.04		
Molybdenum	10	.034	.07		
Nickel	4.0	.036	.044		
Palladium	5.0	. 24	.64		
Platinum	5.0	.88	1.5		
Potassium	500	5.7	8.6		
Selenium	1.0	.16	.35	0.15	<1.0
Silicon	10	.77	3.3		
Silver	0.50	.061	.13	0.040	<0.50
Sodium	500	1.9	3.3		
Strontium	1.0	.02	.03		
Thallium	1.0	.12	.13		
Tin	10	.047	.14		
Titanium	5.0	.047	.14		
Tungsten	10	.61	.94		
Vanadium	1.0	.1	.13		
Zinc	2.0	.024	.16		

Page 1

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC19052

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20643 Methods: SW846 6010C Matrix Type: SOLID Units: mg/kg

Prep Date:

Metal

Zirconium 5.0 .073 .088

Associated samples MP20643: MC19052-1, MC19052-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

Login Number: MC19052 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20643 Methods: SW846 6010C Matrix Type: SOLID Units: mg/kg

Prep Date: 03/21/13 03/21/13

Metal	BSP Result	Spikelot MPICP3	% Rec	QC Limits	BSD Result	Spikelot MPICP3	% Rec	BSD RPD	QC Limit
Aluminum	anr								
Antimony	anr								
Arsenic	49.2	50	98.4	80-120	48.0	50	96.0	2.5	20
Barium	194	200	97.0	80-120	188	200	94.0	3.1	20
Beryllium	anr								
Boron									
Cadmium	49.1	50	98.2	80-120	47.8	50	95.6	2.7	20
Calcium	anr								
Chromium	50.5	50	101.0	80-120	48.9	50	97.8	3.2	20
Cobalt	anr								
Copper	anr								
Gold									
Iron	anr								
Lead	97.0	100	97.0	80-120	94.3	100	94.3	2.8	20
Lithium	anr								
Magnesium	anr								
Manganese	anr								
Molybdenum	anr								
Nickel	anr								
Palladium									
Platinum									
Potassium	anr								
Selenium	48.1	50	96.2	80-120	46.6	50	93.2	3.2	20
Silicon									
Silver	20.7	20	103.5	80-120	20.0	20	100.0	3.4	20
Sodium	anr								
Strontium									
Thallium	anr								
Tin									
Titanium									
Tungsten									
Vanadium	anr								
Zinc	anr								

Login Number: MC19052 Account: TRTCTG - Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20643 Methods: SW846 6010C Matrix Type: SOLID Units: mg/kg

Prep Date:

Metal

Zirconium

Associated samples MP20643: MC19052-1, MC19052-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\begin{tabular}{ll} \end{tabular}$ (anr) Analyte not requested

Login Number: MC19052 Account: TRTCTG - Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20643 Matrix Type: SOLID

Methods: SW846 6010C Units: mg/kg

Prep Date:

03/21/13

riep bace.			03/21/13	
Metal	LCS Result	Spikelot MPLCS78	% Rec	QC Limits
Aluminum	anr			
Antimony	anr			
Arsenic	94.9	94.5	100.4	82-117
Barium	164	166	98.8	83-116
Beryllium	anr			
Boron				
Cadmium	60.1	59.9	100.3	84-116
Calcium	anr			
Chromium	71.3	69.3	102.9	81-119
Cobalt	anr			
Copper	anr			
Gold				
	anr			
Iron	anr	01 7	00 1	00 110
Lead	90.0	91.7	98.1	82-118
Lithium				
Magnesium	anr			
Manganese	anr			
Molybdenum	anr			
Nickel	anr			
Palladium				
Platinum				
Potassium	anr			
Selenium	158	159	99.4	79-121
Silicon				
Silver	35.0	33.9	103.2	66-134
Sodium	anr			
Strontium				
Thallium	anr			
Tin				
Titanium				
Tungsten				
Vanadium	anr			
Zinc	anr			

Login Number: MC19052 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20643 Methods: SW846 6010C Matrix Type: SOLID Units: mg/kg

Prep Date:

Metal

Zirconium

Associated samples MP20643: MC19052-1, MC19052-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC19052
Account: TRTCTG - Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20643 Matrix Type: SOLID Methods: SW846 6010C Units: ug/l

03/21/13 Prep Date:

Metal	MC19032 Origina	-12 1 SDL 1:5	%DIF	QC Limits		
Aluminum	anr					
Antimony	anr					
Arsenic	48.9	51.6	5.5	0-10		
Barium	84.4	80.8	1.6	0-10		
Beryllium	anr					
Boron						
Cadmium	0.00	0.00	NC	0-10		
Calcium	anr					
Chromium	87.2	91.9	5.4	0-10		
Cobalt	anr					
Copper	anr					
Gold						
Iron	anr					
Lead	35.3	39.0	5.6	0-10		
Lithium	anr					
Magnesium	anr					
Manganese	anr					
Molybdenum	anr					
Nickel	anr					
Palladium						
Platinum						
Potassium	anr					
Selenium	0.00	14.0	NC	0-10		
Silicon						
Silver	0.00	0.00	NC	0-10		
Sodium	anr					
Strontium						
Thallium	anr					
Tin						
Titanium						
Tungsten						
Vanadium	anr					
Zinc	anr					

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC19052 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20643 Methods: SW846 6010C Matrix Type: SOLID Units: ug/l

Prep Date:

Metal

Zirconium

Associated samples MP20643: MC19052-1, MC19052-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

POST DIGESTATE SPIKE SUMMARY

Login Number: MC19052 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20643 Methods: SW846 6010C Matrix Type: SOLID Units: ug/l

Prep Date: 03/21/13

Metal	Sample ml	Final ml	MC19032 Raw	-12 Corr.**	PS ug/l	Spike ml	Spike ug/ml	Spike ug/l	% Rec	QC Limits
Aluminum										
Antimony										
Arsenic										
Barium										
Beryllium										
Boron										
Cadmium										
Calcium										
Chromium										
Cobalt										
Copper										
Gold										
Iron										
Lead										
Magnesium										
Manganese										
Molybdenum										
Nickel										
Palladium										
Platinum										
Potassium										
Selenium										
Silicon										
Silver										
Sodium										
Strontium										
Thallium										
Tin										
Titanium										
Tungsten										
Vanadium										
Zinc										
Zirconium										

POST DIGESTATE SPIKE SUMMARY

Login Number: MC19052
Account: TRTCTG - Triton Environmental, Inc.

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20643 Methods: SW846 6010C Matrix Type: SOLID Units: ug/l

Prep Date:

Metal

Associated samples MP20643: MC19052-1, MC19052-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (**) Corr. sample result = Raw * (sample volume / final volume) (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC19052

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20665 Methods: SW846 7471B Matrix Type: SOLID Units: mg/kg

03/25/13 Prep Date:

Associated samples MP20665: MC19052-1, MC19052-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\bar{\ }$

(anr) Analyte not requested

Login Number: MC19052 Account: TRTCTG - Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20665 Matrix Type: SOLID

Methods: SW846 7471B Units: mg/kg

03/25/13

Prep Date:

Metal	BSP Result	Spikelo: HGRWS1	t % Rec	QC Limits	BSD Result	Spikelo HGRWS1	t % Rec	BSD RPD	QC Limit	
Mercury	0.49	0.5	98.0	80-120	0.53	0.5	106.0	7.8	30	

Associated samples MP20665: MC19052-1, MC19052-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\bar{\ }$

03/25/13

(anr) Analyte not requested

Login Number: MC19052

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20665 Matrix Type: SOLID

Methods: SW846 7471B Units: mg/kg

03/25/13 Prep Date:

Metal	LCS Result	Spikelot HGLCS78		QC Limits
Mercury	3.6	4.05	88.9	72-128

Associated samples MP20665: MC19052-1, MC19052-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\begin{tabular}{ll} \end{tabular}$

(anr) Analyte not requested

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC19052 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Matrix Type: LEACHATE Methods: SW846 6010C

Units: mg/l

Prep Date:

03/28/13

Metal	RL	IDL	MDL	MB raw	final
Aluminum	0.20	.027	.04		
Antimony	0.0060	.0011	.0019		
Arsenic	0.010	.0015	.0029		
Barium	0.50	.00067	.00081		
Beryllium	0.0040	.00024	.00025		
Boron	0.10	.00093	.0014		
Cadmium	0.0040	.00023	.0005		
Calcium	5.0	.023	.038		
Chromium	0.010	.00072	.0014		
Cobalt	0.050	.00025	.0004		
Copper	0.025	.00063	.007		
Gold	0.050	.0023	.005		
Iron	0.10	.0038	.02		
Lead	0.010	.0015	.0017	0.00030	<0.010
Magnesium	5.0	.031	.059		
Manganese	0.015	.00015	.00081		
Molybdenum	0.10	.00049	.00077		
Nickel	0.040	.00036	.00057		
Palladium	0.050	.0046	.0076		
Platinum	0.050	.0088	.014		
Potassium	5.0	.079	.16		
Selenium	0.025	.0025	.0048		
Silicon	0.10	.0077	.045		
Silver	0.0050	.00061	.001		
Sodium	5.0	.024	.06		
Strontium	0.010	.00024	.00026		
Thallium	0.0050	.0013	.0019		
Tin	0.10	.00047	.0014		
Titanium	0.050	.00047	.0018		
Tungsten	0.10	.0061	.016		
Vanadium	0.010	.001	.0028		
Zinc	0.10	.00024	.0005		
Zirconium	0.050	.00073	.0022		

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC19052

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Methods: SW846 6010C Matrix Type: LEACHATE Units: $\mbox{mg/l}$

Prep Date:

Metal

Associated samples MP20682: MC19052-1A, MC19052-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

Login Number: MC19052
Account: TRTCTG - Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Methods: SW846 6010C Matrix Type: LEACHATE Units: mg/l

03/28/13 Prep Date:

Metal	MC19052-1A Original MS	Spikelot MPICP	% Rec	QC Limits
Aluminum				
Antimony				
Arsenic				
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper				
Gold				
Iron				
Lead	0.015 1.0	1.0	98.5	75-125
Magnesium				
Manganese				
Molybdenum				
Nickel				
Palladium				
Platinum				
Potassium				
Selenium				
Silicon				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Tungsten				
Vanadium				
Zinc				
Zirconium				

Login Number: MC19052

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Methods: SW846 6010C Matrix Type: LEACHATE Units: $\mbox{mg/l}$

Prep Date:

Metal

Associated samples MP20682: MC19052-1A, MC19052-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

Login Number: MC19052
Account: TRTCTG - Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Methods: SW846 6010C Matrix Type: LEACHATE Units: mg/l

03/28/13 Prep Date:

Metal	MC19052-1A Original MSD	Spikelo: MPICP	% Rec	MSD RPD	QC Limit
Aluminum					
Antimony					
Arsenic					
Barium					
Beryllium					
Boron					
Cadmium					
Calcium					
Chromium					
Cobalt					
Copper					
Gold					
Iron					
Lead	0.015 1.0	1.0	98.5	0.0	20
Magnesium					
Manganese					
Molybdenum					
Nickel					
Palladium					
Platinum					
Potassium					
Selenium					
Silicon					
Silver					
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Tungsten					
Vanadium					
Zinc					
Zirconium					

Login Number: MC19052

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Methods: SW846 6010C Matrix Type: LEACHATE Units: $\mbox{mg/l}$

Prep Date:

Metal

Associated samples MP20682: MC19052-1A, MC19052-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits (anr) Analyte not requested

Login Number: MC19052 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Methods: SW846 6010C Matrix Type: LEACHATE Units: $\mbox{mg/l}$

Prep Date: 03/28/13 03/28/13

Metal	BSP Result	Spikelot MPICP	% Rec	QC Limits	BSD Result	Spikelot MPICP	% Rec	BSD RPD	QC Limit
Aluminum									
Antimony									
Arsenic									
Barium									
Beryllium									
Boron									
Cadmium									
Calcium									
Chromium									
Cobalt									
Copper									
Gold									
Iron									
Lead	0.99	1.0	99.0	80-120	1.0	1.0	100.0	1.0	20
Magnesium									
Manganese									
Molybdenum									
Nickel									
Palladium									
Platinum									
Potassium									
Selenium									
Silicon									
Silver									
Sodium									
Strontium									
Thallium									
Tin									
Titanium									
Tungsten									
Vanadium									
Zinc									
Zirconium									

Login Number: MC19052
Account: TRTCTG - Triton Environmental, Inc.

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Methods: SW846 6010C Matrix Type: LEACHATE Units: $\mbox{mg/l}$

Prep Date:

Metal

Associated samples MP20682: MC19052-1A, MC19052-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC19052 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Methods: SW846 6010C Matrix Type: LEACHATE Units: ug/l

Prep Date: 03/28/13

TICP Date.			03/20/13	
Metal	MC19052- Original	-1A L SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony				
Arsenic				
Barium				
Beryllium				
Boron				
Cadmium				
Calcium				
Chromium				
Cobalt				
Copper				
Gold				
Iron				
Lead	15.4	19.8	28.6 (a)	0-10
Magnesium				
Manganese				
Molybdenum				
Nickel				
Palladium				
Platinum				
Potassium				
Selenium				
Silicon				
Silver				
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Tungsten				
Vanadium				
Zinc				
Zirconium				

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC19052 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Methods: SW846 6010C Matrix Type: LEACHATE Units: ug/l

Prep Date:

Metal

Associated samples MP20682: MC19052-1A, MC19052-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample $\,$ concentration (< 50 times IDL).

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

Login Number: MC19052 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Cyanide Reactivity Paint Filter Test Specific Conductivity Sulfide Reactivity	GP15757/GN42110 GN42092 GN42081 GP15758/GN42109	1.5 0.50 0.50 50	0.0 <0.50 0.0 0.0	mg/kg ml/100g umhos/cm mg/kg	250 510	18.6 510	7.4	- 왕 - 왕

Associated Samples:

Batch GN42081: MC19052-1, MC19052-2 Batch GN42092: MC19052-1, MC19052-2 Batch GP15757: MC19052-1, MC19052-2 Batch GP15758: MC19052-1, MC19052-2

(*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: MC19052 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits
Paint Filter Test	GN42092	MC19052-1	ml/100g	<0.50	<0.50	0.0	0-20%
Specific Conductivity	GN42081	MC19052-1	umhos/cm	345	337	2.3	0-20%
pH	GN42078	MC19052-1	su	9.2	9.1	1.1	0-20%

Associated Samples:

Associated Samples:
Batch GN42078: MC19052-1, MC19052-2
Batch GN42081: MC19052-1, MC19052-2
Batch GN42092: MC19052-1, MC19052-2
(*) Outside of QC limits

04/01/13

Technical Report for

Triton Environmental, Inc.

68 Matson Hill Road, Glastonbury, CT

103139

Accutest Job Number: MC19083

Sampling Date: 03/18/13

Report to:

Triton Environmental, Inc. 385 Church Street Suite 201 Guilford, CT 06437 mpaulsson@tritonenvironmental.com

ATTN: Mark Paulsson

Total number of pages in report: 82

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Matthew Morrell 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) WI (399080220) ISO 17025:2005 (L2235)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Lab Director

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	7
Section 4: Sample Results	9
4.1: MC19083-1: WC-3	10
4.2: MC19083-1A: WC-3	20
4.3: MC19083-2: WC-4	21
4.4: MC19083-2A: WC-4	31
Section 5: Misc. Forms	32
5.1: Chain of Custody	33
5.2: RCP Form	35
5.3: Sample Tracking Chronicle	36
Section 6: GC/MS Volatiles - QC Data Summaries	38
6.1: Method Blank Summary	39
6.2: Blank Spike/Blank Spike Duplicate Summary	42
6.3: Internal Standard Area Summaries	45
6.4: Surrogate Recovery Summaries	46
Section 7: GC/MS Semi-volatiles - QC Data Summaries	
7.1: Method Blank Summary	48
7.2: Blank Spike/Blank Spike Duplicate Summary	51
7.3: Internal Standard Area Summaries	54
7.4: Surrogate Recovery Summaries	55
Section 8: GC Semi-volatiles - QC Data Summaries	56
8.1: Method Blank Summary	57
8.2: Blank Spike Summary	59
8.3: Surrogate Recovery Summaries	61
Section 9: Metals Analysis - QC Data Summaries	63
9.1: Prep QC MP20654: As,Ba,Cd,Cr,Pb,Se,Ag	64
9.2: Prep QC MP20681: Hg	72
9.3: Prep QC MP20682: Pb	75
Section 10: General Chemistry - QC Data Summaries	81
10.1: Method Blank and Spike Results Summary	82

Sample Summary

Triton Environmental, Inc.

Job No: MC19083

68 Matson Hill Road, Glastonbury, CT Project No: 103139

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
MC19083-1	03/18/13	00:00 BD	03/20/13	SO	Soil	WC-3
MC19083-1A	03/18/13	00:00 BD	03/20/13	SO	Soil	WC-3
MC19083-2	03/18/13	00:00 BD	03/20/13	SO	Soil	WC-4
MC19083-2A	03/18/13	00:00 BD	03/20/13	SO	Soil	WC-4

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Triton Environmental, Inc. Job No MC19083

Site: 68 Matson Hill Road, Glastonbury, CT Report Date 4/1/2013 4:34:51 PM

2 Sample(s) were collected on 03/18/2013 and were received at Accutest on 03/20/2013 properly preserved, at 0.9 Deg. C and intact. These Samples received an Accutest job number of MC19083. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix SO Batch ID: MSK2233

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Blank Spike Recovery(s) for 2-Hexanone are outside control limits. Blank Spike meets program technical requirements.
- Continuing calibration check standard MSK2233-CC2209 for trichlorofluoromethane exceed 30% Difference. This check standard met RCP criteria.
- Initial calibration verification standard MSK2209-ICV2209 for acetone exceeds 35% Difference.
- MC19083-1, -2 has internal standard, Tert Butyl Alcohol-D9 outside control limits. Target analytes not associated with this internal standard
- BSD Recovery(s) for Bromomethane, 2-Hexanone, Trichlorofluoromethane are outside control limits. Blank Spike meets program technical requirements.

Extractables by GCMS By Method SW846 8270C

Matrix SO Batch ID: OP32433

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- BS/BSD Recovery(s) for Aniline, Hexachlorocyclopentadiene are outside control limits. Blank Spike meets program technical requirements.
- Initial calibration verification MSU625-ICV623 for Hexachlorocyclopentadiene, 3,3'-Dichlorobenzidine, 2,4,6-Tribromophenol exceed 35% Difference.
- Quadratic regression is employed for initial calibration standard MSU623-ICC623 for N-Nitroso-di-n-propylamine, 2,4-Dinitrophenol, Carbazole, Di-n-butylphthalate.

Extractables by GC By Method CT-ETPH 7/06

Matrix SO Batch ID: OP32428

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

4 of 82
ACCUTEST

Extractables by GC By Method SW846 8082

Matrix SO Batch ID: OP32431

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- MC19083-2 for Tetrachloro-m-xylene: Outside control limits due to possible matrix interference.

Metals By Method SW846 6010C

Matrix LEACHATE

Batch ID: MP20682

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) MC19052-1ASDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Lead are outside control limits for sample MP20682-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).</p>
- Only Lead requested.

Matrix SO

Batch ID: MP20654

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) MC19031-19SDL were used as the QC samples for metals.
- Only selected metals requested.

Metals By Method SW846 7471B

Matrix SO

Batch ID: MP20681

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method EPA 120.1M

Matrix SO

Batch ID: GN42081

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Wet Chemistry By Method SW846 9095

Matrix SO

Batch ID: GN42092

- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- MC19083-1, -2 for Paint Filter Test: No Free Liquid Detected.

Wet Chemistry By Method SW846 CHAP7

Matrix SO Batch ID: GP15757

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

Matrix SO Batch ID: GP15758

- All samples were distilled within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report (MC19083).

Summary of Hits Job Number: MC19083

Account: Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

Collected: 03/18/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
MC19083-1	WC-3					
CT-ETPH (C9-C) Barium Cadmium Chromium Lead Ignitability (Flasl Paint Filter Test Specific Conduct pH	npoint) a	1520 29.0 1.5 9.2 11.3 > 230 < 0.50 42.9 7.2	18 5.0 0.40 1.0 1.0 0.50 0.50		mg/kg mg/kg mg/kg mg/kg mg/kg Deg. F ml/100g umhos/cm su	CT-ETPH 7/06 SW846 6010C SW846 6010C SW846 6010C SW846 6010C SW846 1020 SW846 9095 EPA 120.1M SW846 9045D
MC19083-1A	WC-3					
Lead		0.019	0.010		mg/l	SW846 6010C
MC19083-2	WC-4					
1,1-Dichloroethacis-1,2-Dichloroethen Trichloroethene Benzo(a)anthrace Benzo(a)pyrene Benzo(b)fluorant Benzo(g,h,i)pery Benzo(k)fluorant Chrysene Fluoranthene Indeno(1,2,3-cd) Phenanthrene Pyrene CT-ETPH (C9-CArsenic Barium Cadmium	ethene e ene hene lene hene	684 377 920 1320 194 202 353 150 141 277 515 147 278 449 5490 3.8 47.8 2.3	69 69 69 69 110 110 110 110 110 110 110 110 110 11		ug/kg mg/kg mg/kg mg/kg mg/kg	SW846 8260B SW846 8260B SW846 8260B SW846 8270C SW846 8010C SW846 6010C SW846 6010C
Cadmium Chromium Lead Ignitability (Flasl Paint Filter Test Specific Conduct pH	a	2.3 74.9 82.8 > 230 < 0.50 102 6.7	0.39 0.98 0.98 0.50 0.50		mg/kg mg/kg mg/kg Deg. F ml/100g umhos/cm su	SW846 6010C SW846 6010C SW846 6010C SW846 1020 SW846 9095 EPA 120.1M SW846 9045D

Summary of Hits Job Number: MC19083

Account: Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

Collected: 03/18/13

	Lab Sample ID Client Sample ID Analyte	Result/ Qual	RL	MDL	Units	Method
--	---	-----------------	----	-----	-------	--------

MC19083-2A WC-4

Lead 0.15 0.010 mg/l SW846 6010C

(a) No Free Liquid Detected.

Sample Results	
Report of Analysis	

Report of Analysis

Client Sample ID: WC-3

 Lab Sample ID:
 MC19083-1
 Date Sampled:
 03/18/13

 Matrix:
 SO - Soil
 Date Received:
 03/20/13

 Method:
 SW846 8260B
 Percent Solids:
 89.7

Project: 68 Matson Hill Road, Glastonbury, CT

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 K68255.D 1 03/25/13 GK n/a n/a MSK2233

Run #2

Initial Weight Final Volume Methanol Aliquot

Run #1 12.3 g 10.0 ml 100 ul

Run #2

VOA RCP List

Compound	Result	RL	Units	Q
Acetone	ND	260	ug/kg	
Acrylonitrile	ND	1300	ug/kg	
Benzene	ND	26	ug/kg	
Bromobenzene	ND	260	ug/kg	
Bromodichloromethane	ND	100	ug/kg	
Bromoform	ND	100	ug/kg	
Bromomethane	ND	100	ug/kg	
2-Butanone (MEK)	ND	260	ug/kg	
n-Butylbenzene	ND	260	ug/kg	
sec-Butylbenzene	ND	260	ug/kg	
tert-Butylbenzene	ND	260	ug/kg	
Carbon disulfide	ND	260	ug/kg	
Carbon tetrachloride	ND	100	ug/kg	
Chlorobenzene	ND	100	ug/kg	
Chloroethane	ND	260	ug/kg	
Chloroform	ND	100	ug/kg	
Chloromethane	ND	260	ug/kg	
o-Chlorotoluene	ND	260	ug/kg	
p-Chlorotoluene	ND	260	ug/kg	
1,2-Dibromo-3-chloropropane	ND	260	ug/kg	
Dibromochloromethane	ND	100	ug/kg	
1,2-Dibromoethane	ND	100	ug/kg	
1,2-Dichlorobenzene	ND	100	ug/kg	
1,3-Dichlorobenzene	ND	100	ug/kg	
1,4-Dichlorobenzene	ND	100	ug/kg	
Dichlorodifluoromethane	ND	100	ug/kg	
1,1-Dichloroethane	ND	100	ug/kg	
	ND	100	ug/kg	
1,1-Dichloroethene	ND	100	ug/kg	
cis-1,2-Dichloroethene	ND	100	ug/kg	
trans-1,2-Dichloroethene	ND	100	ug/kg	
1,2-Dichloropropane	ND	100	ug/kg	
	Acetone Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromoform Bromomethane 2-Butanone (MEK) n-Butylbenzene sec-Butylbenzene tert-Butylbenzene Carbon disulfide Carbon tetrachloride Chlorobenzene Chlorotenane Chloroform Chloromethane o-Chlorotoluene p-Chlorotoluene 1,2-Dibromo-3-chloropropane Dibromochloromethane 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,4-Dichlorobenzene 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethane 1,1-Dichloroethene cis-1,2-Dichloroethene trans-1,2-Dichloroethene	Acetone Acrylonitrile Benzene Bromobenzene Bromodichloromethane Bromodichloromethane Bromoform ND Bromomethane ND Bromomethane ND Bromomethane ND Bromomethane ND Bromomethane ND Bromomethane ND Carbutlenzene ND Carbon disulfide ND Carbon tetrachloride ND Chlorobenzene ND Chloroform ND Chloroform ND Chloromethane ND O-Chlorotoluene ND 1,2-Dibromo-3-chloropropane Dibromochloromethane ND 1,2-Dichlorobenzene ND 1,3-Dichlorobenzene ND 1,4-Dichlorobenzene ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethane ND 1,1-Dichloroethene ND	Acetone Acrylonitrile Benzene Bromobenzene ND Bromodichloromethane ND Bromoform ND Bromomethane ND Bromomethan	Acetone ND 260 ug/kg Acrylonitrile ND 1300 ug/kg Benzene ND 26 ug/kg Bromobenzene ND 260 ug/kg Bromodichloromethane ND 100 ug/kg Bromoform ND 260 ug/kg Bromoform ND 260 ug/kg Bromoform ND 260 ug/kg Cerbutylbenzene ND 260 ug/kg Carbon disulfide ND 260 ug/kg Carbon disulfide ND 100 ug/kg Chloroben

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4

Report of Analysis

Client Sample ID: WC-3

 Lab Sample ID:
 MC19083-1
 Date Sampled:
 03/18/13

 Matrix:
 SO - Soil
 Date Received:
 03/20/13

 Method:
 SW846 8260B
 Percent Solids:
 89.7

Project: 68 Matson Hill Road, Glastonbury, CT

VOA RCP List

CAS No.	Compound	Result	RL	Units	Q
142-28-9	1,3-Dichloropropane	ND	260	ug/kg	
594-20-7	2,2-Dichloropropane	ND	260	ug/kg	
563-58-6	1,1-Dichloropropene	ND	260	ug/kg	
10061-01-5	cis-1,3-Dichloropropene	ND	100	ug/kg	
10061-02-6	trans-1,3-Dichloropropene	ND	100	ug/kg	
100-41-4	Ethylbenzene	ND	100	ug/kg	
76-13-1	Freon 113	ND	260	ug/kg	
87-68-3	Hexachlorobutadiene	ND	260	ug/kg	
591-78-6	2-Hexanone	ND	260	ug/kg	
98-82-8	Isopropylbenzene	ND	260	ug/kg	
99-87-6	p-Isopropyltoluene	ND	260	ug/kg	
1634-04-4	Methyl Tert Butyl Ether	ND	100	ug/kg	
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	260	ug/kg	
74-95-3	Methylene bromide	ND	260	ug/kg	
75-09-2	Methylene chloride	ND	100	ug/kg	
91-20-3	Naphthalene	ND	260	ug/kg	
103-65-1	n-Propylbenzene	ND	260	ug/kg	
100-42-5	Styrene	ND	260	ug/kg	
630-20-6	1,1,1,2-Tetrachloroethane	ND	260	ug/kg	
79-34-5	1,1,2,2-Tetrachloroethane	ND	100	ug/kg	
127-18-4	Tetrachloroethene	ND	100	ug/kg	
109-99-9	Tetrahydrofuran	ND	510	ug/kg	
108-88-3	Toluene	ND	260	ug/kg	
110-57-6	Trans-1,4-Dichloro-2-Butene	ND	260	ug/kg	
87-61-6	1,2,3-Trichlorobenzene	ND	260	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	260	ug/kg	
71-55-6	1,1,1-Trichloroethane	ND	100	ug/kg	
79-00-5	1,1,2-Trichloroethane	ND	100	ug/kg	
79-01-6	Trichloroethene	ND	100	ug/kg	
75-69-4	Trichlorofluoromethane	ND	100	ug/kg	
96-18-4	1,2,3-Trichloropropane	ND	260	ug/kg	
95-63-6	1,2,4-Trimethylbenzene	ND	260	ug/kg	
108-67-8	1,3,5-Trimethylbenzene	ND	260	ug/kg	
75-01-4	Vinyl chloride	ND	100	ug/kg	
	m, p-Xylene	ND	100	ug/kg	
95-47-6	o-Xylene	ND	100	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
1868-53-7	Dibromofluoromethane	120%		70-13	30%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 3 of 3

03/20/13

89.7

Report of Analysis

Client Sample ID: WC-3 Lab Sample ID:

MC19083-1 **Date Sampled:** 03/18/13 Matrix: SO - Soil **Date Received:** Method: SW846 8260B **Percent Solids:**

68 Matson Hill Road, Glastonbury, CT **Project:**

VOA RCP List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	115%		70-130%
460-00-4	4-Bromofluorobenzene	112%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$ N = Indicates presumptive evidence of a compound

03/20/13

89.7

Report of Analysis

Client Sample ID: WC-3 Lab Sample ID: MC19083-1

Matrix: SO - Soil **Date Received:** Method: SW846 8270C SW846 3546 **Percent Solids:**

Project: 68 Matson Hill Road, Glastonbury, CT

Analytical Batch File ID DF Analyzed By **Prep Date Prep Batch** Run #1 U13235.D 1 04/01/13 NS 03/29/13 OP32433 MSU675

Run #2

Final Volume Initial Weight

Run #1 1.0 ml 20.4 g

Run #2

ABN RCP List

CAS No.	Compound	Result	RL	Units Q
95-57-8	2-Chlorophenol	ND	270	ug/kg
59-50-7	4-Chloro-3-methyl phenol	ND	550	ug/kg
120-83-2	2,4-Dichlorophenol	ND	550	ug/kg
105-67-9	2,4-Dimethylphenol	ND	550	ug/kg
51-28-5	2,4-Dinitrophenol	ND	1100	ug/kg
534-52-1	4,6-Dinitro-o-cresol	ND	550	ug/kg
95-48-7	2-Methylphenol	ND	550	ug/kg
106-44-5	4-Methylphenol	ND	550	ug/kg
88-75-5	2-Nitrophenol	ND	550	ug/kg
100-02-7	4-Nitrophenol	ND	1100	ug/kg
87-86-5	Pentachlorophenol	ND	550	ug/kg
108-95-2	Phenol	ND	270	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	550	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	550	ug/kg
83-32-9	Acenaphthene	ND	110	ug/kg
208-96-8	Acenaphthylene	ND	110	ug/kg
62-53-3	Aniline	ND	550	ug/kg
120-12-7	Anthracene	ND	110	ug/kg
56-55-3	Benzo(a)anthracene	ND	110	ug/kg
50-32-8	Benzo(a)pyrene	ND	110	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	110	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	110	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	110	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	270	ug/kg
85-68-7	Butyl benzyl phthalate	ND	270	ug/kg
91-58-7	2-Chloronaphthalene	ND	270	ug/kg
106-47-8	4-Chloroaniline	ND	550	ug/kg
86-74-8	Carbazole	ND	110	ug/kg
218-01-9	Chrysene	ND	110	ug/kg
111-91-1	bis(2-Chloroethoxy)methane	ND	270	ug/kg
111-44-4	bis(2-Chloroethyl)ether	ND	270	ug/kg
108-60-1	bis(2-Chloroisopropyl)ether	ND	270	ug/kg

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

03/20/13

89.7

Date Received:

Percent Solids:

Report of Analysis

Client Sample ID: WC-3 Lab Sample ID: MC19083-1 Matrix: SO - Soil

Method: SW846 8270C SW846 3546

Project: 68 Matson Hill Road, Glastonbury, CT

ABN RCP List

CAS No.	Compound	Result	RL	Units	Q
7005-72-3	4-Chlorophenyl phenyl ether	ND	270	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	550	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	550	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	270	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	110	ug/kg	
132-64-9	Dibenzofuran	ND	110	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	270	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	270	ug/kg	
84-66-2	Diethyl phthalate	ND	270	ug/kg	
131-11-3	Dimethyl phthalate	ND	270	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	270	ug/kg	
206-44-0	Fluoranthene	ND	110	ug/kg	
86-73-7	Fluorene	ND	110	ug/kg	
118-74-1	Hexachlorobenzene	ND	270	ug/kg	
87-68-3	Hexachlorobutadiene	ND	270	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	550	ug/kg	
67-72-1	Hexachloroethane	ND	270	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	110	ug/kg	
78-59-1	Isophorone	ND	270	ug/kg	
91-57-6	2-Methylnaphthalene	ND	110	ug/kg	
88-74-4	2-Nitroaniline	ND	550	ug/kg	
99-09-2	3-Nitroaniline	ND	550	ug/kg	
100-01-6	4-Nitroaniline	ND	550	ug/kg	
91-20-3	Naphthalene	ND	110	ug/kg	
98-95-3	Nitrobenzene	ND	270	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	270	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	270	ug/kg	
82-68-8	Pentachloronitrobenzene	ND	550	ug/kg	
85-01-8	Phenanthrene	ND	110	ug/kg	
129-00-0	Pyrene	ND	110	ug/kg	
110-86-1	Pyridine	ND	550	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	550	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	270	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its
367-12-4	2-Fluorophenol	53%		30-1	30%
4165-62-2	Phenol-d5	50%		30-1	
118-79-6	2,4,6-Tribromophenol	79%		30-1	
4165-60-0	Nitrobenzene-d5	56%		30-1	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: WC-3 Lab Sample ID: MC19083-1

 Matrix:
 SO - Soil
 Date Received:
 03/20/13

 Method:
 SW846 8270C
 SW846 3546
 Percent Solids:
 89.7

Project: 68 Matson Hill Road, Glastonbury, CT

ABN RCP List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	56%		30-130%
1718-51-0	Terphenyl-d14	59%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Date Sampled: 03/18/13

Percent Solids: 89.7

03/20/13

Date Received:

Report of Analysis

Client Sample ID: WC-3 Lab Sample ID: MC19083-1

Matrix: SO - Soil Method: SW846 8082 SW846 3546

Project: 68 Matson Hill Road, Glastonbury, CT

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 BB46597.D 1 03/30/13 CZ03/28/13 OP32431 GBB2803

Run #2

Final Volume Initial Weight Run #1 10.0 ml 15.6 g

Run #2

CT Polychlorinated Biphenyls RCP List

CAS No.	Compound	Result	RL	Units Q
12674-11-2	Aroclor 1016	ND	110	ug/kg
11104-28-2	Aroclor 1221		110	ug/kg
11141-16-5	Aroclor 1232		110	ug/kg
53469-21-9	Aroclor 1242		110	ug/kg
12672-29-6	Aroclor 1248		110	ug/kg
11097-69-1	Aroclor 1254		110	ug/kg
11096-82-5	Aroclor 1260		110	ug/kg
37324-23-5	Aroclor 1262	ND	110	ug/kg
11100-14-4	Aroclor 1268	ND	110	ug/kg
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	82%		30-150%
877-09-8	Tetrachloro-m-xylene	76%		30-150%
2051-24-3	Decachlorobiphenyl	131%		30-150%
2051-24-3	Decachlorobiphenyl	119%		30-150%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

03/20/13

Report of Analysis

Client Sample ID: WC-3

Lab Sample ID: MC19083-1 **Date Sampled:** 03/18/13 Matrix: SO - Soil **Date Received:**

Method: CT-ETPH 7/06 SW846 3546 **Percent Solids:** 89.7

Project: 68 Matson Hill Road, Glastonbury, CT

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 BI19811.D 1 03/31/13 AP 03/28/13 OP32428 **GBI714**

Run #2

Initial Weight Final Volume

Run #1 1.0 ml 15.2 g

Run #2

CAS No. Compound Result RLUnits Q

> CT-ETPH (C9-C36) 18 mg/kg 1520

CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits

84-15-1 o-Terphenyl 70% 50-137%

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: WC-3 Lab Sample ID: MC19083-1 Matrix: SO - Soil

Date Sampled: 03/18/13 **Date Received:** 03/20/13 **Percent Solids:** 89.7

Project: 68 Matson Hill Road, Glastonbury, CT

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	< 1.0	1.0	mg/kg	1	03/22/13	03/25/13 EAL	SW846 6010C ¹	SW846 3050B ³
Barium	29.0	5.0	mg/kg	1	03/22/13	03/25/13 EAL	SW846 6010C ¹	SW846 3050B ³
Cadmium	1.5	0.40	mg/kg	1	03/22/13	03/25/13 EAL	SW846 6010C ¹	SW846 3050B ³
Chromium	9.2	1.0	mg/kg	1	03/22/13	03/25/13 EAL	SW846 6010C ¹	SW846 3050B ³
Lead	11.3	1.0	mg/kg	1	03/22/13	03/25/13 EAL	SW846 6010C ¹	SW846 3050B ³
Mercury	< 0.033	0.033	mg/kg	1	03/28/13	03/28/13 EM	SW846 7471B ²	SW846 7471B ⁴
Selenium	< 1.0	1.0	mg/kg	1	03/22/13	03/25/13 EAL	SW846 6010C ¹	SW846 3050B ³
Silver	< 0.50	0.50	mg/kg	1	03/22/13	03/25/13 EAL	SW846 6010C ¹	SW846 3050B ³

(1) Instrument QC Batch: MA15382(2) Instrument QC Batch: MA15392(3) Prep QC Batch: MP20654(4) Prep QC Batch: MP20681

Report of Analysis

Client Sample ID: WC-3 Lab Sample ID: MC19083-1 Matrix: SO - Soil

Date Sampled: 03/18/13Date Received: 03/20/13Percent Solids: 89.7

Project: 68 Matson Hill Road, Glastonbury, CT

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Reactivity	< 1.7	1.7	mg/kg	1	03/25/13 16:30	CF	SW846 CHAP7
Ignitability (Flashpoint)	> 230		Deg. F	1	03/29/13	BF	SW846 1020
Paint Filter Test ^a	< 0.50	0.50	ml/100g	1	03/22/13 17:06	CF	SW846 9095
Solids, Percent	89.7		%	1	03/21/13	HS	SM21 2540 B MOD.
Specific Conductivity	42.9	0.50	umhos/cm	1	03/22/13	MA	EPA 120.1M
Sulfide Reactivity	< 56	56	mg/kg	1	03/25/13	CF	SW846 CHAP7
рН	7.2		su	1	03/22/13	MA	SW846 9045D

(a) No Free Liquid Detected.

Report of Analysis

Client Sample ID: WC-3

 Lab Sample ID:
 MC19083-1A
 Date Sampled:
 03/18/13

 Matrix:
 SO - Soil
 Date Received:
 03/20/13

 Percent Solids:
 89.7

Project: 68 Matson Hill Road, Glastonbury, CT

Metals Analysis, SPLP Leachate SW846 1312

Analyte	Result	MCL RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	0.019	0.010	mg/l	1	03/28/13	03/28/13 EAL	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA15393(2) Prep QC Batch: MP20682

RL = Reporting Limit

MCL = Maximum Contamination Level (not available)

4

Report of Analysis

Client Sample ID: WC-4

 Lab Sample ID:
 MC19083-2
 Date Sampled:
 03/18/13

 Matrix:
 SO - Soil
 Date Received:
 03/20/13

 Method:
 SW846 8260B
 Percent Solids:
 86.1

Project: 68 Matson Hill Road, Glastonbury, CT

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 K68254.D 1 03/25/13 GKn/aMSK2233 n/aRun #2

Run #1 9.46 g Final Volume Methanol Aliquot 200 ul

Run #2

VOA RCP List

CAS No.	Compound	Result	RL	Units ()
67-64-1	Acetone	ND	170	ug/kg	
107-13-1	Acrylonitrile	ND	870	ug/kg	
71-43-2	Benzene	ND	17	ug/kg	
108-86-1	Bromobenzene	ND	170	ug/kg	
75-27-4	Bromodichloromethane	ND	69	ug/kg	
75-25-2	Bromoform	ND	69	ug/kg	
74-83-9	Bromomethane	ND	69	ug/kg	
78-93-3	2-Butanone (MEK)	ND	170	ug/kg	
104-51-8	n-Butylbenzene	ND	170	ug/kg	
135-98-8	sec-Butylbenzene	ND	170	ug/kg	
98-06-6	tert-Butylbenzene	ND	170	ug/kg	
75-15-0	Carbon disulfide	ND	170	ug/kg	
56-23-5	Carbon tetrachloride	ND	69	ug/kg	
108-90-7	Chlorobenzene	ND	69	ug/kg	
75-00-3	Chloroethane	ND	170	ug/kg	
67-66-3	Chloroform	ND	69	ug/kg	
74-87-3	Chloromethane	ND	170	ug/kg	
95-49-8	o-Chlorotoluene	ND	170	ug/kg	
106-43-4	p-Chlorotoluene	ND	170	ug/kg	
96-12-8	1,2-Dibromo-3-chloropropane	ND	170	ug/kg	
124-48-1	Dibromochloromethane	ND	69	ug/kg	
106-93-4	1,2-Dibromoethane	ND	69	ug/kg	
95-50-1	1,2-Dichlorobenzene	ND	69	ug/kg	
541-73-1	1,3-Dichlorobenzene	ND	69	ug/kg	
106-46-7	1,4-Dichlorobenzene	ND	69	ug/kg	
75-71-8	Dichlorodifluoromethane	ND	69	ug/kg	
75-34-3	1,1-Dichloroethane	684	69	ug/kg	
107-06-2	1,2-Dichloroethane	ND	69	ug/kg	
75-35-4	1,1-Dichloroethene	ND	69	ug/kg	
156-59-2	cis-1,2-Dichloroethene	377	69	ug/kg	
156-60-5	trans-1,2-Dichloroethene	ND	69	ug/kg	
78-87-5	1,2-Dichloropropane	ND	69	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

 Client Sample ID:
 WC-4

 Lab Sample ID:
 MC19083-2
 Date Sampled:
 03/18/13

 Matrix:
 SO - Soil
 Date Received:
 03/20/13

 Method:
 SW846 8260B
 Percent Solids:
 86.1

Project: 68 Matson Hill Road, Glastonbury, CT

VOA RCP List

CAS No.	Compound	Result	RL	Units Q
142-28-9	1,3-Dichloropropane	ND	170	ug/kg
594-20-7	2,2-Dichloropropane	ND	170	ug/kg
563-58-6	1,1-Dichloropropene	ND	170	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	69	ug/kg
10061-02-6	trans-1,3-Dichloropropene	ND	69	ug/kg
100-41-4	Ethylbenzene	ND	69	ug/kg
76-13-1	Freon 113	ND	170	ug/kg
87-68-3	Hexachlorobutadiene	ND	170	ug/kg
591-78-6	2-Hexanone	ND	170	ug/kg
98-82-8	Isopropylbenzene	ND	170	ug/kg
99-87-6	p-Isopropyltoluene	ND	170	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	69	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)		170	ug/kg
74-95-3	Methylene bromide	ND	170	ug/kg
75-09-2	Methylene chloride	ND	69	ug/kg
91-20-3	Naphthalene	ND	170	ug/kg
103-65-1	n-Propylbenzene	ND	170	ug/kg
100-42-5	Styrene	ND	170	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	170	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	69	ug/kg
127-18-4	Tetrachloroethene	920	69	ug/kg
109-99-9	Tetrahydrofuran	ND	350	ug/kg
108-88-3	Toluene	ND	170	ug/kg
110-57-6	Trans-1,4-Dichloro-2-Butene	ND	170	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	170	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	170	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	69	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	69	ug/kg
79-01-6	Trichloroethene	1320	69	ug/kg
75-69-4	Trichlorofluoromethane	ND	69	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	170	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	170	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	170	ug/kg ug/kg
75-01-4	Vinyl chloride	ND	69	ug/kg ug/kg
73-01-4	m,p-Xylene	ND	69	ug/kg ug/kg
95-47-6	o-Xylene	ND	69	ug/kg ug/kg
/J-41-U	0-Mylene	ND	U7	ug/ Ng
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	119%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Page 3 of 3

Report of Analysis

Client Sample ID: WC-4
Lab Sample ID: MC19083-2
Matrix: SO - Soil
Method: SW846 8260B

Project: 68 Matson Hill Road, Glastonbury, CT

 Date Sampled:
 03/18/13

 Date Received:
 03/20/13

 Percent Solids:
 86.1

VOA RCP List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
2037-26-5	Toluene-D8	115%		70-130%
460-00-4	4-Bromofluorobenzene	110%		70-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

4

Report of Analysis

Client Sample ID: WC-4

 Lab Sample ID:
 MC19083-2
 Date Sampled:
 03/18/13

 Matrix:
 SO - Soil
 Date Received:
 03/20/13

 Method:
 SW846 8270C
 SW846 3546
 Percent Solids:
 86.1

Project: 68 Matson Hill Road, Glastonbury, CT

File IDDFAnalyzedByPrep DatePrep BatchAnalytical BatchRun #1U13236.D104/01/13NS03/29/13OP32433MSU675

Run #2

Initial Weight Final Volume

Run #1 20.9 g 1.0 ml

Run #2

ABN RCP List

CAS No.	Compound	Result	RL	Units	Q
95-57-8	2-Chlorophenol	ND	280	ug/kg	
59-50-7	4-Chloro-3-methyl phenol	ND	560	ug/kg	
120-83-2	2,4-Dichlorophenol	ND	560	ug/kg	
105-67-9	2,4-Dimethylphenol	ND	560	ug/kg	
51-28-5	2,4-Dinitrophenol	ND	1100	ug/kg	
534-52-1	4,6-Dinitro-o-cresol	ND	560	ug/kg	
95-48-7	2-Methylphenol	ND	560	ug/kg	
106-44-5	4-Methylphenol	ND	560	ug/kg	
88-75-5	2-Nitrophenol	ND	560	ug/kg	
100-02-7	4-Nitrophenol	ND	1100	ug/kg	
87-86-5	Pentachlorophenol	ND	560	ug/kg	
108-95-2	Phenol	ND	280	ug/kg	
95-95-4	2,4,5-Trichlorophenol	ND	560	ug/kg	
88-06-2	2,4,6-Trichlorophenol	ND	560	ug/kg	
83-32-9	Acenaphthene	ND	110	ug/kg	
208-96-8	Acenaphthylene	ND	110	ug/kg	
62-53-3	Aniline	ND	560	ug/kg	
120-12-7	Anthracene	ND	110	ug/kg	
56-55-3	Benzo(a)anthracene	194	110	ug/kg	
50-32-8	Benzo(a)pyrene	202	110	ug/kg	
205-99-2	Benzo(b)fluoranthene	353	110	ug/kg	
191-24-2	Benzo(g,h,i)perylene	150	110	ug/kg	
207-08-9	Benzo(k)fluoranthene	141	110	ug/kg	
101-55-3	4-Bromophenyl phenyl ether	ND	280	ug/kg	
85-68-7	Butyl benzyl phthalate	ND	280	ug/kg	
91-58-7	2-Chloronaphthalene	ND	280	ug/kg	
106-47-8	4-Chloroaniline	ND	560	ug/kg	
86-74-8	Carbazole	ND	110	ug/kg	
218-01-9	Chrysene	277	110	ug/kg	
111-91-1	bis(2-Chloroethoxy)methane	ND	280	ug/kg	
111-44-4	bis(2-Chloroethyl)ether	ND	280	ug/kg	
108-60-1	bis(2-Chloroisopropyl)ether	ND	280	ug/kg	

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

03/20/13

86.1

Date Received:

Percent Solids:

Report of Analysis

Client Sample ID: WC-4 Lab Sample ID: MC19083-2

Matrix: SO - Soil

Method: SW846 8270C SW846 3546

Project: 68 Matson Hill Road, Glastonbury, CT

ABN RCP List

CAS No.	Compound	Result	RL	Units ()
7005-72-3	4-Chlorophenyl phenyl ether	ND	280	ug/kg	
121-14-2	2,4-Dinitrotoluene	ND	560	ug/kg	
606-20-2	2,6-Dinitrotoluene	ND	560	ug/kg	
91-94-1	3,3'-Dichlorobenzidine	ND	280	ug/kg	
53-70-3	Dibenzo(a,h)anthracene	ND	110	ug/kg	
132-64-9	Dibenzofuran	ND	110	ug/kg	
84-74-2	Di-n-butyl phthalate	ND	280	ug/kg	
117-84-0	Di-n-octyl phthalate	ND	280	ug/kg	
84-66-2	Diethyl phthalate	ND	280	ug/kg	
131-11-3	Dimethyl phthalate	ND	280	ug/kg	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	280	ug/kg	
206-44-0	Fluoranthene	515	110	ug/kg	
86-73-7	Fluorene	ND	110	ug/kg	
118-74-1	Hexachlorobenzene	ND	280	ug/kg	
87-68-3	Hexachlorobutadiene	ND	280	ug/kg	
77-47-4	Hexachlorocyclopentadiene	ND	560	ug/kg	
67-72-1	Hexachloroethane	ND	280	ug/kg	
193-39-5	Indeno(1,2,3-cd)pyrene	147	110	ug/kg	
78-59-1	Isophorone	ND	280	ug/kg	
91-57-6	2-Methylnaphthalene	ND	110	ug/kg	
88-74-4	2-Nitroaniline	ND	560	ug/kg	
99-09-2	3-Nitroaniline	ND	560	ug/kg	
100-01-6	4-Nitroaniline	ND	560	ug/kg	
91-20-3	Naphthalene	ND	110	ug/kg	
98-95-3	Nitrobenzene	ND	280	ug/kg	
621-64-7	N-Nitroso-di-n-propylamine	ND	280	ug/kg	
86-30-6	N-Nitrosodiphenylamine	ND	280	ug/kg	
82-68-8	Pentachloronitrobenzene	ND	560	ug/kg	
85-01-8	Phenanthrene	278	110	ug/kg	
129-00-0	Pyrene	449	110	ug/kg	
110-86-1	Pyridine	ND	560	ug/kg	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	560	ug/kg	
120-82-1	1,2,4-Trichlorobenzene	ND	280	ug/kg	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
367-12-4	2-Fluorophenol	45%		30-1309	%
4165-62-2	Phenol-d5	44%		30-1309	%
118-79-6	2,4,6-Tribromophenol	73%		30-1309	
4165-60-0	Nitrobenzene-d5	45%		30-1309	%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

4

Report of Analysis

Client Sample ID: WC-4 Lab Sample ID: MC19083-2

 Lab Sample ID:
 MC19083-2
 Date Sampled:
 03/18/13

 Matrix:
 SO - Soil
 Date Received:
 03/20/13

 Method:
 SW846 8270C
 SW846 3546
 Percent Solids:
 86.1

Project: 68 Matson Hill Road, Glastonbury, CT

ABN RCP List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
321-60-8	2-Fluorobiphenyl	54%		30-130%
1718-51-0	Terphenyl-d14	65%		30-130%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

Report of Analysis

Client Sample ID: WC-4 Lab Sample ID:

Method:

Project: 68 Matson Hill Road, Glastonbury, CT

MC19083-2 **Date Sampled:** 03/18/13 Matrix: SO - Soil **Date Received:** 03/20/13 **Percent Solids:** 86.1 SW846 8082 SW846 3546

		File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch	
Run #	‡ 1	BB46598.D	1	03/30/13	CZ	03/28/13	OP32431	GBB2803	
Run #	‡2								

	Initial Weight	Final Volume
Run #1	15.3 g	10.0 ml
Run #2	-	

CT Polychlorinated Biphenyls RCP List

CAS No.	Compound	Result	RL	Units Q
12674-11-2 11104-28-2 11141-16-5 53469-21-9 12672-29-6 11097-69-1	Aroclor 1016 Aroclor 1221 Aroclor 1232 Aroclor 1242 Aroclor 1248 Aroclor 1254	ND ND ND ND ND ND	110 110 110 110 110 110	ug/kg ug/kg ug/kg ug/kg ug/kg
11096-82-5 37324-23-5 11100-14-4 CAS No.	Aroclor 1260 Aroclor 1262 Aroclor 1268 Surrogate Recoveries	ND ND ND Run# 1	110 110 110 Run# 2	ug/kg ug/kg ug/kg
877-09-8 877-09-8 2051-24-3 2051-24-3	Tetrachloro-m-xylene Tetrachloro-m-xylene Decachlorobiphenyl Decachlorobiphenyl	64% 23% ^a 108% 95%		30-150% 30-150% 30-150% 30-150%

(a) Outside control limits due to possible matrix interference.

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Date Sampled:

Date Received:

Percent Solids:

03/18/13

03/20/13

86.1

Report of Analysis

Client Sample ID: WC-4

Lab Sample ID: MC19083-2 Matrix: SO - Soil Method: CT-ETPH 7/06 SW846 3546

Project: 68 Matson Hill Road, Glastonbury, CT

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 BI19849.D 100 04/01/13 AP 03/28/13 OP32428 **GBI715**

Run #2

Initial Weight Final Volume

Run #1 1.0 ml 15.4 g

Run #2

CAS No. Compound Result RLUnits Q

> CT-ETPH (C9-C36) 5490 1900 mg/kg

CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits

84-15-1 o-Terphenyl 70% 50-137%

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: WC-4
Lab Sample ID: MC19083-2
Matrix: SO - Soil

Date Sampled: 03/18/13 **Date Received:** 03/20/13 **Percent Solids:** 86.1

Project: 68 Matson Hill Road, Glastonbury, CT

Metals Analysis

Analyte	Result	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Arsenic	3.8	0.98	mg/kg	1	03/22/13	03/25/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Barium	47.8	4.9	mg/kg	1	03/22/13	03/25/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Cadmium	2.3	0.39	mg/kg	1	03/22/13	03/25/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Chromium	74.9	0.98	mg/kg	1	03/22/13	03/26/13 EAL	SW846 6010C ²	SW846 3050B ⁴
Lead	82.8	0.98	mg/kg	1	03/22/13	03/25/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Mercury	< 0.037	0.037	mg/kg	1	03/28/13	03/28/13 EM	SW846 7471B ³	SW846 7471B ⁵
Selenium	< 0.98	0.98	mg/kg	1	03/22/13	03/25/13 EAL	SW846 6010C ¹	SW846 3050B ⁴
Silver	< 0.49	0.49	mg/kg	1	03/22/13	03/25/13 EAL	SW846 6010C ¹	SW846 3050B ⁴

(1) Instrument QC Batch: MA15382
(2) Instrument QC Batch: MA15385
(3) Instrument QC Batch: MA15392
(4) Prep QC Batch: MP20654
(5) Prep QC Batch: MP20681

Report of Analysis

Client Sample ID: WC-4 Lab Sample ID: MC19083-2 Matrix: SO - Soil

Date Sampled: 03/18/13 **Date Received:** 03/20/13 **Percent Solids:** 86.1

Project: 68 Matson Hill Road, Glastonbury, CT

General Chemistry

Analyte	Result	RL	Units	DF	Analyzed	By	Method
Cyanide Reactivity	< 1.7	1.7	mg/kg	1	03/25/13 16:30	CF	SW846 CHAP7
Ignitability (Flashpoint)	> 230		Deg. F	1	03/29/13	BF	SW846 1020
Paint Filter Test ^a	< 0.50	0.50	ml/100g	1	03/22/13 17:06	CF	SW846 9095
Solids, Percent	86.1		%	1	03/21/13	HS	SM21 2540 B MOD.
Specific Conductivity	102	0.50	umhos/cm	1	03/22/13	MA	EPA 120.1M
Sulfide Reactivity	< 58	58	mg/kg	1	03/25/13	CF	SW846 CHAP7
рН	6.7		su	1	03/22/13	MA	SW846 9045D

(a) No Free Liquid Detected.

Report of Analysis

Client Sample ID: WC-4

 Lab Sample ID:
 MC19083-2A
 Date Sampled:
 03/18/13

 Matrix:
 SO - Soil
 Date Received:
 03/20/13

 Percent Solids:
 86.1

Project: 68 Matson Hill Road, Glastonbury, CT

Metals Analysis, SPLP Leachate SW846 1312

Analyte	Result	MCL R	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Lead	0.15	0	0.010	mø/l	1	03/28/13	03/28/13 EAL	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA15393(2) Prep QC Batch: MP20682

RL = Reporting Limit

MCL = Maximum Contamination Level (not available)

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- RCP Form
- Sample Tracking Chronicle

tentent yas 74chnology (4. MC1908)

CHAIN OF CUSTODY RECORD

mc19083

|--|

	o "	~ .
Volatile	Solis	Only:

	Date a	ınd Tim	e in F	reezer	
Client:					
CET:	0.48			September	90

complete environmental legging, inc.								Ind Organics Metals (check all that apply) Additional Ana																								
DO L Datus		T-1. (000) 077 0004	Matrix				T				Orga	nics	3				Met	als (d	check	all th	at ap	oply)	Γ	A	١ <u>d</u> di	tiona	al An	alysi	iS	T	T	
80 Lupes Drive Stratford, CT 06615		Tel: (203) 377-9984 Fax: (203) 377-9952 il: cet1@cetlabs.com	A=Air S=Soil W=Water DW=Drinking W.	Time ** (check one)		e)	5374	tics	ıns			Suco		5			-	572		Cead			4		lendre me	1		3			CONT.	
Sample ID		Date/Time	C=Cassette Solid Wipe Other (Specify)	Same Day *	Next Day *	2-3 Days *	Std (Mays)	8260 Gildings	8260 Aromatics	8260 Halogens	SPLP 8260	TCLP 8260	8270 GT List	8270 PNAs	PCBs &UKU	Pesticides	Herbicides	13 Priority Poll	B HCHA A CO FOLY	TOLP	SPLP / P	Field Filtered	Lab To Filter	Flackount	ti o	it oc. Const	Parat Ful	1 1 m	27.77			TOTAL # OF CONT.
WC-3	-1	3/18/13	ζ	-	ļ —		X	-				-	/×	1	×		1		×	+	人		Н	艾	メ	Z	又	Z	.+-	\Box	1	1
WC-4	<u>-1</u> -ス	3/18/13	5	T			X	X				×	<u></u>		X		1)	X	T	X		П	\forall	ヹ	ス	X	\star	\top	T	L	1
		i					Ĺ	Ť													Γ			W.								1
																			\perp	1		_					\perp	\perp		Ш	\perp	
						_		L				_	1				4	4	_	1	_	_				\perp	_	_		Ш	1	\perp
				<u> </u>	-		_	Ш			-	_	\perp	\vdash			\dashv	-	-	-	-	<u></u>			-	4	+	+	4	\sqcup	\perp	4
					_		-	H	\dashv		-		+-	-		\dashv		+	+	+	├-	-	-1		-	-	+	+	+	\vdash	-	+
								\vdash			+	+	-	-	\vdash	+	\dashv	+	+	+-	-	-	\vdash		-+	+	-	+	+	\vdash	+	+
PRESERVATIVE (CI-HCI,	N-HNO ₂	S-HoSO (Na-NaOH C=Co	ool O-Other)	<u> </u>	L	L	<u> </u>			Н	-	+	-	┢	Н	+	+	+	+	+			Н		\dashv	\dashv	_	+	+	\vdash	+	
CONTAINEBJYPE (P-Pia								Н	-	\dashv	+	-	╁	\vdash	Н	-	+	+	+	+					\dashv	+	+	+	+-	\vdash	\dashv	
Soil VOC'S Only (M=MeC		Sodium W=Water F= Em	pty E⇒Encore)						/	\forall	1	+		<u> </u>	Li		\forall				1	I	+								t	
RELINQUISHED BY				1	T			N	OTE	ES:	ź								***************************************	***********							-/	OC	, 10	5F4		
HELINGUISHED BY:	3°	TETIME RECEIVED RECEI	/ED.BÝ:																													
RELINQUISHED BY:	DA	TE/TIME RECEI	/ÉD BY:																													
/		4930 E>						Project Information																								
Client / Reporting In								Project Contact: Mala Po#: 105/5/70/d																								
Company Name	annu	IN INC						Project #: 103134 Project #: 103134																								
Address	~ 	6 / L)		1/	٠, ٠			Project Contact: Mark Project Information Project: 103139 Project: 103139 Project #: 103139 Location: Glastanbuis CT Collector(s): Blancome.																								
387Cherch 51 antoro, c1 06437								Q	A/Q(c				Std			Site	e Spe	cific (MS/N	/ISD)	*		С] RCI	P Pk	g *		DQAV	V *		
Ma Palson Othernemusical com								D	ata F	Repo	rt					لتاري	Én	nail	۵	PDF	/	Œ	xcel	Ε	Oth	er						
Report To:	1 / 17	1) 7 E-m	ail C-7)-	i I							rting	Limits	(che	ck or	ne)			200507		GΑ]	□ G	В	C]SWI	P		Other	(spec			
Company Name No. to Encountry of Jan. Address 38 5 Chair ST Gulford, CT OG437 City Paulson Offitenen in went of Com Report To- State 25 Chy - 72 CD Jo3 C58-72 Cl Phone # Fax #								Lab Use Evidence of Cooling: Y or N Temp Upon Receipt °C SHEET OF								*																

* Additional charge may apply. ** TAT begins when the samples are received at the Lab and all issues are resolved. TAT for samples received after 3 p.m. will start on the next business day.

MC19083: Chain of Custody

REV. 7/1/10

Page 1 of 2

Accutest Laboratories Sample Receipt Summary

Accutest Job Number:	MC19	9083		Client: T	RITON			Immediate Client Serv	ices Actio	n Re	quired:	No
Date / Time Received:	3/20/	2013			Delive	ry Metho	od:	Client Service Acti	on Requir	ed at	Login:	No
Project: 103139					No. Co	oolers:		1 Airbill #'s:				
Cooler Security	Υ	or N	_			Y or	N	Sample Integrity - Documentation	<u>Y</u>	or	N	
1. Custody Seals Present:	✓		,	3. COC Pres		✓		Sample labels present on bottles:	~			
2. Custody Seals Intact:	\checkmark] 4. S	Smpl Dates/	Time OK	\checkmark		Container labeling complete:	V			
Cooler Temperature		Υ	or N					3. Sample container label / COC agree:	\checkmark			
1. Temp criteria achieved:		✓						Sample Integrity - Condition	<u>Y</u>	or	N	
2. Cooler temp verification:	:		ared gur	1				Sample recvd within HT:	✓			
3. Cooler media:	_	Ic	e (bag)					All containers accounted for:	✓			
Quality Control Preserv	ation	<u> Y</u>	or N	N/A				3. Condition of sample:	-	Intac	t	
1. Trip Blank present / cool	ler:			\checkmark				Sample Integrity - Instructions	<u>Y</u>	or	N	N/A
2. Trip Blank listed on COC	D:			✓				Analysis requested is clear:	V			
3. Samples preserved prop	perly:	~						2. Bottles received for unspecified tests			✓	
4. VOCs headspace free:				V				3. Sufficient volume recvd for analysis:	~			
								4. Compositing instructions clear:				✓
								5. Filtering instructions clear:				✓
Comments												
Accutest Laboratories V:508.481.6200						495 Techn		nter West, Bildg One 81.7753				lborough, M

MC19083: Chain of Custody Page 2 of 2

Ň

O

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Laboratory Name: Accutest New England Client: Triton Environmental, Inc.

Project Location: 68 Matson Hill Road, Glastonbury, CT Project Number: 103139

Sampling Date(s): 3/18/2013

Laboratory Sample ID(s): MC19083-1, MC19083-2, MC19083-1A, MC19083-2A

Methods: Refer to case narrative .

Methods:	Refer to case narrative .		
1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents)?	Yes 🔽	No 🗖
1A	Where all the method specified preservation and holding time requirements met?	Yes 🗹	No 🗖
1B	VPH and EPH mehods only: Was the VPH or EPH method conducted without significant modifications (See section 11.3 of respective methods)	Yes 🗖	No □ A ☑
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Yes 🔽	No 🗖
3	Were samples received at an appropriate temperature (<6° C)?	Yes 🗹	No 🗖
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	Yes 🗖	No 🔽
5	a) Were reporting limits specified or referenced on the chain-of-custody?	Yes 🗖	No 🔽
	b) Were these reporting limits met?	Yes 🗖	No 🔽
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes 🗖	No 🔽
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	Yes 🔽	No 🗖

Note: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized

Signature: And India

Position: Lab Director

Printed Name: Reza Tand

Date: 4/1/2013

Accutest New England

MC19083

Job No:

Internal Sample Tracking Chronicle

Triton Environmental, Inc.

68 Matson Hill Road, Glastonbury, CT Project No: 103139

Sample Number	Method	Analyzed	Ву	Prepped By	y	Test Codes
MC19083-1 WC-3	Collected: 18-MAR-13	00:00 By: BD	Receiv	ved: 20-MAR-13	3 Ву	7:
MC19083-1 MC19083-1 MC19083-1 MC19083-1 MC19083-1 MC19083-1 MC19083-1 MC19083-1 MC19083-1	SM21 2540 B MOD. EPA 120.1M SW846 9045D SW846 9095 SW846 CHAP7 SW846 CHAP7 SW846 6010C SW846 8260B SW846 7471B SW846 1020 SW846 8082 CT-ETPH 7/06 SW846 8270C	21-MAR-13 22-MAR-13 22-MAR-13 17:06 25-MAR-13 16:30 25-MAR-13 16:55 25-MAR-13 17:40 28-MAR-13 14:41 29-MAR-13 30-MAR-13 20:09 31-MAR-13 11:55 01-APR-13 15:02	CF CF EAL GK EM BF CZ AP	25-MAR-13 Cl 25-MAR-13 Dl 22-MAR-13 El 28-MAR-13 Al 28-MAR-13 FG 29-MAR-13 Bl	F A M J C	% SOL SCON PH PNTFIL SREAC CREAC AG, AS, BA, CD, CR, PB, SE V8260RCP HG IGN P8082RCP BCTTPH AB8270RCP
MC19083-2 WC-4	Collected: 18-MAR-13	00:00 By: BD	Receiv	ved: 20-MAR-13	3 Ву	r:
MC19083-2 MC19083-2 MC19083-2 MC19083-2 MC19083-2 MC19083-2 MC19083-2 MC19083-2 MC19083-2 MC19083-2 MC19083-2	2 SM21 2540 B MOD. 2 EPA 120.1M 2 SW846 9045D 2 SW846 9095 2 SW846 CHAP7 2 SW846 CHAP7 2 SW846 6010C 2 SW846 8260B 2 SW846 6010C 2 SW846 7471B 2 SW846 1020 2 SW846 8082 2 CT-ETPH 7/06 2 SW846 8270C **Collected: 18-MAR-13	21-MAR-13 22-MAR-13 22-MAR-13 17:06 25-MAR-13 16:30 25-MAR-13 17:00 25-MAR-13 17:13 26-MAR-13 23:30 28-MAR-13 14:44 29-MAR-13 30-MAR-13 20:29 01-APR-13 08:31 01-APR-13 15:25	CF CF EAL GK EAL EM BF CZ AP NS	25-MAR-13 Cl 25-MAR-13 D. 22-MAR-13 D. 22-MAR-13 El 28-MAR-13 A. 28-MAR-13 FG 29-MAR-13 BJ ved: 20-MAR-13	F A M J C	% SOL SCON PH PNTFIL SREAC CREAC AG, AS, BA, CD, PB, SE V8260RCP CR HG IGN P8082RCP BCTTPH AB8270RCP
MC19083-1	& W846 6010C	28-MAR-13 22:37	EAL	28-MAR-13 D	A	EPB

5.3

Internal Sample Tracking Chronicle

Triton Environmental, Inc.

Job No:

MC19083

68 Matson Hill Road, Glastonbury, CT

Project No: 103139

Sample

Number Method Analyzed By Prepped By Test Codes

MC19083-24Collected: 18-MAR-13 00:00 By: BD Received: 20-MAR-13 By:

WC-4

MC19083-24SW846 6010C 28-MAR-13 22:42 EAL 28-MAR-13 DA EPB

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Internal Standard Area Summaries
- Surrogate Recovery Summaries

Method: SW846 8260B

Method Blank Summary Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample MSK2233-MB	File ID K68240.D	DF 1	Analyzed 03/25/13	By GK	Prep Date n/a	Prep Batch n/a	Analytical Batch MSK2233

The QC reported here applies to the following samples:

MC19083-1, MC19083-2

CAS No.	Compound	Result	RL	Units Q
67-64-1	Acetone	ND	250	ug/kg
107-13-1	Acrylonitrile	ND	1300	ug/kg
71-43-2	Benzene	ND	25	ug/kg
108-86-1	Bromobenzene	ND	250	ug/kg
75-27-4	Bromodichloromethane	ND	100	ug/kg
75-25-2	Bromoform	ND	100	ug/kg
74-83-9	Bromomethane	ND	100	ug/kg
78-93-3	2-Butanone (MEK)	ND	250	ug/kg
104-51-8	n-Butylbenzene	ND	250	ug/kg
135-98-8	sec-Butylbenzene	ND	250	ug/kg
98-06-6	tert-Butylbenzene	ND	250	ug/kg
75-15-0	Carbon disulfide	ND	250	ug/kg
56-23-5	Carbon tetrachloride	ND	100	ug/kg
108-90-7	Chlorobenzene	ND	100	ug/kg
75-00-3	Chloroethane	ND	250	ug/kg
67-66-3	Chloroform	ND	100	ug/kg
74-87-3	Chloromethane	ND	250	ug/kg
95-49-8	o-Chlorotoluene	ND	250	ug/kg
106-43-4	p-Chlorotoluene	ND	250	ug/kg
96-12-8	1,2-Dibromo-3-chloropropane	ND	250	ug/kg
124-48-1	Dibromochloromethane	ND	100	ug/kg
106-93-4	1,2-Dibromoethane	ND	100	ug/kg
95-50-1	1,2-Dichlorobenzene	ND	100	ug/kg
541-73-1	1,3-Dichlorobenzene	ND	100	ug/kg
106-46-7	1,4-Dichlorobenzene	ND	100	ug/kg
75-71-8	Dichlorodifluoromethane	ND	100	ug/kg
75-34-3	1,1-Dichloroethane	ND	100	ug/kg
107-06-2	1,2-Dichloroethane	ND	100	ug/kg
75-35-4	1,1-Dichloroethene	ND	100	ug/kg
156-59-2	cis-1,2-Dichloroethene	ND	100	ug/kg
156-60-5	trans-1,2-Dichloroethene	ND	100	ug/kg
78-87-5	1,2-Dichloropropane	ND	100	ug/kg
142-28-9	1,3-Dichloropropane	ND	250	ug/kg
594-20-7	2,2-Dichloropropane	ND	250	ug/kg
563-58-6	1,1-Dichloropropene	ND	250	ug/kg
10061-01-5	cis-1,3-Dichloropropene	ND	100	ug/kg

Page 2 of 3

Method: SW846 8260B

Method Blank Summary Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. 68 Matson Hill Road, Glastonbury, CT **Project:**

Sample MSK2233-MB	File ID K68240.D	DF 1	Analyzed 03/25/13	By GK	Prep Date n/a	Prep Batch n/a	Analytical Batch MSK2233

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	Units Q
10061-02-6	trans-1,3-Dichloropropene	ND	100	ug/kg
100-41-4	Ethylbenzene	ND	100	ug/kg
76-13-1	Freon 113	ND	250	ug/kg
87-68-3	Hexachlorobutadiene	ND	250	ug/kg
591-78-6	2-Hexanone	ND	250	ug/kg
98-82-8	Isopropylbenzene	ND	250	ug/kg
99-87-6	p-Isopropyltoluene	ND	250	ug/kg
1634-04-4	Methyl Tert Butyl Ether	ND	100	ug/kg
108-10-1	4-Methyl-2-pentanone (MIBK)	ND	250	ug/kg
74-95-3	Methylene bromide	ND	250	ug/kg
75-09-2	Methylene chloride	ND	100	ug/kg
91-20-3	Naphthalene	ND	250	ug/kg
103-65-1	n-Propylbenzene	ND	250	ug/kg
100-42-5	Styrene	ND	250	ug/kg
630-20-6	1,1,1,2-Tetrachloroethane	ND	250	ug/kg
79-34-5	1,1,2,2-Tetrachloroethane	ND	100	ug/kg
127-18-4	Tetrachloroethene	ND	100	ug/kg
109-99-9	Tetrahydrofuran	ND	500	ug/kg
108-88-3	Toluene	ND	250	ug/kg
110-57-6	Trans-1,4-Dichloro-2-Butene	ND	250	ug/kg
87-61-6	1,2,3-Trichlorobenzene	ND	250	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	250	ug/kg
71-55-6	1,1,1-Trichloroethane	ND	100	ug/kg
79-00-5	1,1,2-Trichloroethane	ND	100	ug/kg
79-01-6	Trichloroethene	ND	100	ug/kg
75-69-4	Trichlorofluoromethane	ND	100	ug/kg
96-18-4	1,2,3-Trichloropropane	ND	250	ug/kg
95-63-6	1,2,4-Trimethylbenzene	ND	250	ug/kg
108-67-8	1,3,5-Trimethylbenzene	ND	250	ug/kg
75-01-4	Vinyl chloride	ND	100	ug/kg
	m,p-Xylene	ND	100	ug/kg
95-47-6	o-Xylene	ND	100	ug/kg

Page 3 of 3

Method: SW846 8260B

Method Blank Summary Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. 68 Matson Hill Road, Glastonbury, CT **Project:**

Sample MSK2233-MB	File ID K68240.D	DF 1	Analyzed 03/25/13	By GK	Prep Date n/a	Prep Batch n/a	Analytical Batch MSK2233

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries		Limits
1868-53-7	Dibromofluoromethane	113%	70-130%
2037-26-5	Toluene-D8	105%	70-130%
460-00-4	4-Bromofluorobenzene	100%	70-130%

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSK2233-BS	K68237.D	1	03/25/13	GK	n/a	n/a	MSK2233
MSK2233-BSD	K68238.D	1	03/25/13	GK	n/a	n/a	MSK2233

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	BSD ug/kg	BSD %	RPD	Limits Rec/RPD
67-64-1	Acetone	2500	3240	130	2950	118	9	70-130/25
107-13-1	Acrylonitrile	2500	2270	91	2290	92	1	70-130/25
71-43-2	Benzene	2500	2570	103	2580	103	0	70-130/25
108-86-1	Bromobenzene	2500	2630	105	2650	106	1	70-130/25
75-27-4	Bromodichloromethane	2500	2880	115	2890	116	0	70-130/25
75-25-2	Bromoform	2500	2580	103	2600	104	1	70-130/25
74-83-9	Bromomethane	2500	3130	125	3270	131* a	4	70-130/25
78-93-3	2-Butanone (MEK)	2500	1880	75	1830	73	3	70-130/25
104-51-8	n-Butylbenzene	2500	2660	106	2690	108	1	70-130/25
135-98-8	sec-Butylbenzene	2500	2540	102	2590	104	2	70-130/25
98-06-6	tert-Butylbenzene	2500	2620	105	2640	106	1	70-130/25
75-15-0	Carbon disulfide	2500	2560	102	2620	105	2	70-130/25
56-23-5	Carbon tetrachloride	2500	3090	124	3120	125	1	70-130/25
108-90-7	Chlorobenzene	2500	2540	102	2610	104	3	70-130/25
75-00-3	Chloroethane	2500	3210	128	3260	130	2	70-130/25
67-66-3	Chloroform	2500	2860	114	2850	114	0	70-130/25
74-87-3	Chloromethane	2500	3040	122	3160	126	4	70-130/25
95-49-8	o-Chlorotoluene	2500	2450	98	2470	99	1	70-130/25
106-43-4	p-Chlorotoluene	2500	2560	102	2560	102	0	70-130/25
96-12-8	1,2-Dibromo-3-chloropropane	2500	2190	88	2110	84	4	70-130/25
124-48-1	Dibromochloromethane	2500	2760	110	2760	110	0	70-130/25
106-93-4	1,2-Dibromoethane	2500	2590	104	2600	104	0	70-130/25
95-50-1	1,2-Dichlorobenzene	2500	2440	98	2470	99	1	70-130/25
541-73-1	1,3-Dichlorobenzene	2500	2600	104	2610	104	0	70-130/25
106-46-7	1,4-Dichlorobenzene	2500	2530	101	2550	102	1	70-130/25
75-71-8	Dichlorodifluoromethane	2500	3190	128	3230	129	1	70-130/25
75-34-3	1,1-Dichloroethane	2500	2750	110	2800	112	2	70-130/25
107-06-2	1,2-Dichloroethane	2500	2910	116	2830	113	3	70-130/25
75-35-4	1,1-Dichloroethene	2500	2960	118	3060	122	3	70-130/25
156-59-2	cis-1,2-Dichloroethene	2500	2640	106	2690	108	2	70-130/25
156-60-5	trans-1,2-Dichloroethene	2500	2660	106	2740	110	3	70-130/25
78-87-5	1,2-Dichloropropane	2500	2560	102	2590	104	1	70-130/25
142-28-9	1,3-Dichloropropane	2500	2570	103	2550	102	1	70-130/25
594-20-7	2,2-Dichloropropane	2500	2950	118	2990	120	1	70-130/25
563-58-6	1,1-Dichloropropene	2500	2860	114	2890	116	1	70-130/25
10061-01-5	cis-1,3-Dichloropropene	2500	2630	105	2600	104	1	70-130/25

^{* =} Outside of Control Limits.

Page 2 of 3

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
MSK2233-BS	K68237.D	1	03/25/13	GK	n/a	n/a	MSK2233
MSK2233-BSD	K68238.D	1	03/25/13	GK	n/a	n/a	MSK2233

The QC reported here applies to the following samples:

		Spike	BSP	BSP	BSD	BSD		Limits
CAS No.	Compound	ug/kg	ug/kg	%	ug/kg	%	RPD	Rec/RPD
10061-02-6	trans-1,3-Dichloropropene	2500	2890	116	2850	114	1	70-130/25
100-41-4	Ethylbenzene	2500	2710	108	2770	111	2	70-130/25
76-13-1	Freon 113	2500	2990	120	3080	123	3	70-130/25
87-68-3	Hexachlorobutadiene	2500	2910	116	2930	117	1	70-130/25
591-78-6	2-Hexanone	2500	1710	68* a	1660	66* a	3	70-130/25
98-82-8	Isopropylbenzene	2500	2550	102	2580	103	1	70-130/25
99-87-6	p-Isopropyltoluene	2500	2800	112	2830	113	1	70-130/25
1634-04-4	Methyl Tert Butyl Ether	2500	2610	104	2570	103	2	70-130/25
108-10-1	4-Methyl-2-pentanone (MIBK)	2500	2340	94	2340	94	0	70-130/25
74-95-3	Methylene bromide	2500	2750	110	2680	107	3	70-130/25
75-09-2	Methylene chloride	2500	2680	107	2750	110	3	70-130/25
91-20-3	Naphthalene	2500	1920	77	1880	75	2	70-130/25
103-65-1	n-Propylbenzene	2500	2480	99	2540	102	2	70-130/25
100-42-5	Styrene	2500	2540	102	2590	104	2	70-130/25
630-20-6	1,1,1,2-Tetrachloroethane	2500	2900	116	2930	117	1	70-130/25
79-34-5	1,1,2,2-Tetrachloroethane	2500	2420	97	2380	95	2	70-130/25
127-18-4	Tetrachloroethene	2500	2840	114	2920	117	3	70-130/25
109-99-9	Tetrahydrofuran	2500	2130	85	2010	80	6	70-130/25
108-88-3	Toluene	2500	2730	109	2770	111	1	70-130/25
110-57-6	Trans-1,4-Dichloro-2-Butene	2500	2710	108	2690	108	1	70-130/25
87-61-6	1,2,3-Trichlorobenzene	2500	2030	81	1980	79	2	70-130/25
120-82-1	1,2,4-Trichlorobenzene	2500	2460	98	2450	98	0	70-130/25
71-55-6	1,1,1-Trichloroethane	2500	3020	121	3030	121	0	70-130/25
79-00-5	1,1,2-Trichloroethane	2500	2580	103	2540	102	2	70-130/25
79-01-6	Trichloroethene	2500	2820	113	2840	114	1	70-130/25
75-69-4	Trichlorofluoromethane	2500	3250	130	3310	132* a	2	70-130/25
96-18-4	1,2,3-Trichloropropane	2500	2470	99	2400	96	3	70-130/25
95-63-6	1,2,4-Trimethylbenzene	2500	2600	104	2630	105	1	70-130/25
108-67-8	1,3,5-Trimethylbenzene	2500	2590	104	2590	104	0	70-130/25
75-01-4	Vinyl chloride	2500	3000	120	3230	129	7	70-130/25
	m,p-Xylene	5000	5220	104	5420	108	4	70-130/25
95-47-6	o-Xylene	2500	2570	103	2630	105	2	70-130/25

^{* =} Outside of Control Limits.

6.2.1

Page 3 of 3

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
MSK2233-BS	K68237.D	1	03/25/13	GK	n/a	n/a	MSK2233
MSK2233-BSD	K68238.D	1	03/25/13	GK	n/a	n/a	MSK2233

The QC reported here applies to the following samples:

MC19083-1, MC19083-2

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
	Dibromofluoromethane Toluene-D8	111% 110%	112% 111%	70-130% 70-130%
460-00-4	4-Bromofluorobenzene	101%	103%	70-130%

(a) Outside control limits. Blank Spike meets program technical requirements.

^{* =} Outside of Control Limits.

Volatile Internal Standard Area Summary

Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

 Check Std:
 MSK2233-CC2209
 Injection Date:
 03/25/13

 Lab File ID:
 K68236.D
 Injection Time:
 09:01

Instrument ID: GCMSK Method: SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
Check Std Upper Limit ^a Lower Limit ^b	200912 401824 100456	8.82 9.32 8.32	254471 508942 127236	9.67 10.17 9.17	147200 294400 73600	12.92 13.42 12.42		15.49 15.99 14.99	35079 70158 17540	6.40 6.90 5.90
Lab Sample ID	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
MSK2233-BS MSK2234-BS MSK2233-BSD MSK2234-MB MSK2233-MB ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ MC19081-2 ZZZZZZ ZZZZZZ ZZZZZZ MC19081-2 ZZZZZZ MC19081-2MS MC19081-2MSD ZZZZZZ MC19083-2 MC19083-1	215220 215220 222313 225168 225168 223633 220351 211715 211878 206241 238815 237299 236722 229163 240965 252535 253919 271696 274777	8.82 8.82 8.82 8.82 8.82 8.83 8.83 8.83	270557 270557 283545 288909 288909 290476 281920 276362 270828 267528 309181 310479 306772 298637 307932 320253 332237 357181 353171	9.67 9.67 9.67 9.67 9.67 9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68	154518 154518 154518 158771 154816 154816 152956 150972 145875 147077 143074 161788 162515 164169 160400 172693 175840 172602 183054 196700	12.93 12.93 12.93 12.93 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94	147138 145928 141116 140668 140708 162359 162891 163366 159721 166054 170483 169093 173896 171598	15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50	40607 38892 40007 40007 47402 35499 35070 33641 33226 42550 34793 38939 41282 41905 45588 47704 107775° 15101°	6.41 6.41 6.41 6.41 6.43 6.43 6.42 6.42 6.42 6.42 6.41 6.42 6.42 6.42 6.58 6.50
ZZZZZZ ZZZZZZ ZZZZZZ ZZZZZZ GP15725-LS2 ZZZZZZ	272819 254396 257918 258552 245560 261224	8.83 8.83 8.83 8.83 8.83 8.83	357253 330373 336816 340201 317431 342989	9.68 9.68 9.68 9.68 9.68	185934 175782 175563 175930 174861 180610	12.94 12.94 12.94 12.94 12.94 12.94	176698 175570 175001	15.50 15.50 15.50 15.50	27062 30696	6.48 6.47 6.45 6.44 6.42 6.42

IS 1 = Pentafluorobenzene IS 2 = 1,4-Difluorobenzene IS 3 = Chlorobenzene-D5 IS 4 = 1,4-Dichlorobenzene-d4 IS 5 = Tert Butyl Alcohol-D9

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.
- (c) Outside control limits. Target analytes not associated with this internal standard.

Volatile Surrogate Recovery Summary

Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

Method: SW846 8260B Matrix: SO

Samples and QC shown here apply to the above method

Lab Sample ID	Lab File ID	S1	S2	S3	
MC19083-1	K68255.D	120.0	115.0	112.0	
MC19083-2	K68254.D	119.0	115.0	110.0	
MSK2233-BS	K68237.D	111.0	110.0	101.0	
MSK2233-BSD	K68238.D	112.0	111.0	103.0	
MSK2233-MB	K68240.D	113.0	105.0	100.0	

Surrogate Recovery Compounds Limits

 S1 = Dibromofluoromethane
 70-130%

 S2 = Toluene-D8
 70-130%

 S3 = 4-Bromofluorobenzene
 70-130%

GC/MS Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Internal Standard Area Summaries
- Surrogate Recovery Summaries

Method: SW846 8270C

Method Blank Summary Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. 68 Matson Hill Road, Glastonbury, CT **Project:**

Sample OP32433-MB	File ID U13221.D	DF	Analyzed 04/01/13	By NS	Prep Date 03/29/13	Prep Batch OP32433	Analytical Batch MSU675
01 32 133 111	010221.D	1	0 1/ 01/ 13	110	03/25/13	0132133	1,150075

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	Units Q
95-57-8	2-Chlorophenol	ND	240	ug/kg
59-50-7	4-Chloro-3-methyl phenol	ND	490	ug/kg
120-83-2	2,4-Dichlorophenol	ND	490	ug/kg
105-67-9	2,4-Dimethylphenol	ND	490	ug/kg
51-28-5	2,4-Dinitrophenol	ND	980	ug/kg
534-52-1	4,6-Dinitro-o-cresol	ND	490	ug/kg
95-48-7	2-Methylphenol	ND	490	ug/kg
106-44-5	4-Methylphenol	ND	490	ug/kg
88-75-5	2-Nitrophenol	ND	490	ug/kg
100-02-7	4-Nitrophenol	ND	980	ug/kg
87-86-5	Pentachlorophenol	ND	490	ug/kg
108-95-2	Phenol	ND	240	ug/kg
95-95-4	2,4,5-Trichlorophenol	ND	490	ug/kg
88-06-2	2,4,6-Trichlorophenol	ND	490	ug/kg
83-32-9	Acenaphthene	ND	98	ug/kg
208-96-8	Acenaphthylene	ND	98	ug/kg
62-53-3	Aniline	ND	490	ug/kg
120-12-7	Anthracene	ND	98	ug/kg
56-55-3	Benzo(a)anthracene	ND	98	ug/kg
50-32-8	Benzo(a)pyrene	ND	98	ug/kg
205-99-2	Benzo(b)fluoranthene	ND	98	ug/kg
191-24-2	Benzo(g,h,i)perylene	ND	98	ug/kg
207-08-9	Benzo(k)fluoranthene	ND	98	ug/kg
101-55-3	4-Bromophenyl phenyl ether	ND	240	ug/kg
85-68-7	Butyl benzyl phthalate	ND	240	ug/kg
91-58-7	2-Chloronaphthalene	ND	240	ug/kg
106-47-8	4-Chloroaniline	ND	490	ug/kg
86-74-8	Carbazole	ND	98	ug/kg
218-01-9	Chrysene	ND	98	ug/kg
111-91-1	bis(2-Chloroethoxy)methane	ND	240	ug/kg
111-44-4	bis(2-Chloroethyl)ether	ND	240	ug/kg
108-60-1	bis(2-Chloroisopropyl)ether	ND	240	ug/kg
7005-72-3	4-Chlorophenyl phenyl ether	ND	240	ug/kg
121-14-2	2,4-Dinitrotoluene	ND	490	ug/kg
606-20-2	2,6-Dinitrotoluene	ND	490	ug/kg
91-94-1	3,3'-Dichlorobenzidine	ND	240	ug/kg

Method: SW846 8270C

Method Blank Summary Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. 68 Matson Hill Road, Glastonbury, CT **Project:**

Sample OP32433-MB	File ID U13221.D	DF	Analyzed 04/01/13	By NS	Prep Date 03/29/13	Prep Batch OP32433	Analytical Batch MSU675
O1 32433-WD	013221.D	1	04/01/13	113	03/27/13	01 32433	WISC075

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	Units Q
53-70-3	Dibenzo(a,h)anthracene	ND	98	ug/kg
132-64-9	Dibenzofuran	ND	98	ug/kg
84-74-2	Di-n-butyl phthalate	ND	240	ug/kg
117-84-0	Di-n-octyl phthalate	ND	240	ug/kg
84-66-2	Diethyl phthalate	ND	240	ug/kg
131-11-3	Dimethyl phthalate	ND	240	ug/kg
117-81-7	bis(2-Ethylhexyl)phthalate	ND	240	ug/kg
206-44-0	Fluoranthene	ND	98	ug/kg
86-73-7	Fluorene	ND	98	ug/kg
118-74-1	Hexachlorobenzene	ND	240	ug/kg
87-68-3	Hexachlorobutadiene	ND	240	ug/kg
77-47-4	Hexachlorocyclopentadiene	ND	490	ug/kg
67-72-1	Hexachloroethane	ND	240	ug/kg
193-39-5	Indeno(1,2,3-cd)pyrene	ND	98	ug/kg
78-59-1	Isophorone	ND	240	ug/kg
91-57-6	2-Methylnaphthalene	ND	98	ug/kg
88-74-4	2-Nitroaniline	ND	490	ug/kg
99-09-2	3-Nitroaniline	ND	490	ug/kg
100-01-6	4-Nitroaniline	ND	490	ug/kg
91-20-3	Naphthalene	ND	98	ug/kg
98-95-3	Nitrobenzene	ND	240	ug/kg
621-64-7	N-Nitroso-di-n-propylamine	ND	240	ug/kg
86-30-6	N-Nitrosodiphenylamine	ND	240	ug/kg
82-68-8	Pentachloronitrobenzene	ND	490	ug/kg
85-01-8	Phenanthrene	ND	98	ug/kg
129-00-0	Pyrene	ND	98	ug/kg
110-86-1	Pyridine	ND	490	ug/kg
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	490	ug/kg
120-82-1	1,2,4-Trichlorobenzene	ND	240	ug/kg
CAS No.	Surrogate Recoveries		Limits	S

367-12-4	2-Fluorophenol	62%	30-130%
4165-62-2	Phenol-d5	60%	30-130%
118-79-6	2,4,6-Tribromophenol	70%	30-130%

Method: SW846 8270C

Method Blank Summary Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
OP32433-MB	U13221.D	1	04/01/13	NS	03/29/13	OP32433	MSU675

The QC reported here applies to the following samples:

CAS No.	Surrogate Recoveries		Limits
4165-60-0	Nitrobenzene-d5	62%	30-130%
321-60-8	2-Fluorobiphenyl	64%	30-130%
1718-51-0	Terphenyl-d14	65%	30-130%

Method: SW846 8270C

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch	
OP32433-BS	U13222.D	1	04/01/13	NS	03/29/13	OP32433	MSU675	
OP32433-BSD	U13223.D	1	04/01/13	NS	03/29/13	OP32433	MSU675	

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	BSD ug/kg	BSD %	RPD	Limits Rec/RPD
95-57-8	2-Chlorophenol	4830	2580	53	2810	58	9	30-130/30
59-50-7	4-Chloro-3-methyl phenol	4830	2950	61	3170	65	7	30-130/30
120-83-2	2,4-Dichlorophenol	4830	2940	61	3170	65	8	30-130/30
105-67-9	2,4-Dimethylphenol	4830	2780	58	2840	58	2	30-130/30
51-28-5	2,4-Dinitrophenol	4830	3060	63	3760	77	21	30-130/30
534-52-1	4,6-Dinitro-o-cresol	4830	2860	59	3330	68	15	30-130/30
95-48-7	2-Methylphenol	4830	2530	52	2830	58	11	30-130/30
106-44-5	4-Methylphenol	4830	2730	56	3040	62	11	30-130/30
88-75-5	2-Nitrophenol	4830	2850	59	3030	62	6	30-130/30
100-02-7	4-Nitrophenol	4830	2310	48	2610	54	12	30-130/30
87-86-5	Pentachlorophenol	4830	2760	57	3040	62	10	30-130/30
108-95-2	Phenol	4830	2340	48	2660	55	13	30-130/30
95-95-4	2,4,5-Trichlorophenol	4830	2590	54	3040	62	16	30-130/30
88-06-2	2,4,6-Trichlorophenol	4830	2610	54	2920	60	11	30-130/30
83-32-9	Acenaphthene	2420	1420	59	1530	63	7	40-140/30
208-96-8	Acenaphthylene	2420	1150	48	1250	51	8	40-140/30
62-53-3	Aniline	2420	691	29* a	737	30* a	6	40-140/30
120-12-7	Anthracene	2420	1460	60	1520	62	4	40-140/30
56-55-3	Benzo(a)anthracene	2420	1540	64	1640	67	6	40-140/30
50-32-8	Benzo(a)pyrene	2420	1420	59	1510	62	6	40-140/30
205-99-2	Benzo(b)fluoranthene	2420	1480	61	1570	64	6	40-140/30
191-24-2	Benzo(g,h,i)perylene	2420	1540	64	1620	66	5	40-140/30
207-08-9	Benzo(k)fluoranthene	2420	1420	59	1530	63	7	40-140/30
101-55-3	4-Bromophenyl phenyl ether	2420	1510	63	1650	68	9	40-140/30
85-68-7	Butyl benzyl phthalate	2420	1540	64	1640	67	6	40-140/30
91-58-7	2-Chloronaphthalene	2420	1400	58	1530	63	9	40-140/30
106-47-8	4-Chloroaniline	2420	1020	42	1020	42	0	40-140/30
86-74-8	Carbazole	2420	1480	61	1570	64	6	40-140/30
218-01-9	Chrysene	2420	1470	61	1540	63	5	40-140/30
111-91-1	bis(2-Chloroethoxy)methane	2420	1470	61	1510	62	3	40-140/30
111-44-4	bis(2-Chloroethyl)ether	2420	1740	72	1900	78	9	40-140/30
108-60-1	bis(2-Chloroisopropyl)ether	2420	1420	59	1500	62	5	40-140/30
7005-72-3	4-Chlorophenyl phenyl ether	2420	1550	64	1600	66	3	40-140/30
121-14-2	2,4-Dinitrotoluene	2420	1550	64	1660	68	7	40-140/30
606-20-2	2,6-Dinitrotoluene	2420	1410	58	1510	62	7	40-140/30
91-94-1	3,3'-Dichlorobenzidine	2420	1170	48	1290	53	10	40-140/30

^{* =} Outside of Control Limits.

Page 2 of 3

Method: SW846 8270C

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample	File ID	DF	Analyzed	$\mathbf{B}\mathbf{y}$	Prep Date	Prep Batch	Analytical Batch
OP32433-BS	U13222.D	1	04/01/13	NS	03/29/13	OP32433	MSU675
OP32433-BSD	U13223.D	1	04/01/13	NS	03/29/13	OP32433	MSU675

The QC reported here applies to the following samples:

MC19083-1, MC19083-2

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	BSD ug/kg	BSD %	RPD	Limits Rec/RPD
CHO 110.	Compound	ug/ Ng	ug/ Ng	70	ug/Ng	70	KI D	Rec/Ri D
53-70-3	Dibenzo(a,h)anthracene	2420	1570	65	1650	68	5	40-140/30
132-64-9	Dibenzofuran	2420	1480	61	1580	65	7	40-140/30
84-74-2	Di-n-butyl phthalate	2420	1420	59	1490	61	5	40-140/30
117-84-0	Di-n-octyl phthalate	2420	1670	69	1790	73	7	40-140/30
84-66-2	Diethyl phthalate	2420	1530	63	1610	66	5	40-140/30
131-11-3	Dimethyl phthalate	2420	1450	60	1560	64	7	40-140/30
117-81-7	bis(2-Ethylhexyl)phthalate	2420	1570	65	1670	69	6	40-140/30
206-44-0	Fluoranthene	2420	1590	66	1670	69	5	40-140/30
86-73-7	Fluorene	2420	1550	64	1660	68	7	40-140/30
118-74-1	Hexachlorobenzene	2420	1560	65	1680	69	7	40-140/30
87-68-3	Hexachlorobutadiene	2420	1710	71	1760	72	3	40-140/30
77-47-4	Hexachlorocyclopentadiene	2420	835	35* a	893	37* a	7	40-140/30
67-72-1	Hexachloroethane	2420	1360	56	1530	63	12	40-140/30
193-39-5	Indeno(1,2,3-cd)pyrene	2420	1520	63	1630	67	7	40-140/30
78-59-1	Isophorone	2420	1430	59	1470	60	3	40-140/30
91-57-6	2-Methylnaphthalene	2420	1740	72	1760	72	1	40-140/30
88-74-4	2-Nitroaniline	2420	1480	61	1570	64	6	40-140/30
99-09-2	3-Nitroaniline	2420	1110	46	1220	50	9	40-140/30
100-01-6	4-Nitroaniline	2420	1260	52	1310	54	4	40-140/30
91-20-3	Naphthalene	2420	1480	61	1530	63	3	40-140/30
98-95-3	Nitrobenzene	2420	1510	63	1480	61	2	40-140/30
621-64-7	N-Nitroso-di-n-propylamine	2420	1290	53	1370	56	6	40-140/30
86-30-6	N-Nitrosodiphenylamine	2420	1370	57	1470	60	7	40-140/30
82-68-8	Pentachloronitrobenzene	2420	1820	75	1940	80	6	40-140/30
85-01-8	Phenanthrene	2420	1520	63	1620	66	6	40-140/30
129-00-0	Pyrene	2420	1450	60	1540	63	6	40-140/30
110-86-1	Pyridine	2420	1100	46	1120	46	2	40-140/30
95-94-3	1,2,4,5-Tetrachlorobenzene	2420	1660	69	1720	71	4	40-140/30
120-82-1	1,2,4-Trichlorobenzene	2420	1530	63	1560	64	2	40-140/30
CAS No.	Surrogate Recoveries	BSP	BS	D	Limits			
367-12-4	2-Fluorophenol	59%	619	6	30-1309	6		
4165-62-2	Phenol-d5	54%	579	6	30-1309			

64%

69%

30-130%

2,4,6-Tribromophenol

118-79-6

^{* =} Outside of Control Limits.

Page 3 of 3

Method: SW846 8270C

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

Sample OP32433-BS OP32433-BSD	File ID U13222.D U13223.D	DF 1 1	Analyzed 04/01/13 04/01/13	By NS NS	Prep Date 03/29/13 03/29/13	Prep Batch OP32433 OP32433	Analytical Batch MSU675 MSU675

The QC reported here applies to the following samples:

MC19083-1, MC19083-2

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
321-60-8	Nitrobenzene-d5	60%	60%	30-130%
	2-Fluorobiphenyl	59%	61%	30-130%
	Terphenyl-d14	62%	64%	30-130%

(a) Outside control limits. Blank Spike meets program technical requirements.

^{* =} Outside of Control Limits.

Semivolatile Internal Standard Area Summary

Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

 Check Std:
 MSU675-CC623
 Injection Date:
 04/01/13

 Lab File ID:
 U13220.D
 Injection Time:
 08:51

Instrument ID: GCMSU **Method:** SW846 8270C

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT	IS 6 AREA	RT
Check Std Upper Limit ^a	151505 303010	3.08 3.58	546520 1093040	4.04 4.54	350259 700518	5.44 5.94	637820 1275640	6.65 7.15	688072 1376144	9.39 9.89	664453 1328906	10.93 5 11.43
Lower Limit b	75753	2.58	273260	3.54	175130	4.94	318910	6.15	344036	8.89	332227	10.43
Lab	IS 1		IS 2		IS 3		IS 4		IS 5		IS 6	
Sample ID	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT	AREA	RT
OP32433-MB	180761	3.07	668589	4.04	410844	5.44	712846	6.65	839312	9.38	792330	10.92
OP32433-BS	188890	3.08	654625	4.04	410392	5.44	742680	6.65	831211	9.39	797157	10.93
OP32433-BSD	185546	3.08	678042	4.04	413258	5.44	751217	6.65	839602	9.39	802714	10.93
OP32429-MB	180905	3.07	656205	4.04	408764	5.44	705953	6.65	806741	9.38	757227	10.92
OP32429-BS	180410	3.08	643380	4.04	393062	5.44	717903	6.66	779478	9.39	770441	10.93
OP32429-MS	181738	3.08	651934	4.04	389784	5.44	672651	6.65	693064	9.40	548643	10.97
OP32429-MSD	169550	3.08	607223	4.05	370423	5.44	670003	6.67	670604	9.42	527073	10.98
ZZZZZZ	159095	3.08	566367	4.05	359963	5.45	628902	6.67	715555	9.41	622166	10.96
ZZZZZZ	167616	3.08	591020	4.05	357917	5.45	631849	6.67	750781	9.41	676152	10.96
ZZZZZZ	133527	3.08	436637	4.05	270462	5.46	491505	6.68	587620	9.42	554580	10.97
MC19083-1	176823	3.08	608360	4.05	355845	5.46	617579	6.68	812564	9.41	711718	10.96
MC19083-2	171018	3.08	605811	4.05	363460	5.45	601824	6.68	586063	9.46	508257	11.04

IS 1 = 1,4-Dichlorobenzene-d4

IS 2 = Naphthalene-d8
IS 3 = Acenaphthene-D10
IS 4 = Phenanthrene-d10
IS 5 = Chrysene-d12
IS 6 = Perylene-d12

- (a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.
- (b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Semivolatile Surrogate Recovery Summary

Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Method: SW846 8270C Matrix: SO

Samples and QC shown here apply to the above method

Lab	Lab						
Sample ID	File ID	S1	S2	S3	S4	S5	S6
MC19083-1	U13235.D	53.0	50.0	79.0	56.0	56.0	59.0
MC19083-2	U13236.D	45.0	44.0	73.0	45.0	54.0	65.0
OP32433-BS	U13222.D	59.0	54.0	64.0	60.0	59.0	62.0
OP32433-BSD	U13223.D	61.0	57.0	69.0	60.0	61.0	64.0
OP32433-MB	U13221.D	62.0	60.0	70.0	62.0	64.0	65.0

Surrogate	Recovery
Compounds	Limits

S1 = 2-Fluorophenol	30-130%
S2 = Phenol-d5	30-130%
S3 = 2,4,6-Tribromophenol	30-130%
S4 = Nitrobenzene-d5	30-130%
S5 = 2-Fluorobiphenyl	30-130%
S6 = Terphenyl-d14	30-130%

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries

Method Blank Summary

Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample OP32428-MB	File ID BI19785.D	DF 1	Analyzed 03/29/13	By KN	Prep Date 03/28/13	Prep Batch OP32428	Analytical Batch GBI712

The QC reported here applies to the following samples:

Method: CT-ETPH 7/06

MC19083-1, MC19083-2

CAS No. Compound Result RL Units Q

CT-ETPH (C9-C36) ND 16 mg/kg

CAS No. Surrogate Recoveries Limits

84-15-1 o-Terphenyl 75% 50-137%

Method: SW846 8082

Method Blank Summary Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. 68 Matson Hill Road, Glastonbury, CT **Project:**

Sample OP32431-MB	File ID BB46585A	DF .D1	Analyzed 03/30/13	By CZ	Prep Date 03/28/13	Prep Batch OP32431	Analytical Batch GBB2803

The QC reported here applies to the following samples:

CAS No.	Compound	Result	RL	Units Q
12674-11-2	Aroclor 1016	ND	99	ug/kg
11104-28-2	Aroclor 1221	ND	99	ug/kg
11141-16-5	Aroclor 1232	ND	99	ug/kg
53469-21-9	Aroclor 1242	ND	99	ug/kg
12672-29-6	Aroclor 1248	ND	99	ug/kg
11097-69-1	Aroclor 1254	ND	99	ug/kg
11096-82-5	Aroclor 1260	ND	99	ug/kg
37324-23-5	Aroclor 1262	ND	99	ug/kg
11100-14-4	Aroclor 1268	ND	99	ug/kg

CAS No.	Surrogate Recoveries	Limits	
877-09-8	Tetrachloro-m-xylene	96%	30-150%
877-09-8	Tetrachloro-m-xylene	97%	30-150%
2051-24-3	Decachlorobiphenyl	112%	30-150%
2051-24-3	Decachlorobiphenyl	112%	30-150%

Blank Spike Summary Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. 68 Matson Hill Road, Glastonbury, CT **Project:**

Sample OP32428-BS	File ID BI19787.D	DF 1	Analyzed 03/29/13	By KN	Prep Date 03/28/13	Prep Batch OP32428	Analytical Batch GBI712

50-137%

The QC reported here applies to the following samples: **Method:** CT-ETPH 7/06

79%

MC19083-1, MC19083-2

o-Terphenyl

84-15-1

CAS No.	Compound	Spike mg/kg	BSP mg/kg	BSP %	Limits
	CT-ETPH (C9-C36)	44.8	36.5	81	60-120
CAS No.	Surrogate Recoveries	BSP	Lin	nits	

^{* =} Outside of Control Limits.

Method: SW846 8082

Blank Spike Summary Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample OP32431-BS	File ID BB46586A	DF .D1	Analyzed 03/30/13	By CZ	Prep Date 03/28/13	Prep Batch OP32431	Analytical Batch GBB2803

The QC reported here applies to the following samples:

CAS No.	Compound	Spike ug/kg	BSP ug/kg	BSP %	Limits
12674-11-2	Aroclor 1016	252	284	113	40-140
11104-28-2	Aroclor 1221		ND		40-140
11141-16-5	Aroclor 1232		ND		40-140
53469-21-9	Aroclor 1242		ND		40-140
12672-29-6	Aroclor 1248		ND		40-140
11097-69-1	Aroclor 1254		ND		40-140
11096-82-5	Aroclor 1260	252	304	121	40-140
37324-23-5	Aroclor 1262		ND		40-140
11100-14-4	Aroclor 1268		ND		40-140

CAS No.	Surrogate Recoveries	BSP	Limits
877-09-8	Tetrachloro-m-xylene	103%	30-150%
877-09-8	Tetrachloro-m-xylene	104%	30-150%
2051-24-3	Decachlorobiphenyl	108%	30-150%
2051-24-3	Decachlorobiphenyl	108%	30-150%

^{* =} Outside of Control Limits.

Semivolatile Surrogate Recovery Summary

Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc.
Project: 68 Matson Hill Road, Glastonbury, CT

Method: SW846 8082 Matrix: SO

Samples and QC shown here apply to the above method

Lab Sample ID	Lab File ID	S1 a	S1 ^b	S2 a	S2 b
MC19083-1	BB46597.D	82.0	76.0	131.0	119.0
MC19083-2	BB46598.D	64.0	23.0* ^c	108.0	95.0
OP32431-BS	BB46586A.D	103.0	104.0	108.0	108.0
OP32431-MB	BB46585A.D	96.0	97.0	112.0	112.0

Surrogate Recovery Compounds Limits

S1 = Tetrachloro-m-xylene 30-150% S2 = Decachlorobiphenyl 30-150%

- (a) Recovery from GC signal #1
- (b) Recovery from GC signal #2
- (c) Outside control limits due to possible matrix interference.

Semivolatile Surrogate Recovery Summary

Job Number: MC19083

Account: TRTCTG Triton Environmental, Inc.
Project: 68 Matson Hill Road, Glastonbury, CT

Method: CT-ETPH 7/06 Matrix: SO

Samples and QC shown here apply to the above method

Lab	
File ID	S1 a
BI19811.D	70.0
BI19849.D	70.0
BI19787.D	79.0
BI19785.D	75.0
	File ID BI19811.D BI19849.D BI19787.D

Surrogate Recovery Compounds Limits

S1 = o-Terphenyl 50-137%

(a) Recovery from GC signal #1

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC19083 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20654 Matrix Type: SOLID

Methods: SW846 6010C Units: mg/kg

Prep Date:

03/22/13

				MB	
Metal	RL	IDL	MDL	raw	final
Aluminum	20	2.7	3.6		
Antimony	1.0	.11	.15		
Arsenic	1.0	.15	.21	-0.070	<1.0
Barium	5.0	.067	.073	0.060	<5.0
Beryllium	0.40	.024	.024		
Boron	10	.093	.11		
Cadmium	0.40	.023	.042	0.0	<0.40
Calcium	500	2.3	6.3		
Chromium	1.0	.072	.095	0.060	<1.0
Cobalt	5.0	.025	.047		
Copper	2.5	.063	.56		
Gold	5.0	.23	.43		
Iron	10	.38	.87		
Lead	1.0	.15	.17	-0.050	<1.0
Magnesium	500	3.1	5.1		
Manganese	1.5	.015	.04		
Molybdenum	10	.049	.07		
Nickel	4.0	.036	.044		
Palladium	5.0	.46	.64		
Platinum	5.0	.88	1.5		
Potassium	500	7.9	8.6		
Selenium	1.0	. 25	.35	0.070	<1.0
Silicon	10	.77	3.3		
Silver	0.50	.061	.13	-0.060	<0.50
Sodium	500	2.4	3.3		
Strontium	1.0	.024	.03		
Thallium	1.0	.13	.13		
Tin	10	.047	.14		
Titanium	5.0	.047	.14		
Tungsten	10	.61	.94		
Vanadium	1.0	.1	.13		
Zinc	2.0	.024	.16		
Zirconium	5.0	.073	.088		

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC19083

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20654 Methods: SW846 6010C Matrix Type: SOLID Units: mg/kg

Prep Date:

Metal

Associated samples MP20654: MC19083-1, MC19083-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

Login Number: MC19083 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20654 Methods: SW846 6010C Matrix Type: SOLID Units: mg/kg

Prep Date: 03/22/13 03/22/13

Prep Date:			03/22/13					03/22/13	
Metal	BSP Result	Spikelot MPICP	% Rec	QC Limits	BSD Result	Spikelot MPICP	% Rec	BSD RPD	QC Limit
Aluminum									
Antimony									
Arsenic	49.2	50	98.4	80-120	49.1	50	98.2	0.2	20
Barium	200	200	100.0	80-120	203	200	101.5	1.5	20
Beryllium									
Boron									
Cadmium	48.6	50	97.2	80-120	48.3	50	96.6	0.6	20
Calcium									
Chromium	50.7	50	101.4	80-120	50.5	50	101.0	0.4	20
Cobalt									
Copper	anr								
Gold									
Iron									
Lead	96.9	100	96.9	80-120	97.0	100	97.0	0.1	20
Magnesium									
Manganese									
Molybdenum									
Nickel	anr								
Palladium									
Platinum									
Potassium									
Selenium	46.7	50	93.4	80-120	45.9	50	91.8	1.7	20
Silicon									
Silver	20.7	20	103.5	80-120	20.7	20	103.5	0.0	20
Sodium									
Strontium									
Thallium									
Tin									
Titanium									
Tungsten									
Vanadium									
Zinc	anr								
Zirconium									

Login Number: MC19083 Account: TRTCTG - Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20654 Methods: SW846 6010C Matrix Type: SOLID Units: mg/kg

Prep Date:

Metal

Associated samples MP20654: MC19083-1, MC19083-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

Login Number: MC19083 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20654 Matrix Type: SOLID

Methods: SW846 6010C Units: mg/kg

Prep Date:

03/22/13

Prep Date:			03/22/13	3
Metal	LCS Result	Spikelot MPLCS78		QC Limits
Aluminum				
Antimony				
Arsenic	91.4	94.5	96.7	82-117
Barium	168	166	101.2	83-116
Beryllium				
Boron				
Cadmium	57.4	59.9	95.8	84-116
Calcium				
Chromium	67.2	69.3	97.0	81-119
Cobalt				
Copper	anr			
Gold				
Iron				
Lead	86.9	91.7	94.8	82-118
Magnesium				
Manganese				
Molybdenum				
Nickel	anr			
Palladium				
Platinum				
Potassium				
Selenium	146	159	91.8	79-121
Silicon				
Silver	31.9	33.9	94.1	66-134
Sodium				
Strontium				
Thallium				
Tin				
Titanium				
Tungsten				
Vanadium				
Zinc	anr			
Zirconium				

Login Number: MC19083
Account: TRTCTG - Triton Environmental, Inc.

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20654 Methods: SW846 6010C Matrix Type: SOLID Units: mg/kg

Prep Date:

Metal

Associated samples MP20654: MC19083-1, MC19083-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC19083 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20654 Matrix Type: SOLID Methods: SW846 6010C Units: ug/l

03/22/13 Prep Date:

Prep Date.			03/22/13		 	
Metal	MC19031- Original	19 SDL 1:5	%DIF	QC Limits		
Aluminum						
Antimony						
Arsenic	16.4	17.7	7.9	0-10		
Barium	478	514	7.4	0-10		
Beryllium						
Boron						
Cadmium	0.00	0.00	NC	0-10		
Calcium						
Chromium	137	149	8.4	0-10		
Cobalt						
Copper	anr					
Gold						
Iron						
Lead	59.3	60.6	2.2	0-10		
Magnesium						
Manganese						
Molybdenum						
Nickel	anr					
Palladium						
Platinum						
Potassium						
Selenium	0.00	0.00	NC	0-10		
Silicon						
Silver	0.00	0.00	NC	0-10		
Sodium						
Strontium						
Thallium						
Tin						
Titanium						
Tungsten						
Vanadium						
Zinc	anr					
Zirconium						

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC19083
Account: TRTCTG - Triton Environmental, Inc.
Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20654 Methods: SW846 6010C Matrix Type: SOLID Units: ug/l

Prep Date:

Metal

Associated samples MP20654: MC19083-1, MC19083-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC19083

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20681 Methods: SW846 7471B Matrix Type: SOLID Units: mg/kg

Prep Date: 03/28/13

Associated samples MP20681: MC19083-1, MC19083-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\bar{\ }$

(anr) Analyte not requested

Login Number: MC19083 Account: TRTCTG - Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20681 Matrix Type: SOLID

Methods: SW846 7471B Units: mg/kg

03/28/13

03/28/13 Prep Date:

Metal	BSP Result	Spikelot HGRWS1		QC Limits	BSD Result	Spikelot HGRWS1	: % Rec	BSD RPD	QC Limit	
Mercury	0.51	0.5	102.0	80-120	0.51	0.5	102.0	0.0	30	

Associated samples MP20681: MC19083-1, MC19083-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\bar{\ }$

(anr) Analyte not requested

Login Number: MC19083

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20681 Matrix Type: SOLID

Prep Date:

Methods: SW846 7471B Units: mg/kg

03/28/13

Associated samples MP20681: MC19083-1, MC19083-2

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $\begin{tabular}{ll} \end{tabular}$

(anr) Analyte not requested

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC19083
Account: TRTCTG - Triton Environmental, Inc.
Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Matrix Type: LEACHATE

Methods: SW846 6010C Units: mg/l

Prep Date:

03/28/13

TTCP Date:					03/20/13
Metal	RL	IDL	MDL	MB raw	final
Aluminum	0.20	.027	.04		
Antimony	0.0060	.0011	.0019		
Arsenic	0.010	.0015	.0029		
Barium	0.50	.00067	.00081		
Beryllium	0.0040	.00024	.00025		
Boron	0.10	.00093	.0014		
Cadmium	0.0040	.00023	.0005		
Calcium	5.0	.023	.038		
Chromium	0.010	.00072	.0014		
Cobalt	0.050	.00025	.0004		
Copper	0.025	.00063	.007		
Gold	0.050	.0023	.005		
Iron	0.10	.0038	.02		
Lead	0.010	.0015	.0017	0.00030	<0.010
Magnesium	5.0	.031	.059		
Manganese	0.015	.00015	.00081		
Molybdenum	0.10	.00049	.00077		
Nickel	0.040	.00036	.00057		
Palladium	0.050	.0046	.0076		
Platinum	0.050	.0088	.014		
Potassium	5.0	.079	.16		
Selenium	0.025	.0025	.0048		
Silicon	0.10	.0077	.045		
Silver	0.0050	.00061	.001		
Sodium	5.0	.024	.06		
Strontium	0.010	.00024	.00026		
Thallium	0.0050	.0013	.0019		
Tin	0.10	.00047	.0014		
Titanium	0.050	.00047	.0018		
Tungsten	0.10	.0061	.016		
Vanadium	0.010	.001	.0028		
Zinc	0.10	.00024	.0005		
Zirconium	0.050	.00073	.0022		

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC19083

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Methods: SW846 6010C Matrix Type: LEACHATE Units: $\mbox{mg/l}$

Prep Date:

Metal

Associated samples MP20682: MC19083-1A, MC19083-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: MC19083 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Methods: SW846 6010C Matrix Type: LEACHATE Units: mg/l

03/28/13 Prep Date: 03/28/13 BSD BSP Spikelot Spikelot

Metal	BSP Result	Spikelot MPICP	% Rec	QC Limits	BSD Result	Spikelot MPICP	% Rec	BSD RPD	QC Limit
Aluminum									
Antimony									
Arsenic									
Barium									
Beryllium									
Boron									
Cadmium									
Calcium									
Chromium									
Cobalt									
Copper									
Gold									
Iron									
Lead	0.99	1.0	99.0	80-120	1.0	1.0	100.0	1.0	20
Magnesium									
Manganese									
Molybdenum									
Nickel									
Palladium									
Platinum									
Potassium									
Selenium									
Silicon									
Silver									
Sodium									
Strontium									
Thallium									
Tin									
Titanium									
Tungsten									
Vanadium									
Zinc									
Zirconium									

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: MC19083

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Methods: SW846 6010C Matrix Type: LEACHATE Units: $\mbox{mg/l}$

Prep Date:

Metal

Associated samples MP20682: MC19083-1A, MC19083-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC19083 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Methods: SW846 6010C

Matrix Type: LEACHATE Units: ug/l

Prep Date:	03/28/13
------------	----------

Metal	MC19052-1A Original SDL 1:5	%DIF	QC Limits
Aluminum			
Antimony			
Arsenic			
Barium			
Beryllium			
Boron			
Cadmium			
Calcium			
Chromium			
Cobalt			
Copper			
Gold			
Iron			
Lead	15.4 19.8	28.6 (a)	0-10
Magnesium			
Manganese			
Molybdenum			
Nickel			
Palladium			
Platinum			
Potassium			
Selenium			
Silicon			
Silver			
Sodium			
Strontium			
Thallium			
Tin			
Titanium			
Tungsten			
Vanadium			
Zinc			
Zirconium			

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC19083 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20682 Methods: SW846 6010C Matrix Type: LEACHATE Units: ug/l

Prep Date:

Metal

Associated samples MP20682: MC19083-1A, MC19083-2A

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample $\,$ concentration (< 50 times IDL).

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

Login Number: MC19083 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

Analyte	Batch ID	RL	MB Result	Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Cyanide Reactivity Paint Filter Test Specific Conductivity Sulfide Reactivity	GP15757/GN42110 GN42092 GN42081 GP15758/GN42109	1.5 0.50 0.50 50	0.0 <0.50 0.0 0.0	mg/kg ml/100g umhos/cm mg/kg	250 510	18.6	7.4	- % - %

Associated Samples:

Batch GN42081: MC19083-1, MC19083-2 Batch GN42092: MC19083-1, MC19083-2 Batch GP15757: MC19083-1, MC19083-2 Batch GP15758: MC19083-1, MC19083-2

(*) Outside of QC limits

Appendix D

Town of Glastonbury Conservation Commission/Inland Wetlands Approval

Town of Glastonbury

2155 MAIN STREET · P.O. BOX 6523 · GLASTONBURY, CONNECTICUT 06033-6523

June 2, 2011

CONSERVATION COMMISSION AND INLAND WETLANDS & WATERCOURSES AGENCY

Daniel A. Pennington, Town Engineer Town of Glastonbury 2155 Main Street Glastonbury, Connecticut 06033

Re:

Application of the Town of Glastonbury for an inland wetlands and watercourses permit to demolish building structures and perform soils remediation activities at the former JT Slocomb facility at 44 & 68 Matson Hill Road – Daniel A. Pennington, Town Engineer – Triton Environmental, Inc., consultant

Dear Dan:

At its Regular Meeting of May 26, 2011, the Conservation Commission/Inland Wetlands & Watercourses Agency approved an Inland Wetlands and Watercourses Permit, in accordance with the plans and conditions cited in the attached motion.

Please read the conditions of approval carefully and comply with them. Some of the conditions may require interacting with the Environmental Planner (e.g. inspection of soil erosion and sediment control); it will be your responsibility to schedule such interactions. Any questions you may have about the stated conditions can be directed to the Office of Community Development at (860) 652-7511.

This Permit:

- requires that the approved regulated activities be completed within one (1) year from commencement of said activities;
- is valid for five (5) years and thus expires on May 26, 2016; and
- may not be transferred unless authorized by the Inland Wetlands & Watercourses Agency

This Permit may be revoked if you exceed the conditions or limitations of this Permit or have secured this Permit through inaccurate information.

Once again should you have any questions, please do not hesitate to contact this office.

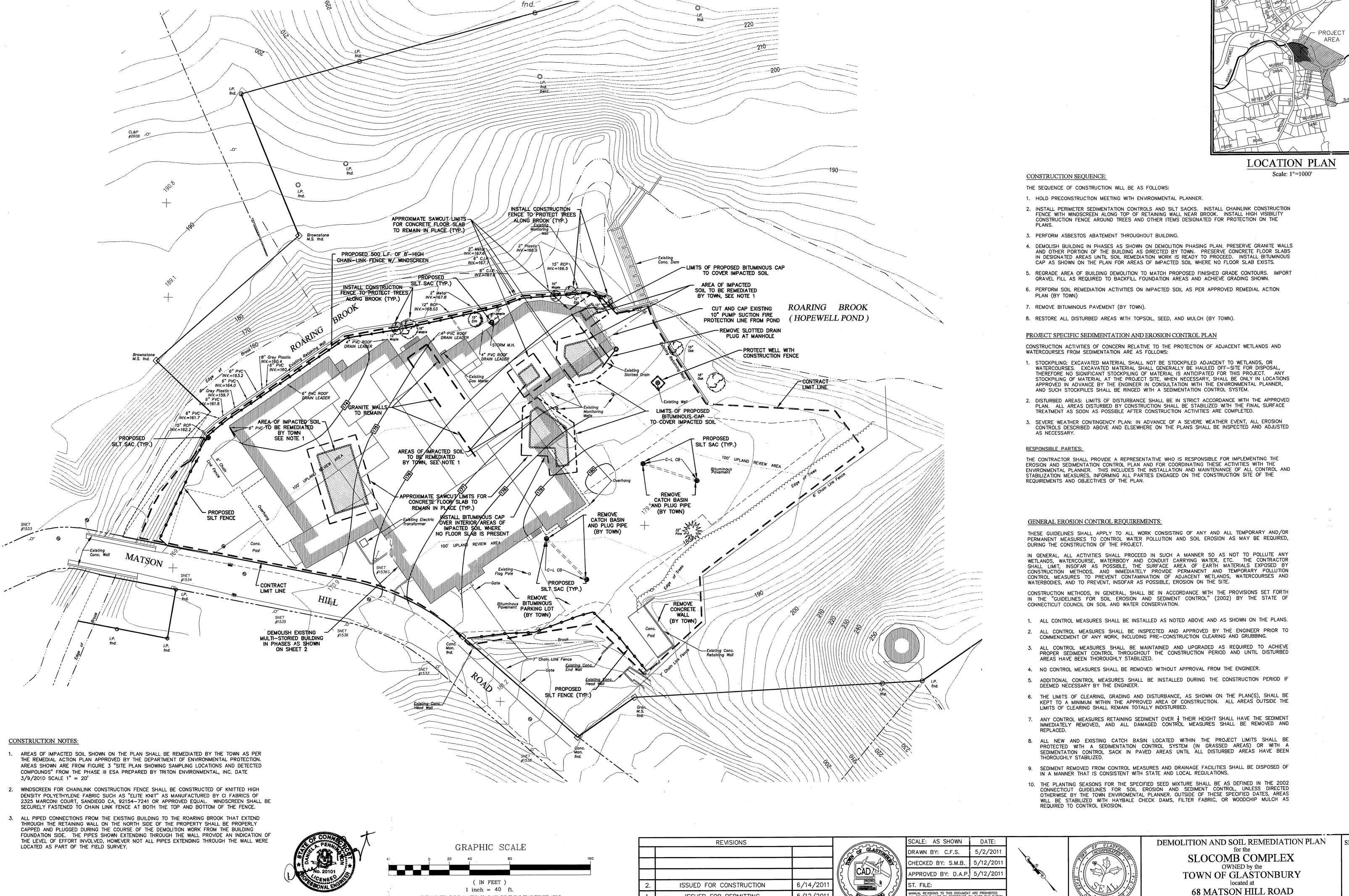
Sincerely,

Tom Mocko

Environmental Planner

TM:gfm Attachment

APPROVED WETLANDS PERMIT MOTION


MOVED, that the Inland Wetlands and Watercourses Agency issues an inland wetlands and watercourses permit to the Town of Glastonbury for the demolition of buildings and remediation of soils within the upland review areas at the former JT Slocomb facility located at 44 & 68 Matson Hill Road, in accordance with the application material on file in the Office of Community Development, and in compliance with the following conditions:

- 1. Installation of the debris barriers and the soil erosion and sedimentation control and stabilization measures shall be the Permittee's responsibility. Once installed these measures shall then be inspected by the Environmental Planner prior to land disturbance activities. Afterwards it then shall be the Permittee's responsibility to inspect these control measures during, and immediately following, substantial storm events and maintain and/or replace the control measures, when needed, on a regular basis until the site is vegetatively stabilized. Hay bales shall be replaced every 60 days. The Environmental Planner is hereby authorized to require additional soil erosion and sediment controls and stabilization measures to address situations that arise on the site.
- Periodic inspections of the brook shall be conducted for the presence of building debris in the brook. Any such debris shall be removed upon detection. Enhancements to the debris barriers shall be implemented to the satisfaction of the Environmental Planner if debris continues to enter the brook.
- 3. Metal waste containers shall be provided at the site to facilitate the collection of refuse material generated from construction activities. Such material shall not be buried or burned at the site.
- Once disturbed land areas have been topsoiled, then lime and fertilizer amendments shall be made, and the seed mix selection and application rates all developed in consultation with the Environmental Planner.
- 5. Shade trees, with their species selection and caliper sizes determined under consultation with the Environmental Planner, shall be planted at the top of the wall along the southern edge of Roaring Brook at 40-foot intervals.
- 6. The Permittee shall be fully responsible for damages caused by all activities undertaken pursuant to this permit that may have a detrimental effect on wetlands and/or watercourses, and all such activities that cause erosion and sedimentation problems.

The bases for this decision are that:

- a. All proposed regulated activities are limited to within the upland review area;
- b. The proposed mitigation measures within the application should prevent or drastically minimize any direct adverse impact upon the wetlands and watercourses;
- c. The proposed remediation of soils should serve to protect and conserve the immediately adjacent Roaring Brook and its downstream resources in the long-term as opposed to a "do nothing" approach; and
- d. Removing the existing buildings and pavement restoration of the disturbed land areas facilitates the soils remediation, reduces impervious surfaces and enhances the wildlife habitat.

IF SCALING FROM THIS PLAN, VERIFY SCALE WITH THE GRAPHIC SCALE PROVIDED ABOVE.

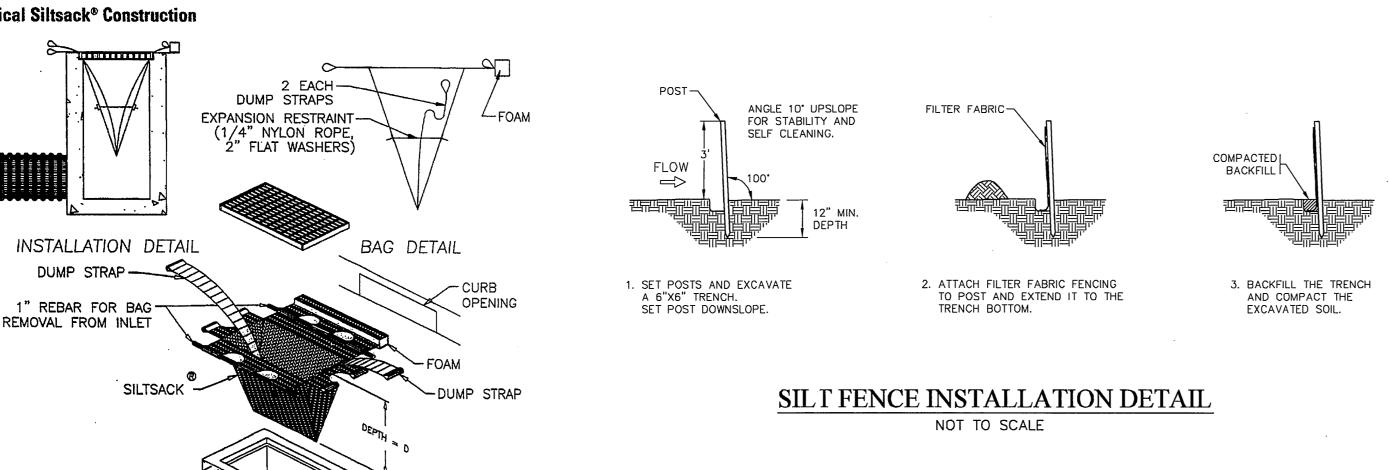
5/12/201

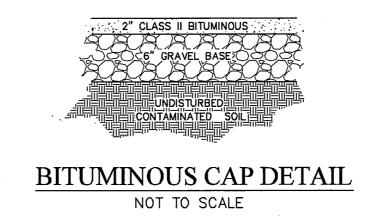
DATE

ISSUED FOR PERMITTING

DESCRIPTION

SHEET NO.


OF <u>2</u>


GLASTONBURY, CONNECTICUT

GRID NORTH

NGINEERING OFFICE AT (860) 652-7735.

BUILDING DEMOLITION PHASING PLAN NOT TO SCALE

Town of Glastonbury 2155 Main Street

Glastonbury, Connecticut 06033

Town of Glastonbury

2155 MAIN STREET · P.O. BOX 6523 · GLASTONBURY, CONNECTICUT 06033-6523

CONSERVATION COMMISSION AND INLAND WETLANDS & WATERCOURSES AGENCY

Daniel A. Pennington, Town Engineer

Re: Application of the Town of Glastonbury for an inland wetlands and watercourses permit to demolish building structures and perform soils remediation activities at the former JT Slocomb facility at 44 & 68 Matson Hill Road - Daniel A. Pennington, Town Engineer - Triton Environmental, Inc., consultant

At its Regular Meeting of May 26, 2011, the Conservation Commission/Inland Wetlands & Watercourses Agency approved an Inland Wetlands and Watercourses Permit, in accordance with the plans and conditions cited in the attached

Please read the conditions of approval carefully and comply with them. Some of the conditions may require interacting with the Environmental Planner (e.g. inspection of soil erosion and sediment control); it will be your responsibility to schedule such interactions. Any questions you may have about the stated conditions can be directed to the Office of Community Development at (860) 652-7511.

requires that the approved regulated activities be completed within one (1) year from commencement of said activities; is valid for five (5) years and thus expires on May 26, 2016; and may not be transferred unless authorized by the Inland Wetlands & Watercourses Agency

This Permit may be revoked if you exceed the conditions or limitations of this Permit or have secured this Permit through inaccurate information.

Once again should you have any questions, please do not hesitate to contact this office.

APPROVED WETLANDS PERMIT MOTION

MOVED, that the Inland Wetlands and Watercourses Agency issues an inland wetlands and watercourses permit to the Town of Glastonbury for the demolition of buildings and remediation of soils within the upland review areas at the former JT Slocomb facility located at 44 & 68 Matson Hill Road, in accordance with the application material on file in the Office of Community Development, and in compliance with the following conditions:

- 1. Installation of the debris barriers and the soil erosion and sedimentation control and stabilization measures shall be the Permittee's responsibility. Once installed these measures shall then be inspected by the Environmental Planner prior to land disturbance activities. Afterwards it then shall be the Permittee's responsibility to inspect these control measures during, and immediately following, substantial storm events and maintain and/or replace the control measures, when needed, on a regular basis until the site is vegetatively stabilized. Hay bales shall be replaced every 60 days. The Environmental Planner is hereby authorized to require additional soil erosion and sediment controls and stabilization measures to address situations that arise on the site.
- 2. Periodic inspections of the brook shall be conducted for the presence of building debris in the brook. Any such debris shall be removed upon detection. Enhancements to the debris barriers shall be implemented to the satisfaction of the Environmental Planner if debris continues to enter the brook.
- 3. Metal waste containers shall be provided at the site to facilitate the collection of refuse material generated from construction activities. Such material shall not be buried or burned at the site.
- 4. Once disturbed land areas have been topsoiled, then lime and fertilizer amendments shall be made, and the seed mix selection and application rates all developed in consultation with the Environmental Planner.
- 5. Shade trees, with their species selection and caliper sizes determined under consultation with the Environmental Planner, shall be planted at the top of the wall along the southern edge of Roaring Brook at 40-foot intervals.
- 6. The Permittee shall be fully responsible for damages caused by all activities undertaken pursuant to this permit that may have a detrimental effect on wetlands and/or watercourses, and all such activities that cause erosion and sedimentation problems.

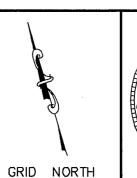
The bases for this decision are that:

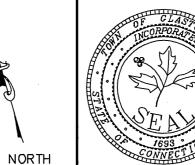
- a. All proposed regulated activities are limited to within the upland review area; b. The proposed mitigation measures within the application should prevent or drastically minimize any direct adverse impact upon the wetlands and watercourses;
- c. The proposed remediation of soils should serve to protect and conserve the immediately adjacent Roaring Brook and its downstream resources in the long-term as opposed to a "do nothing"
- approach; and d. Removing the existing buildings and pavement restoration of the disturbed land areas facilitates

the soils remediation, reduces impervious surfaces and enhances the wildlife habitat.

0		_
	-	
	2.	19

GRAPHIC SCALE


(IN FEET)


1 inch = 40 ft.

IF SCALING FROM THIS PLAN, VERIFY SCALE WITH THE GRAPHIC SCALE PROVIDED ABOVE.

	255
	OF GLASTON
1	
1	SNGINEE 101C
	25.5

The second	SCALE: AS SHOWN	DATE:			
	DRAWN BY: C.F.S.	5/2/2011			
	CHECKED BY: S.M.B.	5/12/2011			
	APPROVED BY: D.A.P.	5/12/2011			
	ST. FILE:				
	MANUAL REVISIONS TO THIS DOCUMENT ALL REVISIONS MUST BE PERFORMED IT IN THE LEFT MARGIN. IF THERE ARE OR QUESTIONS, CONTACT THE TOWN OF ENGINEERING OFFICE AT (860) 652-77	N CADD FILE SHOWN NY DISCREPANCIES GLASTONBURY			

DEMOLITION AND SOIL REMEDIATION PLAN SLOCOMB COMPLEX OWNED by the

TOWN OF GLASTONBURY 68 MATSON HILL ROAD GLASTONBURY, CONNECTICUT

OF <u>2</u>

SHEET NO.

Typical Siltsack® Construction REMOVAL FROM INLET

SILT SACK DETAIL

NOT TO SCALE

REVISIONS ISSUED FOR CONSTRUCTION 6/14/201 5/12/201 ISSUED FOR PERMITTING DESCRIPTION DATE

Appendix E Remedial Action Plan

Remedial Action Plan

Former J.T. Slocomb Facility 68 Matson Hill Road Glastonbury, CT

REM ID #8827

May 2013

Ref. No. 103139R04

Prepared for:

Town of Glastonbury 2155 Main Street Glastonbury, CT 06033

Prepared by:

TABLE OF CONTENTS

1.0 - INTRODUCTION	1
1.1 - Purpose	1
1.2 - Site Description	1
1.3 - Site History	2
1.4 - Site Geology and Hydrogeology	2
2.0 - CONNECTICUT REGULATORY CRITERIA	4
2.1 - Soil Criteria	4
2.1.1 - Direct Exposure Criteria	4
2.1.2 - Pollutant Mobility Criteria	4
2.2 - Groundwater Criteria.	5
2.2.1 - Groundwater Protection Criteria	5
2.2.2 - Surface Water Protection Criteria	
2.2.3 - Volatilization Criteria	6
2.3 - Additional Polluting Substances	
3.0 - CONCEPTUAL SITE MODEL	o
4.0 - REMEDIAL APPROACH	
4.1 - Public Notice	
4.2 - Regulatory Approvals	
4.3 - Soil Remediation	
4.4 - Groundwater Remediation	
4.5 - Health and Safety	
4.6 - Sedimentation and Erosion Control	
4.7 - Dust and Odor Control	
4.7.1 - Potential Fugitive Dust Sources	
4.7.2 - Dust Control and Mitigation Procedures	
4.7.3 - Nuisance Odor Control	
4.7.4 - Best Management Practices	
4.7.5 - Dust Monitoring and Corrective Action	
4.7.6 - Screening for Volatile Compounds	
4.8 - Decontamination	
4.9 - Waste Management	27
5.0 - DOCUMENTATION AND REPORT PREPARATION	
5.1 - Field Documentation	
5.2 - Post-Remediation Report Development	28
6.0 - POST-REMEDIATION GROUNDWATER MONITORING	30
7.0 - CONCLUSIONS	31
8.0 - REFERENCES	32
9.0 - LIMITATIONS	33

	TABLE OF CONTENTS (continued)
10.0 - SIGNA	TURES OF REPORT AUTHORS34
	FIGURES
Figure 1	Site Location Map
Figure 2	Site Plan Showing Proposed Remedial Areas
	TABLES
Table 1	Groundwater Monitoring Well Gauging Data
Table 2	Summary of Analytes Detected in Soil Samples
Table 2A	Summary of Analytes Detected in Historic Soil Samples
Table 3	Summary of Analytes Detected in Groundwater Samples
Table 3A	Summary of Analytes Detected in Historic Groundwater Samples
Table 4	Summary of Analytes Detected in Pond Sediment Samples
Table 5	Waste Characterization Data Summary
Table 5A	Summary of Theoretical Maximum TCLP Results – Waste Characterization
	APPENDICES
Appendix A	Documentation of Public Notice
Appendix B	Approval of Alternative Volatilization Criteria
Appendix C	Conservation Commission/Inland Wetlands Agency Approval
Appendix D	Laboratory Analytical Data
Appendix E	PID Action Levels – Compounds with Ionic Potential

1.0 - INTRODUCTION

Triton Environmental, Inc. (Triton) has prepared this Remedial Action Plan (RAP) on behalf of the Town of Glastonbury (the Town) to establish an approach for remediation of impacted soil identified at the former J.T. Slocomb property located at 68 Matson Hill Road in Glastonbury, Connecticut (the site).

The site is subject to the Connecticut Transfer Act based on waste generation associated with former manufacturing activities conducted at the site. The Town is the "Certifying Party" to a Form III filing in January 2008. The Transfer Act requires that the environmental conditions at the parcel be investigated in accordance with prevailing standards and guidelines and remediated in accordance with the Connecticut Department of Energy and Environmental Protection (DEEP) Remediation Standard Regulations (RSRs). Based on the site investigations completed by Triton (and others), concentrations of certain compounds have been identified in site soils at concentrations which exceed RSR criteria.

1.1 - Purpose

The purpose of this RAP is to describe the selected remedial approach intended to address identified release areas at the site in a manner consistent with the RSRs and other regulatory requirements.

1.2 - Site Description

The subject site consists of approximately 22 acres and contains some remnants of a demolished industrial/commercial building where portions of the concrete slab, walls, and a smoke stack remain. The ground surface at the site is generally flat and slopes slightly to the west. Ground cover consists of a combination of gravel and paved parking areas, grass-landscaped areas and heavily forested areas. Roaring Brook traverses the center portion of the site. A dam within Roaring Brook (just east of the former building) creates a pond (known as Hopewell Pond or Slocomb Pond).

Portions of the property fronting Matson Hill Road are fence-enclosed and access to the interior of the site north of Matson Hill Road is via locked gate. An in-ground, fence enclosed, stone holding tank, currently filled with water is located in a wooded up gradient area in the south-central portion of the site.

1.3 - Site History

Based on historical documentation, the site has been utilized for industrial/commercial uses dating back to approximately 1769 when a grist mill was initially constructed at the site. The site continued to evolve over time, including use as a textile mills in the 1800s (including manufacture of woolen clothing). The mill continued to operate and expand under several owners including the Naog Manufacturing Company, Hopewell Mills, and the Glazier Manufacturing Company. The original building has been added onto several times. Some of the water from Roaring Brook was once channeled beneath the former site building for use in industrial processes, which was reportedly discontinued in the 1970's with the construction of a retaining wall on the upstream side of the channel.

The most recent industrial usage in the former building was for the manufacturing of parts for turbine engines and other components used in the aerospace industry. The J.T. Slocomb Corporation manufactured these components from approximately 1956 through 1998. J.T. Slocomb also conducted welding, brazing/heat treating, sand blasting, machining, and degreasing at the site. Several hazardous substances and wastes were handled in conjunction with these site activities including trichloroethylene (TCE), cadmium, and chromium wastes. A storage barn that was formerly located on the 44 Matson Hill Road property was razed in 1993 according to the tax assessor files. The former barn location has remained vacant ever since. The property was purchased in 2005 by Living Water Falls, LLC and was not use for industrial/commercial purposes. The Town of Glastonbury purchased the site in January of 2008 and demolished the building.

Additional historical information can be found in Triton's November 2007 Phase I ESA Report.

1.4 - Site Geology and Hydrogeology

According to the Surficial Geology Map of Connecticut, (Stone, et. al., 1992), the surficial deposits in the general vicinity of the site are mapped as sand and gravel overlying sand. Based on information contained in previous environmental reports, the

surficial deposits around the sites former building consist of 15-20 feet of fine to medium sand with some silt. Below the sand are cobbles and boulders. Along Roaring Brook 10 feet of cobbles and boulders were reportedly identified. Bedrock was reportedly encountered at a depth of approximately 30 feet below grade near Roaring Brook.

According to the "Bedrock Geology Map of Connecticut" (Rodgers, 1985), the bedrock beneath the site has been identified as part of the Glastonbury Gneiss formation, which is described as coarse to medium grained massive to well foliated gneiss. The bedrock encountered at a depth of 37 feet at location of two production wells was reportedly very competent and dense with little fracturing. The two production wells are reportedly installed to a depth of 600 feet deep.

According to the Water Quality Classifications Map of the Connecticut River Basin, groundwater at the site has been classified by the DEEP as "GA" quality. Groundwater has historically been utilized at the site and surrounding areas for drinking water purposes, reportedly from deep bedrock wells.

Roaring Brook bisects the site, flowing generally east to west. Gutter Slab Brook runs from the southeastern portion of the site. The confluence of Gutter Slab Brook and Roaring Brook is located in the south-central portion of the site.

Based on site topography and the presence of Roaring Brook, the inferred direction of shallow groundwater flow is to the south (on the north side of the Brook) and to the north (on the south side of the brook). Previous site investigation reports indicate a general groundwater flow direction to the northwest in the vicinity of the former manufacturing building.

2.0 - CONNECTICUT REGULATORY CRITERIA

The DEEP issued the RSRs (RCSA Section 22a-133k-1-3) in January 1996. The RSRs apply to sites that are either subject to the Connecticut Transfer Act, undergoing Voluntary Remediation, or subject to a DEEP enforcement action. The site has been determined to meet the definition of an Establishment, and as such will be subject to the provisions of the Transfer Act, inclusive of RSR applicability.

The RSRs outline remedial criteria that are based on the use of the property (industrial/commercial or residential) and groundwater quality (i.e. GA or GB). This site may be used as for recreational purposes (residential) and is located in a GA groundwater area. As such, the analytical data has been compared against the residential direct exposure criteria as well as the GB pollutant mobility criteria. The specific criteria are discussed below.

2.1 - Soil Criteria

The RSRs contain two sets of soil criteria; the Direct Exposure Criteria (DEC) and the Pollutant Mobility Criteria (PMC), as summarized below.

2.1.1 - Direct Exposure Criteria

The DEC are designed to protect human health from the exposure to impacted soils. There are two separate DEC categories which are based on the land use (residential or industrial/commercial). The DEC apply to soils from surface grade to a depth of 15 feet below surface grade. Given the proposed use of the site for recreational activities, the analytical data has been compared against residential direct exposure criteria (RDEC).

2.1.2 - Pollutant Mobility Criteria

The PMC are numerical criteria designed to prevent leaching of contaminants from impacted soils into the underlying groundwater. The RSRs outline PMC for both GA sites (where groundwater is considered to be of drinking water quality) and GB sites (where groundwater is considered degraded due to land-use activities). As the site is located in a GA area, the GA PMC have been used.

2.2 - Groundwater Criteria

Three RSR criteria are used to evaluate groundwater conditions in GA areas, which include the groundwater protection criteria (GWPC), the surface water protection criteria (SWPC) and the groundwater volatilization criteria (VC), as described below.

2.2.1 - Groundwater Protection Criteria

The GWPC establish permissible concentrations of compounds in groundwater that will ensure protection of groundwater as a drinking water resource. The default goal for groundwater within a GA groundwater classification area is achievement of "background" concentrations for each substance. Under certain circumstances, however, compliance with the GWPC can be achieved if the concentrations are below the GWPC numerical criteria. In order to use the GWPC standards (versus background), the following must apply to the plume in question:

- 1) the background concentration is equal to or less than the GWPC numerical standard;
- 2) a public water supply distribution system is available within 200 feet of the subject parcel parcels adjacent thereto, and any parcel within the areal extent of the plume;
- 3) the plume is not located within an aquifer protection area; and
- 4) the groundwater plume is not located within the area of influence of any public water supply well.

As stated previously, the site is located within an area that has a GA classification. There does not appear to be a public water supply distribution system within 200 feet of all abutting properties. As such, the goal of the remedial actions will be to achieve background conditions in groundwater.

2.2.2 - Surface Water Protection Criteria

The SWPC establish permissible concentrations of compounds in groundwater that will ensure protection of the surface water body into which it discharges. Roaring Brook bisects the site; therefore, the SWPC would apply.

2.2.3 - Volatilization Criteria

The VC are designed to protect human health from contaminants that may volatilize from impacted groundwater into overlying buildings or into the breathing zone above the ground surface where they can be inhaled.

Since the issuance of the 1996 RSRs, the DEEP has issued proposed revisions to the VC in both March 2003, and in proposed revisions to the RSRs in August 2008. These proposed revisions included a more comprehensive list of criteria, as well as updated numerical criteria based on changes in vapor intrusion modeling. A request for approval of the 2003 proposed standards as alternative volatilization criteria was submitted to the DEEP on May 6, 2011 (see Appendix B). The request was approved on October 18, 2011. A copy of the approval is provided in Appendix B.

2.3 - Additional Polluting Substances

For substances identified in soil or groundwater which do not have criteria specified in the RSRs, the DEEP may approve criteria for these "additional polluting substances." For the subject site, the compounds identified in the following table have been identified as additional polluting substances. The table also provides the additional criteria which have been used to evaluate the site data. DEEP approval will be sought to use these additional criteria.

Additional Polluting Substances

Compound	RDEC	IDEC	GA PMC	GWPC	SWPC					
	(mg/kg)	(mg/kg)	(mg/kg)	(ug/L)	(ug/L)					
Petroleum Hydrocarbons										
ETPH ¹	500	2,500	500	100	250					
	Volatile Organic Compounds									
n-butylbenzene	500	1,000	1.2	61	10					
Sec-butylbenzene	500	1,000	1.2	61	10					
chloroethane	500	1,000	20	1,000	10,000					
1,1-dichloroethane	NA	NA	NA	NA	4,100					
cis-dichloroethene	NA	NA	NA	NA	6,200					
trans-1,2-dichloroethylene	NA	NA	NA	NA	5,600					
isopropylbenzene	500	1,000	14	700	210					
n-propylbenzene	500	1,000	1.2	61	NE					
1,2,4-trimethylbenzene	500	1,000	2.4	350	160					
1,3,5-trimethylbenzene	500	1,000	1.9	350	260					
xylenes	NA	NA	NA	NA	270					

Notes:

NA = Not Applicable (1996 RSR Standards used)

Criteria taken from the DEEP 2008 Proposed Revision to the RSRs.

¹Use of ETPH also requires DEEP approval of the ETPH method as an "alternative analytical method." mg/kg = milligrams per kilogram, ug/L = micrograms per liter

3.0 - CONCEPTUAL SITE MODEL

Triton has reviewed available information regarding the history of the site, the known site activities which have been conducted, and the available environmental data in order to develop a conceptual site model (CSM) for the site. Based on a review of historical information, the site has had a manufacturing history that has spanned from circa 1769 until 1998. Early history included a grist mill and textile manufacturers to a more recent history of manufacturing turbine engines parts and components used in the aerospace industry by J.T. Slocomb ending in 1998.

A total of 11 areas of environmental concern (AOCs), were identified during the Phase I ESA completed by Triton and during previous environmental investigations conducted by others. Based on the data collected at the site, releases appear to have occurred in five of the AOCs. Remedial actions (excavation) were previously completed (by others) in three areas (AOCs 2, 3, and 5).

Areas remaining to be remediated included AOCs 1 and 4, and completion of remediation of AOC 3 where petroleum hydrocarbons extended below the building. Following the demolition of the former building, a portion of the concrete slab was left in place and is serving as a marker for the areas of impact to be remediated as part of this RAP.

The AOCs and release areas identified are summarized in the following table.

Summary of Areas of Concern

Former JT Slocomb Facility, Glastonbury, CT

AOC	Description	Substances of Concern	Potential Release Mechanisms	Testing Conducted?	Release Identified?	Remediation Conducted?	Status (Recommendation)
AOC 1 (RA-1)	Western Building Area and VOC Plume (Includes former septic area and cyanide tank)	VOCs (primarily TCE), TPH, Cyanide	Spills from within the former building migrating to the subsurface	Yes	Yes (TCE, Cyanide)	No	Soil removal needed followed by MNA ¹
AOC 2 (RA-2)	Former Service Garage, 2 USTs, and Potential Former Lagoon	TPH, VOCs, metals	Spills from within the former building migrating to the subsurface	Yes	Yes (ETPH)	Yes - Soil removal in 2006	Complete Post- Remedial Monitoring ²
AOC 3 (RA-3)	Former 12,000 Gallon UST, Waste Oil Storage Area, TCA Tank	TPH, VOCs	Releases from USTs, Spills from Waste Handling	Yes	Yes (ETPH, TCE)	Yes - Soil removal, groundwater extraction, and ORC in 2006	Additional Soil removal needed followed by MNA
AOC 4 (RA-4)	Eastern Building Area (Degreasing, Sumps, Drains, Drywell, Grit Room, Former Loading Docks)	VOCs, Metals, TPH	Releases Through Floor Near Sumps/Drains	Yes	Yes (TCE)	No	Soil removal needed followed by MNA
AOC 5 (RA-5)	Back Door Area where DEP alleged Dumping Occurred	VOCs, TPH, Metals	Impact to Surficial Soils from Spills/Dumping	Yes	Yes (ETPH, TCE, Cd, Pb (believed due to ash))	Yes - Soil removal in 2005	MNA

¹MNA = monitored natural attenuation.

²A request was previously submitted to the DEEP to discontinue monitoring in AOC 2. The DEEP has yet to approve this request. If the request is not approved, additional monitoring will be required.

Summary of Areas of Concern

Former JT Slocomb Facility – Glastonbury, CT

AOC	Description	Substances of Concern	Potential Release Mechanisms	Testing Conducted?	Release Identified?	Remediation Conducted?	Status (Recommendation)
AOC 6	Former Hazardous Waste Storage Area	VOCs	Release of Contaminants to the ground surface	Yes	No ¹	No	NFA
AOC 7	Existing Electrical Transformer	TPH, PCBs	Releases of Dielectric Fluids to the Ground Surface	Yes	No	NA	NFA
AOC 8	Former Electrical Transformer	TPH, PCBs	Releases of Dielectric Fluids to the Ground Surface	Yes	No	NA	NFA
AOC 9	Western Loading Docks and Leachfield Area	TPH/VOCs	Releases of Contaminants During Loading/Unloading Activities	Yes	No	NA	NFA
AOC 10	Eastern Loading Dock	TPH/VOCs	Releases of Contaminants During Loading/Unloading Activities	Yes	No ²	NA	NFA
AOC 11	Former 3,000 Gallon Fuel Oil UST	ТРН	Releases from the UST to surrounding soils	Yes	No	NA	NFA

¹Although VOCs and TPH were detected in the soils beneath this AOC, the upgradient releases from the 12,000 gallon UST is believed to be the source.

²Although elevated TPH was identified in this AOC it is believed to be due to release from former 12,000 gallon UST (AOC 3). No other indication of release at loading dock was identified.

The following sections provide a summary of each identified release areas:

Release Area 1 (RA-1) - Western Building Area

The chlorinated solvent compound trichloroethylene (TCE) was initially detected in the groundwater at the location of monitoring well MW-7 located along the northwestern corner of the former building. Industrial activities have been completed in the western portion of the former building, and a "dye house" appears to have been located in this portion of the former building as indicated on historical maps. Other potential sources of impact beneath the western portion of the former building include a former septic area and a former cyanide solution tank.

Investigations have been undertaken beneath the western portion of the former building in order to evaluate potential sources of impact. Investigations in 2003 did not indicate a significant source area for the TCE impacts in AOC 1. However, , TCE was detected in a soil sample at the location of interior boring INT-4 (2') at a concentration of 0.21 mg/kg and at another location (INT-3, 2') at a concentration of 0.074 mg/kg. The concentration of TCE in the INT-4 sample slightly exceeded the GA PMC of 0.1 mg/kg.

During Triton's Phase III ESA, 12 soil borings were advanced in the western building area in order to further evaluate the extent of VOC impacts (TB-201 through TB-208 and TB-221 through TB-224). As indicated in Table 2, TCE was detected in excess of the GA PMC in the sample collected from TB-203, TB-222, and TB-224. The VOCs 1,1-dichlorothene and tetrachloroethene were also detected at concentration in excess of the GA PMC in the sample collected from TB-224. The sampling using synthetic precipitation leaching procedure (SPLP) analytical procedure completed at TB-204 provided confirmation that the TCE concentration at previous soil boring INT-4 comply with RSR criteria.

Cyanide was not detected in the soil samples collected from TB-207 or TB-208 which were advanced in the locations of a former cyanide tank and the approximate area of a former septic area.

Supplemental sampling of the release area was completed on March 15, 2013. Three soil borings, TB-301, TB-302, and TB-303 were advanced in the western building area to further refine the estimated excavation extents and soil disposal quantities for remediation. Soil samples collected from these borings were analyzed for halogenated VOCs using the SPLP. As indicated in Table 2, TCE was detected in excess of the GA PMC (in this case the GWPC) of 5 ug/L in samples TB-301 (0-2' and 2-4'), TB-302 (0-2'), and TB-303 (0-2'). Concentrations ranged from 7.3 ug/L (from soil sample TB-303 (0-2')) to 41 ug/L (from soil sample TB-301 (2-4')). This data indicates that the release area extends further south/southeast than what was determined in the earlier investigation. Additional delineation will be generated during the remedial activities using post-excavation samples. Laboratory analytical data is attached in Appendix D.

Three monitoring wells were sampled during the Phase III ESA from this area (MW-103, MW-104, and MW-105). TCE concentrations in these three wells each exceeded background. Detected concentrations ranged from 7.1 ug/L at MW-105 to 32 ug/L at MW-104. MW-104 is located immediately down gradient of the area of soil impact. Removal of the TCE impacted

soils beneath the former building should eliminate the source of groundwater impact and assist in the degradation of residual TCE in the groundwater at this location.

According to the DEEP, the surrounding residential drinking water wells in the area have previously been tested. Although low levels of VOCs have been identified in some wells, they have been detected at concentrations below drinking water standards. The DEEP was satisfied that the TCE plume identified on site does not constitute an ongoing risk to these off-site wells.

The approximate extent of the VOC impacted soil requiring remediation in RA-1 is illustrated on Figure 2.

RA-2 - Former Service Garage Area

A former service garage was located in the south-western portion of the site. This area of the site was also suspected of having a former sludge lagoon (see Figure 2). Investigations were undertaken in this area by Handex in 1999. Petroleum impacted soils were identified at the location of monitoring well MW-6 in front of the former garage building area. No indications of any industrial sludge or other indications of a lagoon were noted.

In April 2004 remedial activities (excavation) were undertaken to remove the petroleum impacted soils. Two (2) old, abandoned USTs (believed to be formerly used for gasoline storage) were identified at that time. These USTs and the impacted soils were removed. Post-excavation sidewall and bottom samples were collected in the excavation and the results of the sampling indicated that the impacted soils were successfully removed. Post-remediation groundwater monitoring has been completed in this area and the previous owner requested DEEP approval for discontinuation (closure) of work in this AOC.

Triton is not aware of whether the DEEP responded to this request. If the DEEP does not approve the discontinuation of monitoring, additional groundwater monitoring may be required.

RA-3- Former 12,000 Gallon UST and Storage Area

A 12,000 gallon fuel oil UST was formerly located on the southeastern side of the former building. This area was also once used for waste oil storage and parts washing and contained a coal hopper and a former storage garage. A 1999 report also indicates that a 500 gallon UST used to store 1,1,1-trichloroethane (TCA) may also have been located in this AOC (unconfirmed). Lastly, historical maps indicated that a "machine shop" may have operated in this corner of the site during the historical mill operations.

The 12,000 gallon UST had documented releases which caused accumulation of oil (free product) on the water table immediately down gradient of the tank. The fluctuation of the water table was reported to have caused smearing of the oil in a zone about three feet thick. Some chlorinated VOCs (including TCA) were also detected in soil in the vicinity of this UST. The impact in this area was reportedly the result of three separate sources: 1) the leaking heating oil UST, 2) the dumping and/or the washing of parts in the area near HD-2, and 3) potential poor handling of waste oil drums.

The extent of the impacts in this AOC was further assessed in 2003. Remediation activities were then undertaken in March of 2004. The UST along with 1,248 tons of petroleum impacted soil were removed in March 2004. In addition, approximately 22,250 gallons of oily water were reportedly pumped from the area during the remediation process.

The post-excavation soil sampling results indicated that the free product and petroleum impacted soils were successfully removed in the exterior areas. Petroleum impacted soils (exceeding RSR criteria) were left in place on the western side of the excavation extending beneath the former building (represented by samples SW-6 and MW-106). Further removal of these soils was reportedly not possible at the time without undermining the structural integrity of the former building. Impacts from the UST release are also believed to be the source of the detected impact identified at the location of boring SA-10 located at the loading dock (AOC-13).

Following the excavation of the impacted soils, approximately 390 pounds of Oxygen Release Compound (ORC®) was spread throughout the excavation to promote the accelerated degradation of residual petroleum hydrocarbons in the groundwater.

During the Phase III investigation, soil borings TB-218 through TB-219 and TB-226 through TB-229 were advanced beneath the former building in order to further evaluate the extent if petroleum impacted soil beneath the former building. ETPH was detected in the TB-219 (5-6') and TB-229 (4-8') samples at concentrations (11,000 mg/kg and 1,200 mg/kg, respectively) that exceed the RDEC and GA PMC of 500 mg/kg. Several petroleum related VOCs (including n-butlylbenzene, sec-butylbenzene, n-propylbenzene, and 1,2,4-trimethylbenzene) were also detected at concentrations which exceeded their respective GA PMC numerical values. The VOC concentrations did not exceed the RDEC.

An elevated concentration of leachable TCE was detected at soil boring TB-232 (0-2') located in this area. Given the shallow nature of this sample, this could be related to a surficial release in AOC-3.

Supplemental sampling of the release area was completed on March 19, 2013. Three soil borings, TB-304, TB-305, and TB-306 were advanced west of the former excavation area. Soil samples collected from these borings were analyzed for ETPH with additional analysis for SPLP halogenated VOCs conducted on soil samples collected from borings TB-304 and TB-305. As indicated in Table 2, ETPH was not detected above applicable RSR criteria; however, ETPH was detected above the laboratory reporting limit in samples TB-304 (0-2'), TB-305 (2-4'), and TB-306 (2-4') (440 mg/kg, 367 mg/kg, and 31.4 mg/kg respectively). SPLP TCE was detected in excess of the appropriate GA PMC in sample TB-304 (0-2') at a concentration of 41.5 ug/L. TCE detected in soil sample TB-304 (0-2') will be removed as part of the remediation of ETPH within this release area. Laboratory analytical data is attached in Appendix D.

RA-4 - Eastern Building Area

Several historical potential sources of impact have been located in the northeastern quadrant of the former building. Potential sources include a degreaser, dip tank, solvent still, potential drywell, and a former loading dock area (prior to building addition), sumps, and trenches. A sand blast grit storage area was also located in this portion of the former building.

Previous testing has been completed in this area including the collection of a "Sump" soil sample and collection of two soil vapor samples in the degreasing area. Elevated VOC concentrations were reportedly not identified in the soil vapor samples collected in this area (SV-10 and SV-11). Low concentrations of TCE (0.034 mg/kg), TCA (0.013 mg/kg), and 1,1-DCE (0.0022 mg/kg) were identified in the "Sump" soil sample collected in this area. These concentrations are below applicable RSR criteria for soil.

During the Phase III investigations, soil samples were collected at the reported locations of a hand dip tank (TB-211) and a solvent still (TB-212). VOCs were not identified in either of these samples. Four soil borings (TB-213, TB-214, TB-215) were advanced at the location of monitoring well MW-107, where TCE had previously been detected in soil at a concentration exceeding the GA PMC. The data collected from these borings has indicated at the TCE concentrations exceeding the GA PMC are somewhat limited to the vicinity of MW-107/TB-215. Concentrations at TB-213, TB-214, and TB-216 did not exceed RSR criteria at the same depth interval.

Four soil borings were advanced near the easternmost corner of the former building (TB-220 and TB-230 through TB-232) in the vicinity of a former trench drain. TCE was detected in a soil samples collected from TB-220 (0-2') and TB-230 (0-4') at a concentration (19 mg/kg and 20 mg/kg, respectively) exceeding the GA PMC. Leachable TCE was detected in soil samples collected from TB-230, TB-231, and TB-232 at concentrations (120 μ g/L, 170 μ g/L, and 87 μ g/L, respectively) in excess of the GWPC. The source of this impact may be related to the former trench drain. Conversely, the impact may also be related to releases in the exterior area (AOC 3) where TCE was detected in a shallow sample TB-232 (0-2'). The TCE detected in soil in this portion of the former building is likely the source of the TCE detected in groundwater at HD-3, which is located in a downgradient direction from this portion of the former building.

Supplemental sampling of the release area was completed on March 15, 2013. Seven soil borings, TB-311 through TB-317 were advanced around two areas of TCE impact. Soil samples collected from these borings were analyzed for SPLP Halogenated VOCs. As indicated in Table 2, TCE was detected above the appropriate GA PMC of 5.0 ug/L in samples TB-311 (5-7'), TB-313 (4-6'), TB-314 (0-2'), TB-315 (0-2'), and TB-317 (2-4'). Concentrations in these samples were: 10 ug/L, 26.4 ug/L, 53.2 ug/L, 18.9 ug/L, and 77.5 ug/L respectively. The full extent of impact can be established as part of remediation. Laboratory analytical data for the March soil sampling is attached in Appendix D.

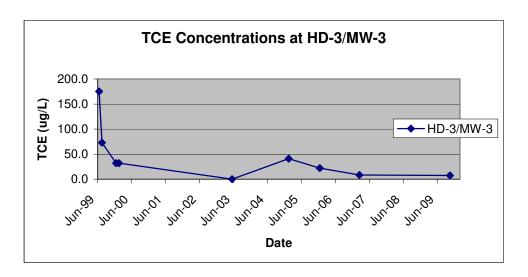
The sand blast grit area has undergone testing for the purposes of hazardous waste closure requirements under RCRA. Testing in this area, which included concrete chip sampling, has reportedly indicated that this area has not been impacted by releases.

Remedial action will be required in the eastern building area in the approximate area indicated on Figure 2.

RA-5 - "Back Door Area"

Based on information contained in previously prepared reports, a 1979 DEEP memo alleged that dumping may have occurred near the back door on the northeastern corner of the facility (see

Figure 2). Testing was conducted in this area by Handex in 1999 including the installation of four borings and one (1) monitoring well. Soil analytical data collected in this area did not indicate elevated levels of VOCs with the exception of 16 ppb of TCE (which is well below RSR criteria) at the location of boring A-3. Coal ash was also observed in the soils in this area during the advancement of the soil borings.


A low concentration of leachable cadmium (0.032 mg/L) was identified in a sample collected from the ash layer at boring A-2 (3-5') in this area. Although the detected concentration of cadmium exceeded the GA Pollutant Mobility Criteria (GA PMC) of 0.005 mg/L, the exemption for coal ash would obviate the need for any remediation of this occurrence.

TPH was detected in soil at the location of monitoring well HD-3 (depth of 3-5') at a concentration of 870 milligrams per kilogram (mg/kg) during the Handex investigation in 1999. TPH also was detected in an earlier soil boring (B-4) advanced by LandTech Remedial in this same area in 1998 (at a concentration of 1,745 mg/kg). Handex attributed the elevated TPH detected in this area to the presence of a pocket of coal ash in the subsurface. The DEEP RSRs contain an exemption for compliance with the GA PMC for impacts attributable to coal ash. However, the RSRs do not exempt compliance with the DEC.

Remediation of a limited volume of impacted soils was conducted in this area in 2005 by GEI. Results of soil samples collected following the soil removal effort indicated that the remaining concentrations in this AOC were below residential RSR criteria. This remedial effort was conducted under DEEP oversight and the DEEP approved the remedial actions taken.

Supplemental sampling at RA-5 was completed on March 15, 2013 to investigate a potential source of cadmium which has been detected in the groundwater at monitoring well MW-3. Three soil borings, TB-318 through TB-320 were advanced in the vicinity of (and upgradient of) HD-3/MW-3 to evaluate the potential cadmium impact. Soil samples collected from these borings were analyzed for SPLP cadmium. As indicated in Table 2, cadmium was not detected above the laboratory reporting limit of 0.004 mg/L in any of these samples. Based on this data, further remediation soil of this area is not required. Laboratory analytical data for the March soil sampling is attached in Appendix D.

Groundwater monitoring has been undertaken at the location of HD-3/MW-3 on numerous occasions (see Table 3A). As indicated in Table 3A, TCE and vinyl chloride have been detected in samples collected from this well in excess of the GWPC of 5.0 ug/L and 2.0 ug/L respectively. The TCE data has shown a decreasing trend, as illustrated in the graph below.

As indicated, TCE concentrations have been reduced from a historical high of 175 ug/L (in 1999) to 7.4 ug/L detected during the most recent Phase III testing activities.

It is likely that the release(s) of TCE detected beneath the eastern building area (AOC-4) or exterior area (AOC-3) is the source of the TCE detected in the HD-3 samples, versus any releases in the "back door" area. It is anticipated that concentrations will continue to decrease to background through natural attenuation, following the remedial actions at AOC-3 and AOC-4.

Lead and cadmium have been detected in groundwater samples collected from this monitoring well over time at concentrations which exceed background, as well as the SWPC. Sampling conducted on October 13, 2009 and February 11, 2010 detected concentrations of cadmium at 22 and 17 ug/L respectively, which exceed background concentrations and the default SWPC (6 ug/L). Lead was detected in the October 13, 2009 sample at 15 ug/L, which exceeds the default SWPC of 13 ug/L. However, as described in Section 4.0, alternative SWPC have been developed for cadmium and lead. The concentrations in both the October and February sampling rounds at HD-3 comply with the calculated alternative SWPC.

Although remediation of additional soil in RA-5 does not appear to be required for RSR compliance, natural attenuation monitoring will be required until such time as groundwater conditions achieve compliance with background.

4.0 - REMEDIAL APPROACH

A number of remedial alternatives were considered to address direct exposure and pollutant mobility exceedances in the site soils and the residual dissolved phase impact in groundwater. Although the TCE and petroleum impacts identified in the site soils are amenable to in-situ methods such as soil vapor extraction (SVE), and chemical oxidation, the efficacy of these methods can be affected by numerous variables including subtle geologic factors. These methods also require ongoing maintenance and monitoring.

Given that the soil impacts are shallow and can be readily accessible following the removal of the building slab, excavation (and off-site disposal) has been selected as the remedy for the soil impacts that remain in excess of RSR criteria. It is anticipated that, this soil removal effort will help remove the remaining sources of the dissolved phase groundwater impacts. As such, no direct remediation of groundwater is believed to be necessary at this point, other than monitoring the natural attenuation of residual impacts following the cessation of soil removal efforts. The remedial approaches to be used are summarized on the Table on the following page.

Summary of Proposed Remedial Methods

Former J.T. Slocomb Facility

Release Area	Soil Remedial	Groundwater Remedial
	Approach	Approach
RA-1 (Western Building Area)	Excavation of TCE Impacted	Monitored Natural Attenuation
	Soil Exceeding GA PMC	Following Soil Removal ¹
	(Excavation Area 1)	
RA-2 (Former Service Garage)	Complete	Confirm CTDEEP Approval of
		Monitoring or Conduct Additional
		Post-Remediation Monitoring
RA-3 (Former UST Area)	Excavation of remaining	Monitored Natural Attenuation
	ETPH Impacted Soil to	Following Additional Soil
	Comply with RDEC and GA	Removal ¹
	PMC	1
	(Excavation Area 2)	
RA-4 (Eastern Building Area)	Excavation of TCE Impacted	Monitored Natural Attenuation
	Soil Exceeding GA PMC	Following Soil Removal
	(Excavation Areas 3 and 4)	
RA-5 (Back Door Area)	Complete	Monitored Natural Attenuation
Nickers		

Notes:

4.1 - Public Notice

The RSRs require that the property owner provide public notice prior to remedial activities by two (2) of the following three (3) methods: 1) publishing notice in a newspaper of substantial local circulation; 2) by written notice to abutting property owners; or 3) by posting a sign at the property. At the discretion of DEEP (or by a petition from the public) a public hearing may also be required to discuss the proposed remediation.

On March 6, 2013, the Town of Glastonbury published notice with the Hartford Courant. In addition, the Town of Glastonbury submitted a letter to the Director of Health, Mr. David W. Boone, on February 26, 2013, notifying him of the intended remediation. A sign was posted at the site by Triton on February 27, 2013. The sign will remain posted for a minimum of 45 days prior to remedial activities (and submittal of the RAP) and will remain posted for the entire duration. Documentation of public notice is provided in Appendix A.

^{1.} Should monitored natural attenuation fail to achieve compliance with background conditions, supplemental remedial actions will be required.

4.2 - Regulatory Approvals

Some of the remedial areas are located within the 100 foot upland review area for Roaring Brook. As such, approval was sought to conduct the work from the Glastonbury Conservation Commission/Inland Wetlands and Watercourses Agency. A permit was subsequently approved to conduct the remediation (as well as building demolition) in May 2011. A copy of the motion approving the permit is attached in Appendix C.

4.3 - Soil Remediation

Four areas of proposed soil removal (Excavation Areas 1 through 4) are illustrated on Figure 2. Following the initial removal efforts in these areas, post-excavation soil samples will be collected from the bottom and side walls of each excavation and analyzed for the compounds of concern in each area being remediated. Should the post-excavation samples exceed RSR criteria, additional soil will be removed until compliance is demonstrated.

4.4 - Groundwater Remediation

As indicated in the preceding sections, the compounds which have been identified in the groundwater at the site in excess of background conditions include ETPH, VOCs (both aromatic and halogenated VOCs), cadmium, lead, and cyanide. It is anticipated that the excavation of the impacted soils in RA-1, 3, 4 and 5 combined with monitored natural attenuation (MNA) will be sufficient to bring about conditions in groundwater which will comply with RSR criteria over time. However, should compounds of concern remain elevated following the remedial actions, supplemental groundwater remediation methods may be required.

Included in Section 7.0 of this report is a proposed plan for groundwater monitoring within each release area to document that the soil remediation activities were successful in removing sources of ongoing impact and documenting compliance with RSR requirements.

4.5 - Health and Safety

All remediation workers at the site must have a minimum of a current OSHA 40-hour HAZWOPPER certification. Proof of the certification must be supplied before a worker is allowed to begin any activities at the site. Access to each work area will be limited to

workers and supervisors actively participating in tasks associated with completion of the intended goal. All other personnel will be directed to remain at a pre-designated observation area to monitor active workers for safety.

A Health and Safety Plan (HASP) will be prepared to meet the requirements of OSHA requirements for hazardous waste operations specified in 29 CFR 1910.120. All work will be conducted in accordance with the HASP. It is assumed that Level D personal protection (standard construction safety equipment) will be sufficient for most field work, however, intrusive activities such as hot spot excavation, may require the use of Level C (respirators) for protection of workers in the immediate vicinity of such work.

The objective of the HASP will be to protect the health and safety of on-site personnel. The HASP will include the following:

- Brief Site Description
- Site Safety Hazards
- Chemical Compounds of Concern
- Project Personnel
- Site Training/Medical Surveillance Requirements
- Personnel Protective Equipment (PPE) Requirements
- Decontamination Procedures
- Work Zones
- Investigation Derived Waste Disposal/Handling
- Emergency Response
- Emergency Resources and Contacts
- Generic First Aid

4.6 - Sedimentation and Erosion Control

Prior to any construction activities, an erosion and sedimentation (E&S) control system (silt fence) will be installed to prevent sediment-laden runoff from entering Roaring Brook and siltsack sediment control devices will be used to prevent sediments from entering existing catch basins. All E&S measures will be installed in accordance with state guidelines. In accordance with the Town's wetland permit, these E&S controls will be inspected by the Glastonbury Environmental Planner prior to initiation of work. Figure 2 illustrates the proper E&S control measures.

To prevent off-site migration of materials, all equipment will be decontaminated prior to leaving the site and a temporary anti-tracking apron will be provided for construction vehicles that are used in disturbed areas.

4.7 - Dust and Odor Control

As part of the remedial planning process, Triton has developed a plan to address the control of fugitive and airborne dust emissions during the remedial actions at the site. The primary objective of this plan is to formulate a strategy for controlling, to the greatest extent practicable, fugitive or airborne dust emissions at the Site.

4.7.1 - Potential Fugitive Dust Sources

The primary contaminants of concern, with respect to fugitive dust emissions at the Site, are VOCs and petroleum hydrocarbons. The following project work areas/tasks have been identified as potential sources of fugitive dust emissions. At a minimum, dust control techniques will be employed in:

- Areas of heavy equipment and vehicular traffic;
- Keeping streets clean of tracked soils or excavated fill materials;
- Soil and fill excavation activities;
- Exposed excavation faces or disturbed ground surfaces;
- Soil and fill stockpiles;
- Soil and fill loading and unloading operations; and
- Soil backfill placement, grading, and compacting.

4.7.2 - Dust Control and Mitigation Procedures

The following methods will be used to prevent conditions conducive to dust generation and suppress dust should it occur:

Adjacent paved areas and roads used for construction traffic will be maintained free of tracked soil or fill materials. At minimum, paved traffic areas, driveways, sidewalks, and streets will be cleaned on a daily basis by wet sweeping and/or washing. More frequent cleaning will be provided as necessary. Adjacent paved areas and roads will be left clean at the end of each day.

- Exposed excavations, disturbed ground surfaces, and unpaved traffic areas will be maintained in a moist condition.
- During non-working hours, the Site will be left in a condition that will prevent dust from being generated. At the end of each work day, disturbed areas will be wetted down and construction fencing will be inspected to prevent access and additional disturbance.
- Provide temporary cover and daily maintenance for soil or fill stockpiles and keep active surfaces moist.
- An anti-tracking pad will be provided at active site entrance/egress locations to keep adjacent paved areas clean.

Construction activities will be conducted using methods that minimize dust generation.

4.7.3 - Nuisance Odor Control

If nuisance odors are generated from site activities, the consultant and remedial contractor will attempt to identify the source of the odor and implement appropriate odor control measures. Measures can include but are not limited to:

- Provide covering of excavated surfaces or stockpiles of soil with appropriate sheeting.
- Minimize the time that excavated areas are exposed to the atmosphere, and/or work in smaller increments to reduce surface soil exposures.
- Use odor control agents (foam);
- Remove all odorous materials at the site or cover and secure materials at the end of each work day.
- Trucks or other excavation equipment will not be allowed to idle when not in active use on the site.
- Establish, to the extent practicable, truck loading and staging areas that preclude exhaust fumes and dust from affecting air quality of adjacent residential or other occupied areas.

4.7.4 - Best Management Practices

The following Best Management Practices (BMPs) will also be followed to help minimize and control dust emissions at the Site to the greatest extent possible:

Traffic - On-site truck traffic will be restricted to areas which do not contain exposed impacted soils. Trucks being loaded for off-site disposal will queue in a specified loading area. Truck exit areas will be considered as high potential dust source areas, and as such, will be a priority for dust controls utilizing water and/or gravel. With respect to human traffic into and out of the site, the ingress/egress locations will be maintained throughout the project.

Hours of Operation - The dust monitoring plan will be in effect during all hours of operation at the Site (Monday through Friday, 7:00 a.m. to 3:30 p.m.). As a best management practice, if high winds are evident at the close of a work day (or immediately prior to a weekend, holiday, etc.), site personnel should evaluate vulnerable areas and implement controls, as appropriate, to minimize off-hours emissions.

4.7.5 - Dust Monitoring and Corrective Action

During the remedial action, an air monitoring program will be implemented by Triton to identify and quantify safety and health hazards and airborne levels of particulates or dust. Triton will perform real time particulate monitoring in the work zone and at perimeter locations to the north, south, east and west of the work areas. Triton will be responsible for making sure that the best management practices to control dust emissions are followed and they are responsible to speak directly to the remediation contractor to stop work if deemed necessary. The air sampling program will be used to assure proper work practices, personal protective equipment for site workers, as well as evaluate the potential impacts to adjacent residences. Triton will perform real time particulate monitoring in the work zone and at site perimeter locations. The purpose of this monitoring is to determine worker and general public exposure to the contaminants of concern. This will be accomplished by comparing the real time particulate result with the established action levels. The dust action levels for the work zone area and the perimeter area are based on concentrations in soil. The action level for the worker exclusion zone monitoring is 5.0 mg/m³ (total dust), and the action level for the perimeter monitoring for total dust is 1.24 mg/m³. A Dust Monitor will be used to monitor dust particulates smaller than 10 microns (PM 10). The monitoring will be continuous and will be recorded on the unit's data logger hourly for calculating an 8-hour time-weighted average.

The work area action level has been established using OSHA PELs and the highest detected COC concentrations in soil, which will be converted to a total dust concentration that can easily be monitored by particulate meters using the following equation:

Action Level
$$(mg/m^3) = PEL (mg/m^3)$$

highest concentration (%) times a safety factor of 2

The following table summarizes calculated dust action levels.

Contaminant of Concern	OSHA PEL (mg/m3)	Highest Detected Conc. 2 (mg/kg)	Highest Detected Conc. (decimal form)	Calculated Action Level (mg/m3)
Coal Tar Pitch Volatiles ¹	0.2	7.283	0.0000073	13,730.6
Naphthalene	50.0	0.573	0.0000006	43,630,017
Lead	0.05	241	0.0002410	104
Arsenic	0.01	5.1	0.0000051	980
Trichloroethylene	535.0	43.0	0.0000430	6,220,930
Tetrachloroethylene	670.0	2.38	0.0000024	140,756,303
Dust (Respirable Fraction)	5.0	NA	NA	5.0

Notes:

Based on the above calculations, a work area action level of 5.0 mg/m³ (based on the action level for respirable dust) would be protective of human health for work area exposures. The action level general particulate exposure as well as exposure to contaminated dust emanating from the site. If average dust concentrations exceed 5.0 mg/m³, site activities will be stopped and work practices re-evaluated.

The site perimeter monitoring total dust action level is based on long term exposure levels and therefore action levels are more conservative. The site perimeter monitoring action levels for the general public surrounding the site for total dust are provided on the following table. As such, the action levels for total dust (based on lead) will be set at 1.24 mg/m³ based on the lead concentrations in soils at the site.

^{1.} OSHA has not established PELs for individual PAH compounds. Rather, they have established a PEL for "coal tar pitch volatiles". The maximum detected concentration is based on a sum of the maximum values detected for each PAH identified at the site.

^{2.} Equal to the highest detected concentration in site soil.

Chemical	Health-Based Air Concentration (ug/m³)	Basis [#]	Soil Concentration (mg/kg)	Conversion (kg/mg)	Safety Factor*	Dust Action Level (mg/m³)
Lead	0.15	NAAQS	241	1 x 10 ⁻⁶	2	1.24
Arsenic	0.015	CA Inhalation REL	5.1	1 x 10 ⁻⁶	2	5.88
Trichloroethylene	600	CA Inhalation REL	43	1 x 10 ⁻⁶	2	27,907
Tetrachloroethylene	600	CA Inhalation REL	2.38	1 x 10 ⁻⁶	2	504,202
PAHs	9	CA Inhalation REL	7.283	1 x 10 ⁻⁶	2	2,471.51

Basis[#] = National Ambient Air Quality Standard (NAAQS). CA Inhalation Reference Exposure Level (REL). RELs are "safe" exposure levels. The REL for arsenic is both the 8-hour and chronic value. The REL for PAHs is based on naphthalene and is a chronic value (a shorter term value is not available).

Equation:

<u>Health-Based Air Concentration (ug/m³)</u> = Dust Action Level (ug/m³) Soil Conc. (mg/kg) * Conversion (kg/mg) * Safety Factor

In real time, the Consultant will be able to determine significant increases in the particulate level in the work zone so that control measures can be immediately implemented. The Contractor will implement all dust-monitoring/correction programs. Daily site safety meetings will reinforce the need for all workers to be cognizant and responsive to conditions or activities that generate visible dust. If visible dust is observed in an area continuously for more than one minute, the observer should notify the consultant and the consultant shall document the occurrence and determine the course of action to take to reduce visual dust, as outlined below. The area foreman and supervisors will be notified immediately if dust is observed or if conditions exist where dust could be a problem. The initial step of the program is to visually observe the infraction.

The sequential corrective action task list for the elimination of fugitive dust at this site is presented below:

- 1. Reduce the pace of, or cease, dust producing activity until the problem is corrected.
- 2. Notify the area supervisor of dust conditions and implement dust suppression procedures.

- 3. Remove accumulated dirt and soil from problematic areas, and/or cover, enclose, or isolate dust-generating areas/surfaces to shield them from wind, sunlight, or heat sources.
- 4. Increase frequency, volume, and/or coverage of water misting, sprays, and foggers to prevent soil and dirt from drying.
- 5. Provide additional dust suppression systems and operating personnel during the task duration.
- 6. Modify operating procedures and methods to eliminate problematic conditions.
- 7. Increase level of worker awareness and instruct them on implementation of any new or modified operating procedures.
- 8. Report and document all procedural modifications and results.
- 9. Perform routine audits of dust suppression methods and work areas for dust sources.

Triton will have the authority to implement this Dust Control Plan and stop work based on the monitoring data or visual observations.

4.7.6 - Screening for Volatile Compounds

For volatile organic compounds, which are capable of detection by a photoionization detectors (PID), monitoring of the breathing zone in the work area will be conducted using a MiniRAE PIDs. The PID can detect a wide variety of gases that are ionizable. Under most circumstances, the PID will be calibrated with isobutylene. Based on the relative ionization energy between isobutylene and the gas of interest, a correction factor (CF) can be used to convert a PID reading (in isobutylene equivalents) to a concentration of the gas being measured.

RAE systems has published correction factors for individual gases as well as gas mixtures. In order to calculate actions levels based on a PID reading (in isobutylene equivalents) the permissible exposure level for a particular chemical (established by OSHA, NIOSH or AGCIH) is corrected using the MiniRAE correction factor in order to develop a PID action level. The table in Appendix E provides a summary of the action levels developed in this manner. OSHA permissible exposure limits (PELs) have been used in cases where there is a difference in the exposure limits by these agencies.

Based on the soil analytical data collected at the site, the compounds/mixtures which are known or suspected to be present at the site are highlighted in the Table in Appendix E. As indicated in Appendix E, the lowest of the action levels for compounds

known or suspected to be present at the site is 18.18 parts per million (ppm) as read in isobutylene equivalents on the PID using a 10.6 eV lamp and 25 ppm on the PID if using a 11.7 eV lamp. If PID readings are sustained in the breathing zone at levels above these action levels, then work will be stopped.

4.8 - Decontamination

Decontamination of heavy equipment will be performed as necessary to minimize the potential spreading of contamination. Brushing, high pressure water, or a steam cleaner will be used for equipment decontamination.

An anti-tracking pad will be installed at the entrance to the unpaved portion of the site (northwest portion of site) remove accumulated soil from the vehicle tires. Any contaminated material which collects on the exterior of the equipment will be brushed off at the anti-tracking pad.

4.9 - Waste Management

All wastes removed from the site will be properly characterized for disposal parameters prior to removal from the site and disposed of at licensed disposal facilities. Waste removal from the site will be documented by manifest or bill of lading. Disposal documentation will be included in the Remedial Action Report (RAR).

5.0 - DOCUMENTATION AND REPORT PREPARATION

A licensed environmental professional (LEP) will oversee staff responsible for documenting the implementation of remediation activities, and the preparation and maintenance of records of remediation activities performed. In addition, the LEP will be responsible for monitoring that the project is completed in accordance with the RAP, the technical specifications, and generally accepted industry/engineering standards.

5.1 - Field Documentation

The following list identifies the specific responsibilities, including documentation and reporting requirements, of field oversight personnel.

- 1. Coordinating remediation activities with site personnel;
- 2. Monitoring compliance with provisions of the HASP;
- 3. Monitoring proper management of materials entering and leaving the site, including waste soils and other materials;
- 4. Photographic documentation of pertinent activities;
- 5. Documenting and reporting of any spills, leaks, or other discharges occurring at the site;
- 6. Documenting and reporting of any disruption/damage to utility structures;
- 7. Completion of a daily report summarizing the progress, events, contractor activities and other pertinent details;
- 8. Monitoring that erosion control and site security measures are adequately maintained throughout the project;
- 9. Maintaining transportation/disposal documentation; and
- 10. Decontamination prior to demobilization.

5.2 - Post-Remediation Report Development

Following the completion of soil remedial actions, a RAR will be prepared for the site and submitted to CTDEEP. The report will describe the completed work at the site, and will contain the following specific items:

1. Project narrative, including any deviations from the RAP or technical specifications;

- 2. Record site plans(s) showing the remedial areas;
- 3. Waste disposal documentation (manifests, bills-of-lading, certificates of disposal, etc.);
- 4. Waste disposal summary indicating the weights, volumes, and disposition of excavated materials;
- 5. Documentation of all materials incorporated into the project (paving materials, sub-base, etc.);
- 6. Photographs of remediation activities; and
- 7. Recommendations for future actions, including groundwater monitoring plan.

6.0 - POST-REMEDIATION GROUNDWATER MONITORING

Groundwater monitoring will be performed in each of the release areas at the site as required by the Transfer Act. The purpose of the monitoring will be to evaluate the effectiveness of soil remediation in preventing additional groundwater impacts and to monitor the attenuation of compounds (should they persist) until such time as compliance is achieved. Monitoring to document compliance with RSR criteria is required until four consecutive sampling events representative of seasonal variations indicate that groundwater conditions are at background conditions.

Once compliance with background has been demonstrated across four consecutive quarterly events, "post-remediation monitoring" is then required for one additional year, provided background conditions are maintained.

The previous site demolition activities resulted in damage to certain monitoring wells and the remedial actions will likely damage others. As such, new monitoring wells will be installed in order to provide a network of monitoring points to monitor each release area. After remedial actions are completed, a groundwater monitoring plan summarizing the proposed locations of the new/replacement monitoring wells, as well as the initial sampling frequencies and analysis, will be developed and included within the Remedial Action Report (RAR).

7.0 - CONCLUSIONS

Triton has prepared this RAP to summarize the intended remedial approach which will be undertaken at the former JT Slocomb facility in order to comply with the RSR and the Transfer Act. The remediation approach described in this RAP is believed to be protective of human health, prudent, and can achieve compliance with the RSRs and Transfer Act requirements. The proposed approach will consist of the excavation and off-site disposal of soils which exceed RSR criteria followed by the monitoring of the attenuation of residual dissolved phase impacts to groundwater. The need for supplemental remedial actions will be reviewed based on the groundwater concentrations observed in the post-remediation period. The work will be completed in accordance with all conditions of the Inland Wetlands and Watercourses Permit issued by the Town.

Public notice of the remedial actions was provided on March 6, 2013 through a notice in the Hartford Courant. In addition, a public notice sign has been posted at the site since February 27, 2013. No comments from the public have been received.

8.0 - REFERENCES

- 1. CT DEEP RSR (Sections 22a-133k-1, 22a-133k-2, 22a-133k-3 and Appendices A through G), dated January 1996.
- 2. Phase III Subsurface Investigation, Prepared by Land Tech Remedial, Inc., dated May 28, 1998.
- 3. Remedial Investigation Report, Prepared by Handex of Connecticut, dated September 1999.
- 4. Underground Storage Tank Facility Notification Form, (unknown date)
- 5. Letter to Mr. Maurice Hamel of CTDEEP from Handex, RE: "Supplemental Investigation Results", dated February 14, 2000.
- 6. Letter to Mr. Maurice Hamel of CTDEEP from GEI, RE: "Revised Site Remediation Investigation Activities", dated November 19, 2003.
- 7. "Summary of Remediation Activities and Proposed Post-Remediation Monitoring", GEI Consultants, Inc. (GEI), June 2, 2004;
- 8. Environmental Condition Assessment Form, submitted to CTDEEP in February 2005.
- 9. Letter to Mr. Maurice Hamel of CTDEEP from GEI, RE: "Recent Groundwater Sampling Results", dated June 12, 2006;
- 10. Letter to Mr. Dennis Foran of CTDEEP from GEI, RE: "Former JT Slocomb Corp. Facility", dated September 5, 2006;
- 11. "Pre-Demolition Asbestos Containing Materials Survey", Mystic Air Quality Consultants, February 3, 2006.
- 12. Letter to CTDEEP from GEI, RE: "Former JT Slocomb Corp Facility", dated September 5, 2006 (concerning hazardous waste storage closure activities in 2 site areas).
- 13. Phase I Environmental Site Assessment, Triton Environmental, Inc., December 2007.
- 14. Letter to Richard Johnson of Town of Glastonbury, Re: Limited Soil and Sediment Investigation, Triton Environmental, Inc., December 2007.
- 15. Phase III Environmental Site Assessment, Triton Environmental, Inc., April 2010.

9.0 - LIMITATIONS

Where visual observations have been included in this report, they represent conditions at the time of the site inspection, and may not be indicative of past or future site conditions.

In completing this Remedial Action Plan, Triton has relied upon information provided by subcontractors (i.e. laboratories). Triton provides no warranty regarding the accuracy and completeness of the information provided by these subcontractors. This Remedial Action Plan has been developed solely to address known impacts at the site. Chemical analyses have been performed during the course of the site investigation activities, however, it is understood that additional chemical constituents not searched for during the site activities may be present in soil, groundwater, or surface water at this site.

The Remedial Action Plan has specifically addressed on-site environmental conditions. The conclusions and recommendations contained in this report are based in part upon the observations and the data obtained from a limited number of soil and groundwater samples obtained from widely spaced sample locations. The nature and extent of variations between these sample locations may not be evident from the data obtained. Off-site conditions have not been evaluated at this time, and therefore, the remedial activities described in this report have not taken into account off-site conditions.

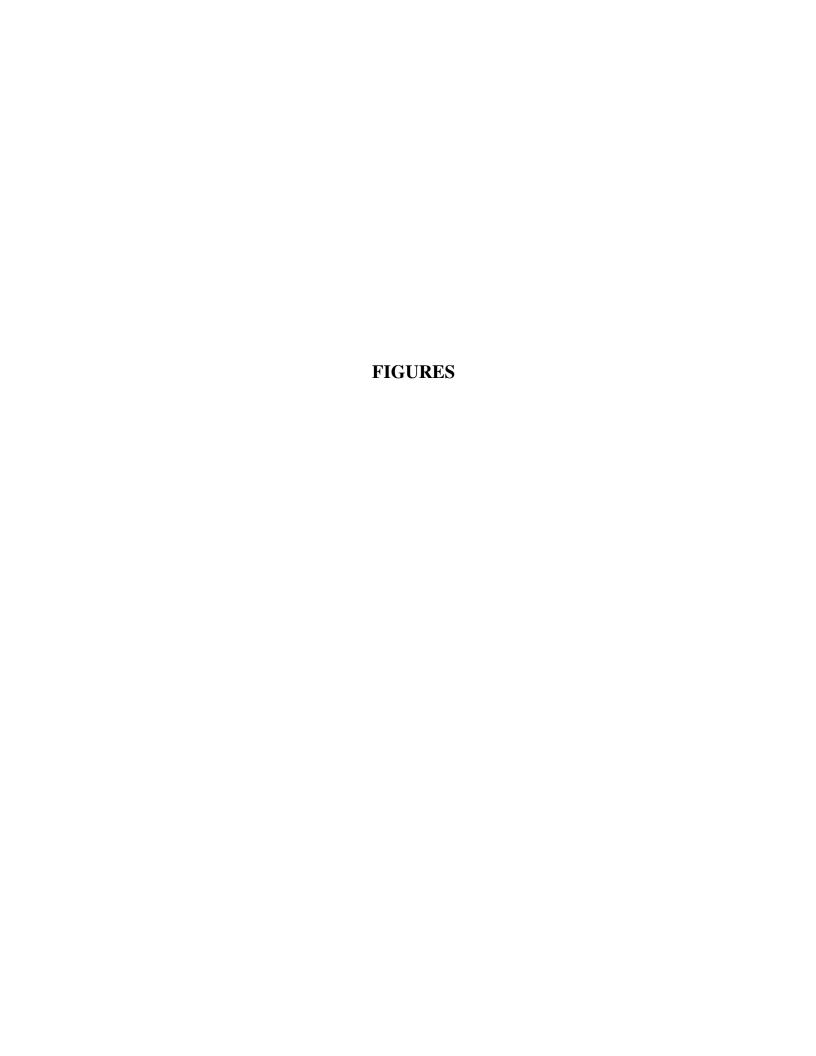
This Remedial Action Plan provides a recommended approach to the remediation of identified impacts at the site, based on accepted industry standards and engineering principles. No guarantee can be provided that the remedial measures outlined in this document will remove all impacts at the site.

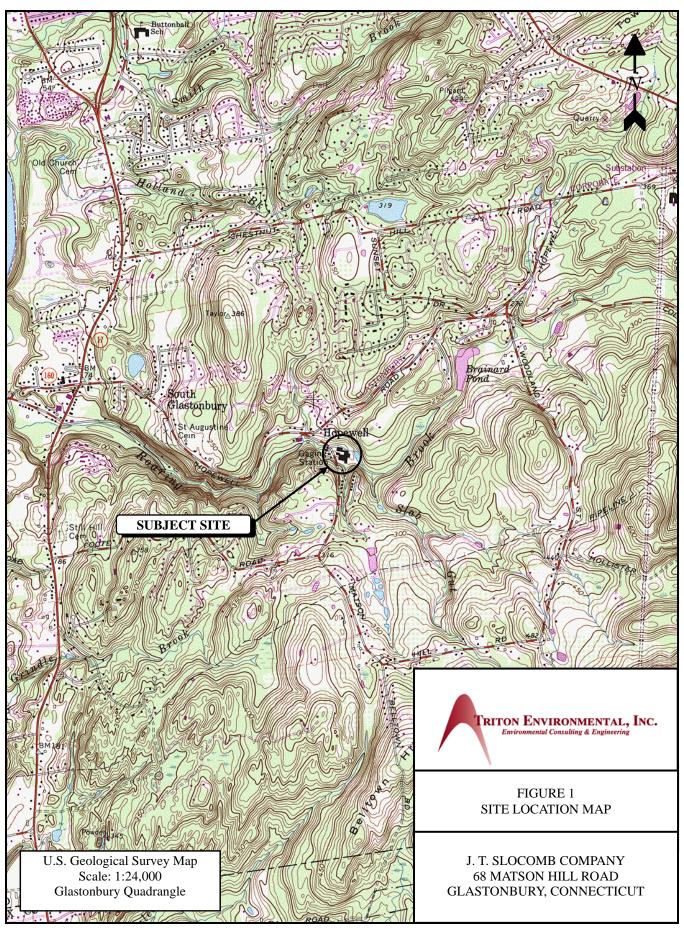
This RAP does not provide engineering specifications for the proposed pavement and should not be used for construction purposes.

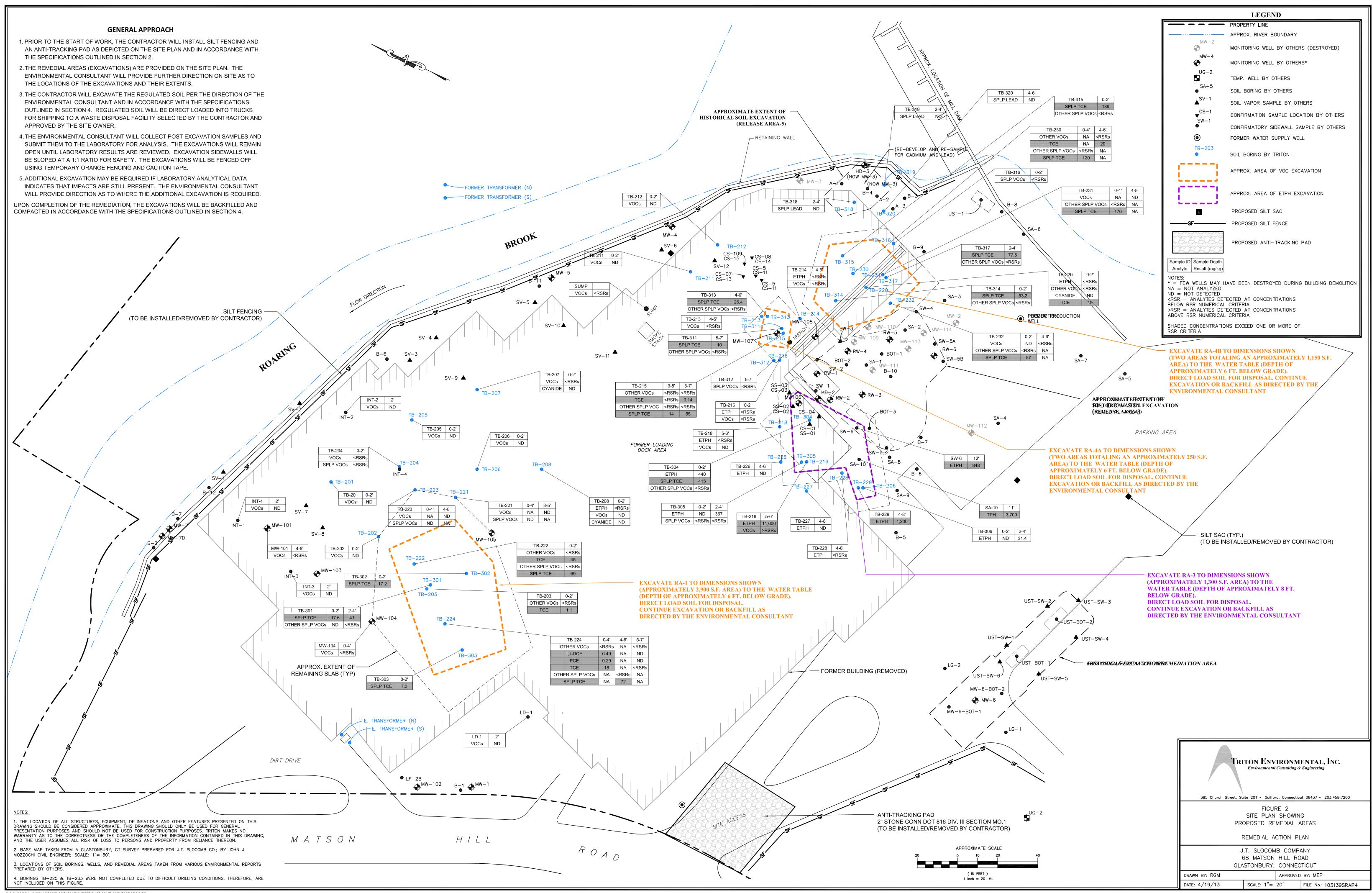
This Remedial Action Plan was prepared specifically for the Town of Glastonbury. No person or other body shall be entitled to rely upon or use information presented in this Report without written consent of Triton Environmental, Inc.

10.0 - SIGNATURES OF REPORT AUTHORS

This report has been prepared by Triton Environmental, Inc. The names listed below are the principal authors of this report. Requests for information regarding the content of this report should be directed to those individuals.


Mark G. Burno, LEP


Senior Project Manager


J. Carver Glezen, LEP Senior Vice President

Christopher E. Marchesi

President

TABLE 1

Groundwater Gauging Data Remedial Action Plan

Former JT Slocomb Facility

	Depth to Groundwater (ft)	PVC Elevation (ft)	Groundwater Elevation (ft)
MW-4	5.84	89.59	83.75
HD-3	7.97	93.52	85.55
MW-103	7.87	NA	NA
MW-104	6.40	NA	NA
MW-105	5.77	NA	NA
MW-108	4.13	NA	NA

Notes:

Measurements taken on October 13, 2009.

NA = No survey data available

TABLE 2 Summary of Analytes Detected in Soil Samples Former J.T. Slocomb Facility

68 Matson Hill Road - Glastonbury, CT

		RSR Criteria	L					Samp	le Location / Sam	ple Depth / Sampl	le Date				
Compound	IDEC	RDEC	GA PMC ¹	TB-201 (0-2') 10/21/09	TB-202 (0-2') 10/21/09	TB-203 (0-2') 10/21/09	TB-204 (0-2') 10/21/09	TB-205 (0-2') 10/21/09	TB-206 (0-2') 10/21/09	TB-207 (0-2') 10/21/09	TB-208 (0-2') 10/21/09	TB-211 (0-2') 10/21/09	TB-212 (0-2') 10/21/09	TB-213 (4-5') 10/21/09	TB-214 (4-5') 10/21/09
Petroleum Hydrocarbons (mg/Kg)				10/21/09	10/21/09	10/21/09	10/21/09	10/21/09	10/21/09	10/21/09	10/21/09	10/21/09	10/21/09	10/21/09	10/21/09
ЕТРН	2,500	500	500	NA	52	NA	NA	NA	84						
									<u> </u>			<u> </u>			
VOCs (mg/Kg)															1
n-Butylbenzene	1.000	500	1.2	ND (0.0021)	ND (0.003)	ND (0.0024)	ND (0.0026)	ND (0.0024)	ND (0.0023)	ND (0.004)	ND (0.002)	ND (0.0023)	ND (0.0024)	ND (0.003)	ND (0.0021)
sec-Butylbenzene	1.000	500	1.2	ND (0.0021)	ND (0.003)	ND (0.0024)	ND (0.0026)	ND (0.0024)	ND (0.0023)	ND (0.004)	ND (0.002)	ND (0.0023)	ND (0.0024)	ND (0.003)	ND (0.0021)
Chlorobenzene	1,000	500	2	ND (0.0021)	ND (0.003)	ND (0.0024)	ND (0.0026)	ND (0.0024)	ND (0.0023)	ND (0.004)	ND (0.002)	ND (0.0023)	ND (0.0024)	ND (0.003)	ND (0.0021)
1,1-Dichloroethane	1,000	500	1.4	ND (0.0021)	ND (0.003)	ND (0.0024)	ND (0.0026)	ND (0.0024)	ND (0.0023)	ND (0.004)	ND (0.002)	ND (0.0023)	ND (0.0024)	ND (0.003)	ND (0.0021)
1.1-Dichloroethene	9.5	1	0.14	ND (0.0042)	ND (0.006)	ND (0.0047)	ND (0.0053)	ND (0.0047)	ND (0.0047)	ND (0.008)	ND (0.004)	ND (0.0047)	ND (0.0049)	ND (0.0061)	ND (0.0043)
cis-1,2-Dichloroethene	1,000	500	1.4	ND (0.0021)	ND (0.003)	0.018	ND (0.0026)	ND (0.0024)	ND (0.0023)	0.018	ND (0.002)	ND (0.0023)	ND (0.0024)	ND (0.003)	ND (0.0021)
trans-1.2-Dichloroethene	1,000	500	2	ND (0.0021)	ND (0.003)	ND (0.0024)	ND (0.0026)	ND (0.0024)	ND (0.0023)	ND (0.004)	ND (0.002)	ND (0.0023)	ND (0.0024)	ND (0.003)	ND (0.0021)
Isopropylbenzene	1,000	500	14	ND (0.0021)	ND (0.003)	ND (0.0024)	ND (0.0026)	ND (0.0024)	ND (0.0023)	ND (0.004)	ND (0.002)	ND (0.0023)	ND (0.0024)	ND (0.003)	ND (0.0021)
p-isopropyltoluene	NE	NE	NE	ND (0.0021)	ND (0.003)	ND (0.0024)	ND (0.0026)	ND (0.0024)	ND (0.0023)	ND (0.004)	ND (0.002)	ND (0.0023)	ND (0.0024)	ND (0.003)	ND (0.0021)
4-isopropyltoluene	1.000	500	4.2	ND (0.0021)	ND (0.003)	ND (0.0024)	ND (0.0026)	ND (0.0024)	ND (0.0023)	ND (0.004)	ND (0.002)	ND (0.0023)	ND (0.0024)	ND (0.003)	ND (0.0021)
n-propylbenzene	1,000	500	1.2	ND (0.0021)	ND (0.003)	ND (0.0024)	ND (0.0026)	ND (0.0024)	ND (0.0023)	ND (0.004)	ND (0.002)	ND (0.0023)	ND (0.0024)	ND (0.003)	ND (0.0021)
Tetrachloroethene	110	12	0.1	ND (0.0021)	ND (0.003)	ND (0.0024)	ND (0.0026)	ND (0.0024)	ND (0.0023)	ND (0.004)	ND (0.002)	ND (0.0023)	ND (0.0024)	ND (0.003)	ND (0.0021)
1.1.1-Trichloroethane	1,000	500	4	ND (0.0021)	ND (0.003)	0.028	ND (0.0026)	ND (0.0024)	ND (0.0023)	0.014	ND (0.002)	ND (0.0023)	ND (0.0024)	ND (0.003)	ND (0.0021)
Trichloroethene	520	56	0.1	ND (0.0021)	ND (0.003)	1.1	0.0057	ND (0.0024)	ND (0.0023)	0.085	ND (0.002)	ND (0.0023)	ND (0.0024)	0.013	0.0062
1,2,4-Trimethylbenzene	1.000	500	2.4	ND (0.0021)	ND (0.003)	ND (0.0024)	ND (0.0026)	ND (0.0024)	ND (0.0023)	ND (0.004)	ND (0.002)	ND (0.0023)	ND (0.0024)	ND (0.003)	ND (0.0021)
Vinyl Chloride	3.0	0.32	0.04	ND (0.0021)	ND (0.003)	ND (0.0024)	ND (0.0026)	ND (0.0024)	ND (0.0023)	ND (0.004)	ND (0.002)	ND (0.0023)	ND (0.0024)	ND (0.003)	ND (0.0021)
Naphthalene	2.500	1000	5.6	ND (0.0021)	ND (0.003)	ND (0.0024)	ND (0.0026)	ND (0.0024)	ND (0.0023)	ND (0.004)	ND (0.002)	ND (0.0023)	ND (0.0024)	ND (0.003)	ND (0.0021)
Total Xylenes	1.000	500	19.5	ND (0.0021)	ND (0.006)	ND (0.0024)	ND (0.0053)	ND (0.0024)	ND (0.0023)	ND (0.008)	ND (0.004)	ND (0.0023)	ND (0.0024)	ND (0.0061)	ND (0.0043)
Total Hylones	1,000	500	17.5	11D (0.0042)	11D (0.000)	11D (0.0047)	11D (0.0055)	11D (0.0047)	11D (0.0047)	TID (0.000)	11D (0.004)	11D (0.0047)	11D (0.0047)	11D (0.0001)	112 (0.0043)
SPLP VOCs (µg/L)	I	l	l	NA	NA	NA	1	NA							
Chlorobenzene	NE	NE	100	IVA	IVA	11/1	ND (2.0)	IVA	IVA	IVA	IVA	11/1	IVA	IVA	IVA
Chloroethane	NE NE	NE NE	1.000				ND (2.0)								-
1.1-Dichloroethane	NE NE	NE NE	70				ND (1.0)								+
1,1-Dichloroethene	NE NE	NE NE	70				ND (1.0)								+
cis-1,2-Dichloroethene	NE NE	NE NE	70				ND (1.0)								+
Trans-1,2-Dichloroethene	NE NE	NE NE	100				ND (1.0)								1
Methylene Chloride	NE NE	NE NE	5				6.6 *								1
Naphthalene	NE NE	NE NE	280				ND (2.0)								1
Tetrachloroethene	NE NE	NE NE	5				ND (2.0)								+
Toluene	NE NE	NE NE	1,000				ND (1.0)								+
1,1,1-Trichloroethane	NE NE	NE NE	200				ND (1.0) ND (1.0)		-	-	-	1		-	+
Trichloroethene	NE NE	NE NE	5				ND (1.0) ND (1.0)		-	-	-	1		-	+
1,2,4-Trimethylbenzene	NE NE	NE NE	350				1.0		1	1	1	1		1	+
Vinyl Chloride	NE NE	NE NE	2				ND (2.0)		-	-	-	1		-	+
Total Xylenes	NE NE	NE NE	530				ND (2.0) 3.8		-	-	-	 		-	+
Total Aylenes	NE	NE	330				3.8		<u> </u>	<u> </u>	<u> </u>				
Inorganics (mg/Kg)				NA	NA	NA	NA	NA	NA	1	1	NA	NA	NA	NA
Cvanide	41.000	1.400	NE	INA	INA	INA	INA	INA	INA	ND (0.31)	ND (0.31)	INA	INA	INA	INA
Cyamuc	41,000	1,400	INE			<u> </u>				ND (0.31)	(0.31) עאו				
CDI D Motole (mg/L)		ı	1	NY A	NT A	NY A	NT A	NY A	NT A	NY A	NA	NY A	NA	NY A	NTA
SPLP Metals (mg/L) Cadmium	NE	NIC	0.005	NA	INA	NA	INA	NA	NA						
Caumium	NE	NE	0.005												
0/ C-1: 1-	NIC	NIE	NE	05.2	07.0	04.0	05.2	05.0	06.0	02.4	07.6	07.2	05.7	0.0	00 5
% Solids	NE	NE	NE	95.2	97.8	94.0	95.2	95.8	96.8	83.4	97.6	97.3	95.7	86.8	88.5

NE = None Established

Notes:

| For SPLP VOCs the GA PMC values are GWPC numerical values.
| For SPLP VOCs the GA PMC values are GWPC numerical values.
| Compound identified in method blank. Detection believed to be due to laboratory artifact. Only parameters detected are shown Bold and shaded concentrations exceed one or more of the RSR criteria Italicized criteria are taken from DEEP Proposed Revisions to RSRs (dated August 2008)
| ND = Not Detected at the indicated detection limit

TABLE 2 Summary of Analytes Detected in Soil Samples Former J.T. Slocomb Facility

68 Matson Hill Road - Glastonbury, CT

		RSR Criteria	1					Samp	le Location / Sam	ple Depth / Samp	le Date				
Compound	IDEC	RDEC	GA PMC ¹	TB-215 (3-5') 10/21/09	TB-215 (5-7') 10/21/09	TB-216 (0-2') 10/21/09	TB-218 (3-4') 10/22/09	TB-219 (5-6') 10/22/09	TB-220 (0-2') 10/22/09	TB-221 (0-4') 2/11/10	TB-221 (3-5') 2/11/10	TB-222 (0-2') 2/12/10	TB-223 (0-4') 2/11/10	TB-223 (4-8') 2/11/10	TB-224 (0-4') 2/11/10
Petroleum Hydrocarbons (mg/Kg)										NA	NA	NA	NA	NA	NA
ETPH	2,500	500	500	NA	NA	36	60	11,000	63						
VOCs (mg/Kg)										NA			NA		
n-Butylbenzene	1,000	500	1.2	ND (0.0042)	ND (0.0033)	ND (0.0029)	ND (0.002)	6.3	ND (0.0027)		ND (0.005)	ND (0.005)		ND (0.005)	ND (0.005)
sec-Butylbenzene	1,000	500	1.2	ND (0.0042)	ND (0.0033)	ND (0.0029)	ND (0.002)	4.6	ND (0.0027)		ND (0.005)	ND (0.005)		ND (0.005)	ND (0.005)
Chlorobenzene	1,000	500	2	ND (0.0042)	ND (0.0033)	ND (0.0029)	ND (0.002)	0.88	ND (0.0027)		ND (0.005)	ND (0.005)		ND (0.005)	ND (0.005)
1,1-Dichloroethane	1,000	500	1.4	ND (0.0042)	0.043	0.025	ND (0.002)	ND (0.78)	ND (0.0027)		ND (0.005)	ND (0.005)		ND (0.005)	0.019
1,1-Dichloroethene	9.5	1	0.14	ND (0.0085)	ND (0.0066)	ND (0.0057)	ND (0.0039)	ND (0.78)	ND (0.0055)		ND (0.005)	0.0066		ND (0.005)	0.49
cis-1,2-Dichloroethene	1,000	500	1.4	ND (0.0042)	0.051	ND (0.0029)	ND (0.002)	ND (0.78)	0.0071		ND (0.005)	0.022		ND (0.005)	0.63
trans-1,2-Dichloroethene	1,000	500	2	ND (0.0042)	0.0058	ND (0.0029)	ND (0.002)	ND (0.78)	ND (0.0027)		ND (0.005)	ND (0.005)		ND (0.005)	ND (0.005)
Isopropylbenzene	1,000	500	14	ND (0.0042)	ND (0.0033)	ND (0.0029)	ND (0.002)	4.3	ND (0.0027)		ND (0.005)	ND (0.005)		ND (0.005)	ND (0.005)
p-isopropyltoluene	NE	NE	NE	ND (0.0042)	ND (0.0033)	ND (0.0029)	ND (0.002)	1.1	ND (0.0027)		ND (0.005)	ND (0.005)		ND (0.005)	ND (0.005)
4-isopropyltoluene	1,000	500	4.2	ND (0.0042)	ND (0.0033)	ND (0.0029)	ND (0.002)	ND (0.78)	ND (0.0027)		ND (0.005)	ND (0.005)		ND (0.005)	ND (0.005)
n-propylbenzene	1,000	500	1.2	ND (0.0042)	ND (0.0033)	ND (0.0029)	ND (0.002)	7.0	ND (0.0027)		ND (0.005)	ND (0.005)		ND (0.005)	ND (0.005)
Tetrachloroethene	110	12	0.1	ND (0.0042)	ND (0.0033)	ND (0.0029)	ND (0.002)	ND (0.78)	0.0033		ND (0.005)	ND (0.005)		ND (0.005)	0.29
1,1,1-Trichloroethane	1,000	500	4	0.0063	0.015	0.024	ND (0.002)	ND (0.78)	0.014		ND (0.005)	2.2		ND (0.005)	2.0
Trichloroethene	520	56	0.1	0.045	0.14	0.079	ND (0.002)	ND (0.78)	19		ND (0.005)	43		ND (0.005)	18
1,2,4-Trimethylbenzene	1,000	500	2.4	ND (0.0042)	ND (0.0033)	ND (0.0029)	ND (0.002)	38	ND (0.0027)		ND (0.005)	ND (0.005)		ND (0.005)	ND (0.005)
Vinyl Chloride	3.0	0.32	0.04	ND (0.0042)	ND (0.0033)	ND (0.0029)	ND (0.002)	ND (0.78)	ND (0.0027)		ND (0.005)	ND (0.005)		ND (0.005)	ND (0.005)
Naphthalene	2,500	1000	5.6	ND (0.0042)	ND (0.0033)	ND (0.0029)	ND (0.002)	ND (0.78)	ND (0.0027)		ND (0.005)	ND (0.005)		ND (0.005)	ND (0.005)
Total Xylenes	1,000	500	19.5	ND (0.0085)	ND (0.0066)	ND (0.0057)	ND (0.0039)	3.4	ND (0.0055)		ND (0.005)	ND (0.005)		ND (0.005)	ND (0.005)
SPLP VOCs (µg/L)						NA	NA	NA	NA		NA			NA	NA
Chlorobenzene	NE	NE	100	ND (2.0)	ND (1.0)					ND (5.0)		ND (5.0)	ND (5.0)		
Chloroethane	NE	NE	1,000	ND (2.0)	4.5					ND (5.0)		ND (5.0)	ND (5.0)		
1,1-Dichloroethane	NE	NE	70	ND (1.0)	9.9					ND (1.0)		ND (1.0)	ND (1.0)		
1,1-Dichloroethene	NE	NE	7	ND (1.0)	ND (1.0)					ND (1.0)		1.3	ND (1.0)		
cis-1,2-Dichloroethene	NE	NE	70	ND (1.0)	17					ND (1.0)		6.5	ND (1.0)		
Trans-1,2-Dichloroethene	NE	NE	100	ND (1.0)	1.8					ND (5.0)		ND (5.0)	ND (5.0)		
Methylene Chloride	NE	NE	5	6.5*	ND (5.0)					ND (5.0)		ND (5.0)	ND (5.0)		
Naphthalene	NE	NE	280	ND (2.0)	10					ND (1.0)		ND (1.0)	ND (1.0)		
Tetrachloroethene	NE	NE	5	ND (1.0)	ND (1.0)					ND (1.0)		ND (1.0)	ND (1.0)		
Toluene	NE	NE	1,000	ND (1.0)	1.7					ND (1.0)		ND (1.0)	ND (1.0)		
1,1,1-Trichloroethane	NE	NE	200	1.3	5.0					ND (1.0)		5.6	ND (1.0)		
Trichloroethene	NE	NE	5	14	55					ND (1.0)		69	ND (1.0)		
1,2,4-Trimethylbenzene	NE	NE	350	1.3	3.6					ND (1.0)		ND (1.0)	ND (1.0)		
Vinyl Chloride	NE	NE	2	ND (2.0)	ND (2.0)					ND (1.6)		ND (1.6)	ND (1.6)		
Total Xylenes	NE	NE	530	1.0	8.1					ND (1.0)		ND (1.0)	ND (1.0)		
Y . (MZ)			1	N/A	NY A	N7.4	NY A	374		N/A	N/A	NY 4	NY A	N/A	N/A
Inorganics (mg/Kg)	41.000	1 400	NE	NA	NA	NA	NA	NA	ND (0.44)	NA	NA	NA	NA	NA	NA
Cyanide	41,000	1,400	NE						ND (0.44)						
SPLP Metals (mg/L)			T	NA NA	NA	NA	NA	NA							
Cadmium	NE	NE	0.005	11/1	11/7	11/1	11/7	11/7	11/1	11/2	11/2	11/1	11/1	11/1	11/1
	INE	INL	0.003												
% Solids	NE	NE	NE	78.7	70.6	89.2	94.7	86.7	91.5	NA	NA	NA	NA	NA	NA
/0 DOILUS	IVL	IIL	IND	70.7	70.0	07.2	77.1	00.7	71.5	11/1	11/1	11/1	11/1	11/1	11/1

NE = None Established

TABLE 2
Summary of Analytes Detected in Soil Samples
Former J.T. Slocomb Facility 68 Matson Hill Road - Glastonbury, CT

		RSR Criteria	a					Sampl	le Location / San	nple Depth / Samp	le Date								
Compound	IDEC	RDEC	GA PMC ¹	TB-224 (4-6') 2/11/10	TB-224 (5-7') 2/11/10	TB-226 (4-6') 2/12/10	TB-227 (4-8') 2/12/10	TB-228 (4-8') 2/12/10	TB-229 (4-8') 2/12/10	TB-230 (0-4') 2/12/10	TB-230 (4-6') 2/12/10	TB-231 (0-4') 2/12/10	TB-231 (4-8') 2/12/10	TB-232 (0-2') 2/12/10	TB-232 (4-6') 2/12/10	TB-301 (0-2') 3/15/2013	TB-301 (2-4') 3/15/2013	TB-302 (0-2') 3/15/2013	TB-303 (0-2') 3/15/2013
Petroleum Hydrocarbons (mg/Kg)				NA	NA					NA	NA	NA	NA						
ETPH	2,500	500	500			ND (55)	ND (56)	190	1,200										
VOCs (mg/Kg)				NA		NA	NA	NA	NA	NA		NA		NA		NA	NA	NA	NA
n-Butylbenzene	1,000	500	1.2		ND (0.005)						ND (0.006)		ND (0.005)		ND (0.006)				
sec-Butylbenzene	1,000	500	1.2		ND (0.005)						ND (0.006)		ND (0.005)		ND (0.006)				
Chlorobenzene	1,000	500	2		ND (0.005)						ND (0.006)		ND (0.005)		ND (0.006)				
1,1-Dichloroethane	1,000	500	1.4		ND (0.005)						0.011		ND (0.005)		ND (0.006)				
1,1-Dichloroethene	9.5	1	0.14		ND (0.005)						0.013		ND (0.005)		ND (0.006)				
cis-1,2-Dichloroethene	1,000	500	1.4		ND (0.005)						0.035		ND (0.005)		ND (0.006)				
trans-1,2-Dichloroethene	1,000	500	2		ND (0.005)						ND (0.006)		ND (0.005)		ND (0.006)				
Isopropylbenzene	1,000	500	14		ND (0.005)						ND (0.006)		ND (0.005)		ND (0.006)				
p-isopropyltoluene	NE	NE	NE		ND (0.005)						ND (0.006)		ND (0.005)		ND (0.006)				
4-isopropyltoluene	1,000	500	4.2		ND (0.005)						ND (0.006)		ND (0.005)		ND (0.006)				
n-propylbenzene	1,000	500	1.2		ND (0.005)						ND (0.006)		ND (0.005)		ND (0.006)				
Tetrachloroethene	110	12	0.1		ND (0.005)						0.018		ND (0.005)		ND (0.006)				
1,1,1-Trichloroethane	1,000	500	4		0.021						1.3		ND (0.005)		0.028				
Trichloroethene	520	56	0.1		0.036						20		ND (0.005)		0.0084				
1,2,4-Trimethylbenzene	1,000	500	2.4		ND (0.005)						ND (0.006)		ND (0.005)		ND (0.006)				
Vinyl Chloride	3.0	0.32	0.04		ND (0.005)						ND (0.006)		ND (0.005)		ND (0.006)				
Naphthalene	2,500	1000	5.6		ND (0.005)						ND (0.006)		ND (0.005)		ND (0.006)				
Total Xylenes	1,000	500	19.5		ND (0.005)						ND (0.006)		ND (0.005)		ND (0.006)				
SPLP VOCs (µg/L)					NA	NA	NA	NA	NA		NA		NA		NA				
Chlorobenzene	NE	NE	100	ND (5.0)						ND (5.0)		ND (5.0)		ND (5.0)		ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Chloroethane	NE	NE	1,000	ND (5.0)						ND (5.0)		ND (5.0)		ND (5.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
1,1-Dichloroethane	NE	NE	70	ND (1.0)						1.9		ND (1.0)		ND (1.0)		ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
1,1-Dichloroethene	NE	NE	7	1.6						1.4		3.3		ND (1.0)		ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
cis-1,2-Dichloroethene	NE	NE	70	4.1						10		5.6		ND (1.0)		ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Trans-1,2-Dichloroethene	NE	NE	100	ND (5.0)						ND (5.0)		ND (5.0)		ND (5.0)		ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Methylene Chloride	NE	NE	5	ND (5.0)						ND (5.0)		ND (5.0)		ND (5.0)		ND (2.0)	ND (2.0)	ND (2.0)	ND (2.0)
Naphthalene	NE	NE	280	ND (1.0)						ND (1.0)		ND (1.0)		ND (1.0)		NA	NA	NA	NA
Tetrachloroethene	NE	NE	5	ND (1.0)						1.1		1.6		ND (1.0)		ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Toluene	NE	NE	1,000	ND (1.0)						ND (1.0)	ļ	ND (1.0)		ND (1.0)	ļ	NA	NA	NA	NA
1,1,1-Trichloroethane	NE	NE	200	7.8						5.4		15		4.2		ND (1.0)	3.1	ND (1.0)	ND (1.0)
Trichloroethene	NE	NE	5	72						120		170		87		17.6	41	17.2	7.3
1,2,4-Trimethylbenzene	NE	NE	350	ND (1.0)						ND (1.0)		ND (1.0)		ND (1.0)		NA	NA	NA	NA
Vinyl Chloride	NE	NE	2	ND (1.6)						ND (1.6)		ND (1.6)		ND (1.6)		ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)
Total Xylenes	NE	NE	530	ND (1.0)						ND (1.0)		ND (1.0)		ND (1.0)		NA	NA	NA	NA
Inorganics (mg/Kg)				NA	NA	NA	NA												
Cyanide	41,000	1,400	NE								L				L				
SPLP Metals (mg/L)				NA	NA	NA	NA												
Cadmium	NE	NE	0.005							1	L				L			<u> </u>	
			_																
% Solids	NE	NE	NE	NA	NA	92	90	90	84	NA	NA	NA	NA						

Compound taenuned in method blank. Detection believed to be due to laboratory artifact.

Only parameters detected are shown

Bold and shaded concentrations exceed one or more of the RSR criteria

Italicized criteria are taken from DEEP Proposed Revisions to RSRs (dated August 2008)

ND = Not Detected at the indicated detection limit

NE = None Established

Notes:

1 = For SPLP VOCs the GA PMC values are GWPC numerical values.

* Compound identified in method blank. Detection believed to be due to laboratory artifact.

TABLE 2 Summary of Analytes Detected in Soil Samples Former J.T. Slocomb Facility

68 Matson Hill Road - Glastonbury, CT

		RSR Criteria	1							Sample Locati	ion / Sample Dept	h / Sample Date						
Compound	IDEC	RDEC	GA PMC ¹	TB-304 (0-2') 3/15/2013	TB-305 (0-2') 3/19/2013	TB-305 (2-4') 3/19/2013	TB-306 (0-2') 3/19/2013	TB-306 (2-4') 3/19/2013	TB-311 (5-7') 3/15/2013	TB-312 (5-7') 3/15/2013	TB-313 (4-6') 3/15/2013	TB-314 (0-2') 3/15/2013	TB-315 (0-2') 3/15/2013	TB-316 (0-2') 3/15/2013	TB-317 (2-4') 3/15/2013	TB-318 (2-4') 3/15/2013	TB-319 (2-4') 3/15/2013	TB-320 (4-6') 3/15/201
Petroleum Hydrocarbons (mg/Kg)									NA									
ETPH	2,500	500	500	440	ND (20)	367	ND (17)	31.4										
VOCs (mg/Kg)				NA														
n-Butylbenzene	1,000	500	1.2															
sec-Butylbenzene	1,000	500	1.2															
Chlorobenzene	1,000	500	2															
1,1-Dichloroethane	1,000	500	1.4															
1,1-Dichloroethene	9.5	1	0.14															
cis-1,2-Dichloroethene	1,000	500	1.4															
trans-1,2-Dichloroethene	1,000	500	2															
Isopropylbenzene	1,000	500	14															
p-isopropyltoluene	NE	NE	NE															
4-isopropyltoluene	1,000	500	4.2															
n-propylbenzene	1,000	500	1.2															
Tetrachloroethene	110	12	0.1															
1,1,1-Trichloroethane	1,000	500	4															
Trichloroethene	520	56	0.1															
1,2,4-Trimethylbenzene	1,000	500	2.4															
Vinyl Chloride	3.0	0.32	0.04															
Naphthalene	2,500	1000	5.6															
Total Xylenes	1,000	500	19.5															
SPLP VOCs (µg/L)							NA	NA								NA	NA	NA
Chlorobenzene	NE	NE	100	ND (1.0)	ND (1.0)	ND (1.0)			ND (1.0)									
Chloroethane	NE	NE	1,000	ND (2.0)	ND (2.0)	ND (2.0)			9.2	ND (2.0)								
1,1-Dichloroethane	NE	NE	70	ND (1.0)	ND (1.0)	ND (1.0)			9.4	ND (1.0)	16	5.3	ND (1.0)	ND (1.0)	1.5			
1,1-Dichloroethene	NE	NE	7	ND (1.0)	ND (1.0)	ND (1.0)			ND (1.0)									
cis-1,2-Dichloroethene	NE	NE	70	ND (1.0)	ND (1.0)	ND (1.0)			4.2	ND (1.0)	30.8	1.9	ND (1.0)	ND (1.0)	ND (1.0)			
Trans-1,2-Dichloroethene	NE	NE	100	ND (1.0)	ND (1.0)	ND (1.0)			ND (1.0)	ND (1.0)	2.7	ND (1.0)	ND (1.0)	ND (1.0)	ND (1.0)			
Methylene Chloride	NE	NE	5	4	2.4	3.3			ND (2.0)	2.2	ND (2.0)	ND (2.0)	ND (2.0)	2	ND (2.0)			
Naphthalene	NE	NE	280	NA	NA	NA			NA									
Tetrachloroethene	NE	NE	5	ND (1.0)	ND (1.0)	ND (1.0)			ND (1.0)	ND (1.0)	ND (1.0)	1.7	ND (1.0)	ND (1.0)	ND (1.0)			
Toluene	NE	NE	1,000	NA	NA	NA			NA									
1,1,1-Trichloroethane	NE	NE	200	ND (1.0)	ND (1.0)	ND (1.0)			10.2	ND (1.0)	6.1	23	ND (1.0)	ND (1.0)	13.6			
Trichloroethene	NE	NE	5	41.5	ND (1.0)	2			10	ND (1.0)	26.4	53.2	18.9	2.9	77.5			
1,2,4-Trimethylbenzene	NE	NE	350	NA	NA	NA			NA									
Vinyl Chloride	NE	NE	2	ND (1.0)	ND (1.0)	ND (1.0)			1.4	ND (1.0)								
Total Xylenes	NE	NE	530	NA	NA	NA			NA									
	-	•					•	•	•		•	•	•	•	•			•
Inorganics (mg/Kg)				NA														
Cyanide	41,000	1,400	NE															
							•	•	•		•	•	•	•	•			
SPLP Metals (mg/L)				NA														
Cadmium	NE	NE	0.005	·												ND (0.004)	ND (0.004)	ND (0.00
							•		•	•	•	•	•	•	•	. ,/	/	_ (5.00

Notes:

1 = For SPLP VOCs the GA PMC values are GWPC numerical values.

* Compound identified in method blank. Detection believed to be due to laboratory artifact.

Only parameters detected are shown

Bold and shaded concentrations exceed one or more of the RSR criteria

Italicized criteria are taken from DEEP Proposed Revisions to RSRs (dated August 2008)

ND = Not Detected at the indicated detection limit

NE = None Established

Summary of Analytes Detected in Historical Soil Samples

Former JT Slocomb Facility 68 Matson Hill Road - Glastonbury, CT

	RSR C	riteria	B-1	B-3	_B-4	B-5	B-6	B-7	B-8	B-9	_B-10	HD-2*	_HD-3	MW-6	MW-6	A-1	_A-2	A-3	SA-1	_SA-2*	SA-3
Compound			4-6'	7-9'	46	7-8.5'	4-5'	4-6'	7-9'	6-8'	57	2.5	-3-51	-0-31	3-5'	0-4'	3.5	4'	4'	4	4'
· ·	Res DEC	GA	5/1/98	5/1/98	_5/ 1/98	5/1/98	5/1/98	5/1/98	5/1/98	5/1/98	5/1/98	4/15/99	4/15/99	4/15/99	4/15/99	6/15/99	6/15/99	6/15/99	6/15/99	6/15/99	6/15/99
ETPH (mg/kg)	500	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA NA	NA
· · ·																					
TPH by 418.1 (mg/kg)	500	500	292	ND	1,745	ND	ND	10	ND	ND	1,760	6,800	870	950	50.0	ND	NA NA	110	50	8,400	51
Volatile Organic Compounds (mg/kg)			NA	NA	NA	NA	NA	NA	NA	NA	NA						NA				
1,1,1-Trichloroethane	500	4										0.4	ND	ND	ND	ND		ND	ND	0.24	ND
1,1-Dichloroethylene	1	0.14										NĐ	NB	ND	ND	ND		ND	ND	0.018	ND
1,1-Dichloroethane	500	1.4										0.068	NB	ND.	ND	ND		ND	ND	0.27	ND
1,2,4-Trimethylbenzene	500	2.4										ND	NB	ND.	ND	ND		ND	ND	ND	ND
1,2-dichlorobenzene	500	3.1										ND	NB	ND.	ND	ND		ND	ND	NB	ND
1,3,5-Trimethylbenzene	500	1.9										NĐ	ND	ND	ND	ND		ND	ND	ND	ND
4-Isopropyltoluene	500	4.2										0.07	ND	ND	ND	ND		ND	ND	ND	ND
Benzene	21	0.02										0.10	ND	NĐ	ND	ND		ND	ND	ND	ND
Chloroethane	500	20										NĐ	ND	NĐ	ND	ND		ND	ND	0.64	ND
cis-1,2-Dichloroethene	500	1.4										0.18	NB	NB	ND	ND		ND	ND	0.91	ND
Ethylbenzene	500	10.1										0.13	ND	ND	ND	ND		ND	ND	Nb	ND
Isopropylbenzene	500	14										ND	ND	ND	ND	ND		ND	ND	ND	ND
Methjylene Chloride	82	0.1										ND	ND	ND	ND	ND		ND	ND	0.06	ND
Naphthalene	1000	5.6										0.46	ND	0.014	ND	ND		ND	ND	ND	ND
n-Butylbenzene	500	1.2										ND	ND	ND	ND	ND		ND	ND	ND	ND
n-Propylbenzene	500	1.2										0.064	ND	ND	ND	ND		ND	ND	ND	ND
p-Isopropyltoluene	NE	NE										ND	ND	ND	ND	ND		ND	ND	ND	ND
Sec-butylbenzene	500	1.2										0.06	ND ND	ND.	ND	ND		ND	ND	ND	ND
Tetrachloroethylene	12	0.1										ND ND	ND ND	NĐ.	ND	ND		ND	ND	0.012	ND
Toluene	500	20										0.43	ND ND	NĐ.	ND	ND		ND	ND	ND ND	ND
Total Xylenes	500	19.5										1.48	ND ND	0.0061	ND	ND		ND	ND	NB	ND
Trans-1,2-dichloroethene	500	2										0.057	ND ND	ND	ND	ND		ND	ND	0.093	ND
Trichloroethene	56	0.1										1.0	0.045	ND	ND	ND		0.016	0.04	0.069	ND
Trimethylbenzene	NE	NE										0.84	ND ND	0.04	ND	ND		ND	ND	NĐ	ND
Vinyl Chloride	0.32	0.04										NĐ	ND	ND	ND	ND		ND	ND	0.34	ND
Total Metals (mg/kg)				NA		NA			NA	NA	NA									NA	NA
Arsenic	10		NA		NA		NA	NA				NA	NA	NA	NA	NA	NA NA	NA	NA		
Barium	4,700		NA		NA		NA	NA				NA	NA	NA	NA	NA	NA NA	NA	NA		
Cadmium	34		ND		14.6		NA	NA				6.3	14	ND<1.0	ND<1.0	ND<1.0	23.0	ND<1.0	ND<1.0		
Chromium (total)	NE		NA		NA		NA	NA				NA NA	NA	NA	NA	NA	NA NA	NA	NA		
Lead	500		NA		NA		160.0	2.35				39	350	23	2.8	3.5	200.0	23.0	2.8		
Mercury	20		NA		NA		NA	NA				NA.	NA								
Selenium	340		NA		NA		NA	NA				NA NA	NA	NA	NA	NA	NA NA	NA	NA		
Silver	340		NA		NA		NA	NA				NA NA	NA	NA	NA	NA	NA	NA	NA		
SPLP Metals (mg/L)			NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA.	NA	NA	NA	NA		NA	NA	NA.	NA
Cadmium		0.005															0.032				
Lead		0.015															ND				
Total PCBs (mg/kg)	1	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:
Only parameters detected are shown
Bold and shaded concentrations exceed one or more of the RSR criteria

Italicized criteria are taken from DEEP Proposed Revisions to RSRs (dated August 2008)

Cells with diagonal lines indicate that soil was excavated during remedial actions.

mg/kg - milligram per kilogram

mg/L - milligram per liter

NA - Not applicable or not analyzed

NE - None established

RSR - Remediation Standard Regulations

Res DEC - Residential Direct Exposure Criteria

Summary of Analytes Detected in Historical Soil Samples

Former JT Slocomb Facility 68 Matson Hill Road - Glastonbury, CT

	RSR C	riteria	SA-4	SA-4	SA-5	SA-7	SA-8	SA-9	SA-10	UG-1	UG-2	UST-1	LG-1	LG-2	LF-2B	LD-1	INT-1	INT-2	INT-3	INT-4	MW-101
Compound			1-3'	4'	4'	7'	10'	9'	11'	0-4'	0-4'	8'	3-5'	3-5'	0-4'	2'	2'	2'	2'	2'	4-8'
•	Res DEC	GA	6/15/99	6/15/99	6/15/99	6/15/99	6/15/99	6/15/99	6/15/99	6/15/99	6/15/99	6/15/99	6/15/99	6/15/99	6/15/99	6/15/99	1/11/00	1/11/00	1/11/00	1/11/00	5/5/03
ETPH (mg/kg)	500	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						
TPH by 418.1 (mg/kg)	500	500	140	NA	53	ND	NA	ND	3,700	NA	ND	53	ND	ND	ND	ND	NA	NA	NA	NA	NA
Volatile Organic Compounds (mg/kg)					NA	NA		NA							NA						
1,1,1-Trichloroethane	500	4	ND	0.0058			ND		0.028	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
1,1-Dichloroethylene	1	0.14	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
1,1-Dichloroethane	500	1.4	ND	ND			ND		0.051	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	500	2.4	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
1,2-dichlorobenzene	500	3.1	ND	ND			0.83		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	500	1.9	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
4-Isopropyltoluene	500	4.2	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Benzene	21	0.02	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Chloroethane	500	20	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	500	1.4	ND	ND			ND		0.072	ND	ND	ND	ND	ND		ND	ND	ND	ND	0.0087	ND
Ethylbenzene	500	10.1	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Isopropylbenzene	500	14	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Methjylene Chloride	82	0.1	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Naphthalene	1000	5.6	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
n-Butylbenzene	500	1.2	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
n-Propylbenzene	500	1.2	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
p-Isopropyltoluene	NE	NE	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Sec-butylbenzene	500	1.2	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Tetrachloroethylene	12	0.1	ND	ND			ND		0.029	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Toluene	500	20	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Total Xylenes	500	19.5	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Trans-1,2-dichloroethene	500	2	ND	ND			ND		0.018	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Trichloroethene	56	0.1	0.027	0.014			ND		0.62	ND	ND	ND	ND	ND		ND	ND	ND	0.074	0.21	0.015
Trimethylbenzene	NE	NE	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Vinyl Chloride	0.32	0.04	ND	ND			ND		ND	ND	ND	ND	ND	ND		ND	ND	ND	ND	ND	ND
Total Metals (mg/kg)			NA	NA	NA	NA	NA	NA		NA		NA			NA		NA	NA	NA	NA	NA
Arsenic (mg/ kg)	10								NA		NA		NA	NA		NA		1			
Barium	4,700								NA		NA		NA	NA		NA					
Cadmium	34								ND<1.0		ND<1.0		ND<1.0	ND<1.0		ND<1.0					
Chromium (total)	NE								NA		NA		NA	NA		NA					
Lead	500					Ī			31.0		3.3		ND	ND		4.1					
Mercury	20								NA		NA		NA	NA		NA					
Selenium	340								NA		NA		NA	NA		NA					
Silver	340								NA		NA		NA	NA		NA					
SPLP Metals (mg/L)			NA	NA	NA	NA	NA	NA		NA											
Cadmium		0.005							ND<0.013												
Lead		0.015							ND<0.013												
Total PCBs (mg/kg)	1	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA						

Notes:
Only parameters detected are shown
Bold and shaded concentrations exceed one or more of the RSR c

Italicized criteria are taken from DEEP Proposed Revisions to RS

Cells with diagonal lines indicate that soil was excavated during r mg/kg - milligram per kilogram mg/L - milligram per liter
NA - Not applicable or not analyzed
NE - None established

RSR - Remediation Standard Regulations

Res DEC - Residential Direct Exposure Criteria

Summary of Analytes Detected in Historical Soil Samples

Former JT Slocomb Facility

68 Matson Hill Road - Glastonbury, CT

	RSR C	riteria	MW-104	MW-106	MW-107	MW-108		MW-HT*		MW-114	SW-1	SW-2	SW-3	SW-4	SW-5A	SW-5B	SW-6	SW-7	BOT-1	BOT-2	BOT-3
Compound	D. DEG		0-4'	5-6'	5-6'	5-6'	A-71	46	4-6'	4-61	3'	3'	2.5'	2.5'	3'	3'	12'	10'	6'	6'	15'
	Res DEC	GA	5/5/03	5/5/03	5/5/03	5/5/03	5/5/03	5/ 5/03	5/5/03	5/5/03	3/26/04	3/26/04	3/26/04	3/29/04	4/16/04	4/16/04	3/26/04	3/30/04	3/26/04	3/26/04	3/30/04
ETPH (mg/kg)	500	500	NA	1,357	232	291	4,526	1,797	ND<25	2,343	87	ND<25	38	ND<25	ND<25	ND<25	848	ND<25	ND<25	ND<25	ND<25
TDV 1 440.4 (B)	500	500	NT A	NT A	NT A	NT A			37.4	NA.	NT A	NT A	NT A	N. A.	27.4	N. A.	NT A	I NIA	NT A	NT A	N. A.
TPH by 418.1 (mg/kg)	500	500	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Volatile Organic Compounds (mg/kg)															NA	NA					
1,1,1-Trichloroethane	500	4	ND	ND	1.75	ND	1.945	0.889	ND	NB	ND	ND	ND	ND			ND	ND	ND	ND	ND
1,1-Dichloroethylene	1	0.14	ND	ND	ND	ND	ND	0.291	ND	NB	ND	ND	ND	ND			ND	ND	ND	ND	ND
1,1-Dichloroethane	500	1.4	ND	ND	0.24	ND	1.05	NB	ND	NB	ND	ND	ND	ND			ND	ND	ND	ND	ND
1,2,4-Trimethylbenzene	500	2.4	ND	ND	ND	ND	4.751	4.316	ND	0.2	ND	ND	ND	ND			ND	ND	ND	ND	ND
1,2-dichlorobenzene	500	3.1	ND	ND	ND	ND	NB	ND	ND	NB	ND	ND	ND	ND			ND	ND	ND	ND	ND
1,3,5-Trimethylbenzene	500	1.9	ND	ND	ND	ND	1.222	1.747	ND	NB	ND	ND	ND	ND			ND	ND	ND	ND	ND
4-Isopropyltoluene	500	4.2	ND	ND	ND	ND	ND.	ND N	ND	NB	ND	ND	ND	ND			ND	ND	ND	ND	ND
Benzene	21	0.02	ND	ND	ND	ND	ND	ND.	ND	ND N	ND	ND	ND	ND			ND	ND	ND	ND	ND
Chloroethane	500	20	ND	ND	ND	ND	1.993	0.258	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND
cis-1,2-Dichloroethene	500	1.4	ND	ND	ND	ND	0.63 9	0.173	ND	NB	ND	ND	ND	ND			ND	ND	ND	ND	ND
Ethylbenzene	500	10.1	ND	ND	ND	ND	0.41	0.53	ND	NB	ND	ND	ND	ND			ND	ND	ND	ND	ND
Isopropylbenzene	500	14	ND	ND	ND	ND	0.459	0.551	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND
Methjylene Chloride	82	0.1	ND	ND	ND	ND	NB	NB	ND	NB	ND	ND	ND	ND			ND	ND	ND	ND	ND
Naphthalene	1000	5.6	ND	ND	ND	ND	1.371	1 .529	ND	NĐ NĐ	ND	ND	ND	ND			ND	ND	ND	ND	ND
n-Butylbenzene	500	1.2	ND	ND	ND	ND	0.842	0.973	ND	0.248	ND	ND	ND	ND			ND	ND	ND	ND	ND
n-Propylbenzene	500	1.2	ND	ND	ND	ND	1.065	1.319	ND	NĐ NĐ	ND	ND	ND	ND			ND	ND	ND	ND	ND
p-Isopropyltoluene	NE	NE	ND	ND	ND	ND	0.683	0.736	ND	0.166	ND	ND	ND	ND			ND	ND	ND	ND	ND
Sec-butylbenzene	500	1.2	ND	ND	ND	ND	1.167	1.227	ND	0.315	ND	ND	ND	ND			ND	ND	ND	ND	ND
Tetrachloroethylene	12	0.1	ND	ND	ND	ND	ND	NĐ.	ND	NĐ	ND	ND	ND	ND			ND	ND	ND	ND	ND
Toluene	500	20	ND	ND	ND	ND	ND	0.124	ND	NĐ NĐ	ND	ND	ND	ND			ND	ND	ND	ND	ND
Total Xylenes	500	19.5	ND	ND	ND	ND	1.818	1.333	ND	NĐ NĐ	ND	ND	ND	ND			ND	ND	ND	ND	ND
Trans-1,2-dichloroethene	500	2	ND	ND	ND	ND	0.306	NĐ.	ND	NĐ NĐ	ND	ND	ND	ND			ND	ND	ND	ND	ND
Trichloroethene	56	0.1	0.088	0.089	0.751	ND	0.95	0.699	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND
Trimethylbenzene	NE	NE	ND	ND	ND	ND	ND	NĐ	ND	NĐ NĐ	ND	ND	ND	ND			ND	ND	ND	ND	ND
Vinyl Chloride	0.32	0.04	ND	ND	ND	ND	ND	NĐ NĐ	ND	ND	ND	ND	ND	ND			ND	ND	ND	ND	ND
Total Metals (mg/kg)			NA	NA	NA	NA			NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Arsenic	10						5.9	1.1													
Barium	4,700						21	30													
Cadmium	34						7.4	ND													
Chromium (total)	NE						13.8	7													
Lead	500						32.0	6.9													
Mercury	20						0.03	ND													
Selenium	340						ND	ND													
Silver	340						0.08	NĐ													
SPLP Metals (mg/L)			NA	NA	NA	NA	NA	NA	NA	NA NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Cadmium		0.005																			
Lead		0.015																			1
Total PCBs (mg/kg)	1	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes:
Only parameters detected are shown

Bold and shaded concentrations exceed one or more of the RSR c

Italicized criteria are taken from DEEP Proposed Revisions to RS

Cells with diagonal lines indicate that soil was excavated during r mg/kg - milligram per kilogram mg/L - milligram per liter
NA - Not applicable or not analyzed
NE - None established

RSR - Remediation Standard Regulations

Res DEC - Residential Direct Exposure Criteria

Summary of Analytes Detected in Historical Soil Samples

Former JT Slocomb Facility 68 Matson Hill Road - Glastonbury, CT

	RSR C	riteria	BOT-4	UST-SW-1	UST-SW-2	UST-SW-3	UST-SW-4	UST-SW-5	UST-SW-6	UST-BOT-1	UST-BOT-2	MW-6 BOT-1	MW-6 BOT-2	E Transformer N	E Transformer S	F Transformer N	F Transformer N
Compound			5'	651 511 1	651 511 2	651 511 6	681 811 1	652 511 6	651 511 6	651 201 1	001 201 2	2-3'	2-3'	0-1'	0-1'	0-1'	0-1'
C 0 - F 0	Res DEC	GA	4/16/04	4/15/04	4/15/04	4/15/04	4/15/04	4/15/04	4/15/04	4/15/04	4/15/04	4/12/04	4/12/04	12/3/07	12/3/07	12/3/07	12/3/07
ETPH (mg/kg)	500	500	ND<25	NA	ND<25	ND<25	ND<59	ND<59	ND<61	ND<57							
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		<u> </u>		•												•	
ΓΡΗ by 418.1 (mg/kg)	500	500	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
*																	
Volatile Organic Compounds (mg/kg)			NA									NA	NA	NA	NA	NA	NA
1,1,1-Trichloroethane	500	4		ND													
1,1-Dichloroethylene	1	0.14		ND													
1,1-Dichloroethane	500	1.4		ND													
1,2,4-Trimethylbenzene	500	2.4		ND													
1,2-dichlorobenzene	500	3.1		ND													
1,3,5-Trimethylbenzene	500	1.9		ND													
4-Isopropyltoluene	500	4.2		ND													
Benzene	21	0.02		ND													
Chloroethane	500	20		ND													
cis-1,2-Dichloroethene	500	1.4		ND													
Ethylbenzene	500	10.1		ND													
Isopropylbenzene	500	14		ND													
Methjylene Chloride	82	0.1		ND													
Naphthalene	1000	5.6		ND													
n-Butylbenzene	500	1.2		ND													
n-Propylbenzene	500	1.2		ND													
p-Isopropyltoluene	NE	NE		ND													
Sec-butylbenzene	500	1.2		ND													
Tetrachloroethylene	12	0.1		ND													
Toluene	500	20		ND													
Total Xylenes	500	19.5		ND													
Trans-1,2-dichloroethene	500	2		ND													
Trichloroethene	56	0.1		ND													
Trimethylbenzene	NE	NE		ND													
Vinyl Chloride	0.32	0.04		ND													
,																	
Total Metals (mg/kg)			NA									NA	NA	NA	NA	NA	NA
Arsenic	10			NA													
Barium	4,700			NA													
Cadmium	34			NA													
Chromium (total)	NE			NA													
Lead	500			3.7	21.6	43.6	11.8	7.3	6.9	4.9	31.3						
Mercury	20			NA													
Selenium	340			NA													
Silver	340			NA													
SPLP Metals (mg/L)			NA									NA	NA				NA
Cadmium		0.005		NA													
Lead		0.015		ND<0.005		ND<0.005	ND<0.005	ND<0.005	ND<0.005	ND<0.005							
Total PCBs (mg/kg)	1	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND<0.3	ND<0.3	ND<0.4	ND<0.3

Notes:
Only parameters detected are shown
Bold and shaded concentrations exceed one or more of the RSR c

Italicized criteria are taken from DEEP Proposed Revisions to RS

Cells with diagonal lines indicate that soil was excavated during r

mg/kg - milligram per kilogram
mg/L - milligram per liter
NA - Not applicable or not analyzed
NE - None established

RSR - Remediation Standard Regulations

Res DEC - Residential Direct Exposure Criteria

TABLE 3 Summary of Analytes Detected in Groundwater Samples

Former J.T. Slocumb Facility 68 Matson Hill Road - Glastonbury, CT

		2003	2003					Well / Sample Date	2		
Compound	GWPC	Proposed IVC	Proposed RVC	SWPC ¹	HD-3 10/13/09	HD-3 2/11/10	MW-103 10/13/09	MW-104 10/13/09	MW-105 10/13/09	MW-108 10/13/09	MW-4 10/13/09
Petroleum Hydrocarbons						NA					
ETPH (mg/L)	0.1	NE	NE	0.25	ND (0.075)		ND (0.075)	ND (0.075)	ND (0.075)	0.36	ND (0.075)
Total Metals (ug/L)											
Cadmium	5	NE	NE	64	22	17	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)	ND (2.5)
Lead	15	NE	NE	57	15	13	ND (5.0)	ND (5.0)	ND (5.0)	ND (5.0)	7.4
VOCs (ug/L)						NA					
n-Butylbenzene	61	21,000	1,500	10	ND (1.0)		ND (1.0)	ND (1.0)	ND (1.0)	1.4	ND (1.0)
sec-Butylbenzene	61	20,000	1,500	10	ND (1.0)		ND (1.0)	ND (1.0)	ND (1.0)	3.0	ND (1.0)
1,1-Dichloroethane	70	41,000	3,000	4,100	ND (0.50)		1.3	0.57	1.0	10	6.0
1,1-Dichloroethene	7	920	190	96	ND (0.50)		ND (0.50)	ND (0.50)	2.8	ND (0.50)	ND (0.50)
cis-1,2-Dichloroethene	70	11,000	830	6,200	0.99		2.6	1.2	ND (0.50)	0.63	1.8
1,1,1-Trichloroethane	200	16,000	6,500	62,000	0.66		15	5.6	22	6.6	1.5
Trichloroethene	5	67	27	2,340	7.4		11	32	7.1	4.0	6.0
Additional Inorganics						NA					
Cyanide (mg/L)	0.2	NE	NE	0.052	ND (0.010)		ND (0.010)	ND (0.010)	ND (0.010)	0.014	ND (0.010)

Notes:

Only parameters detected are shown

Bold and shaded concentrations exceed one or more of the RSR criteria

Italicized criteria are taken from DEEP Proposed Revisions to RSRs (dated August 2008)

ND = Not Detected at the indicated detection limit

NE = None Established

NA = Not Analyzed

RSR = Remediation Standard Regulations

GWPC = Groundwater Protection Criteria

SWPC = Surface Water Protection Criteria

Proposed RVC = Proposed revisions to the RSRs Residential Volatilization Criteria, March 2003. Proposed IVC = Proposed revisions to the RSRs Indistrial/CommercialVolatilization Criteria, March 2003.

¹ = Site secific SWPC have been calculated for lead and cadmium.

Summary of Analytes Detected in Historic Groundwater Samples

Former JT Slocomb Facility
68 Matson Hill Road - Glastonbury, CT

	RSR Criteria			Sample I.D./Sample Date											
Compound	GWPC	SWPC ¹	Proposed Res. VC	MW-1 5/1/1998	MW-1 7/16/1999	HD-3/MW-3 6/15/1999	HD-3/MW-3 7/16/1999	HD-3/MW-3 12/1/1999	HD-3/MW-3 1/11/2000	HD-3/MW-3 5/20/2003	HD-3/MW-3 1/20/2005	HD-3/MW-3 12/8/2005	HD-3/MW-3 2/13/2007	MW-4 5/1/1998	MW-4 7/16/1999
TPH (ug/L)	100	NE	NE	ND<100	750	NA	ND<100	NA	ND<100	NA	ND<100	NA	NA	NA	870
VOCs (ug/L)										NA					
Benzene	1	710	130	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Butylbenzene	61	10	1,500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
sec-Butylbenzene	61	10	1,500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroethane	1,000	10,000	12,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	6	14100	26	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethane	70	4,100	3,000	ND<1.0	ND<1.0	ND<1.0	5.1	ND<1.0	2.7		9	4	5.5	ND<1.0	15.0
1,2-Dichloroethane	1	2970	6.5	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethene	7	96	190	ND<1.0	ND<1.0	ND<1.0	1.1	ND<1.0	ND<1.0		4	9.0	ND<1.0	ND<1.0	1.7
cis-1,2-Dichloroethene	70	6,200	830	ND<1.0	ND<1.0	ND<1.0	22.0	ND<1.0	7.2		8	9	3.7	ND<1.0	9.5
Ethylbenzene	700	580,000	2,700	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Isopropylbenzene	700	210	2,800	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
p-Isopropyltoleune	NE	NE	NE	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Naphthalene	280	210	NE	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Propylbenzene	61	NE	NE	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Tetrachloroethene	5	88	340	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	200	62000	6,500	ND<1.0	11.0	60.0	20.0	8.0	8.0		20	7	1.8	ND<1.0	ND<1.0
Trichloroethene	5	2340	27	ND<1.0	ND<1.0	175.0	73.0	32.0	32.0		41.0	22.0	8.4	ND<1.0	19.0
1,2,4-Trimethylbenzene	350	160	360	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,3,5-Trimethylbenzene	350	260	280	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Vinyl Chloride	2	15750	1.6	ND<1.0	ND<1.0	ND<1.0	14.0	ND<1.0	4.3		4.0	3.0	ND<1.0	ND<1.0	ND<1.0
Toluene	1000	4000000	7,100	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Xylenes	530	270	8,700	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
trans- 1,2- Dichloroethylene	100	5,600	1,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Total Metals (mg/L)				NA	NA	NA		NA						NA	
Lead	0.015	0.057	NE				0.75		2.1	NA	BDL	BDL	0.027		0.24
Cadmium	0.005	0.064	NE				ND<0.005		0.31	NA	0.015	0.017	BDL		0.0081
Chromium	0.05	NE	NE						-	NA	BDL	BDL	0.09		
	•		•			<u></u>			<u> </u>						
Dissolved Metals (mg/L)	T T				NA	NA		NA					1		
Lead	0.015	0.057	NE	ND			0.04		0.06					ND<0.013	ND<0.013
Cadmium	0.005	0.064	NE	ND			ND		0.018					0.026	ND<0.005
Copper	1.3	0.048	NE	NA			NA		NA					NA	NA
Barium	1	2.2	NE	NA			NA		NA					ND	NA
Notes:	•		- 12		I .	1	- 12 2		- 1. 2		<u> </u>	<u> </u>		2	- 12.2

Notes:

*Alternative SWPC calculated for cadmium and lead.

Only parameters detected are shown

Bold and shaded concentrations exceed one or more of the RSR criteria

Italicized criteria are taken from DEEP Proposed Revisions to RSRs (Dated August 2008)

ND = Not Detected at the indicated detection limit

NE = None Established

RSR = Remediation Standard Regulations

GWPC = Groundwater Classification A Groundwater Protection Criteria

SWPC = Surface Water Protection Criteria

Proposed Res. VC = Proposed revisions to the RSRs Residential Volatilization Criteria, March 2003.

Summary of Analytes Detected in Historic Groundwater Samples

Former JT Slocomb Facility
68 Matson Hill Road - Glastonbury, CT

		RSR Criter	ia						Sample I.D./	Sample Date					
Compound	CVVDC	avvm al	Proposed Res.	MW-4	MW-4	MW-4	MW-4	MW-4	MW-4	MW-5	MW-5	MW-5	MW-5	MW-5	MW-6
	GWPC	SWPC ¹	VC	12/1/99	1/11/2000	5/20/2003	1/20/2005	12/8/2005	2/13/2007	1993	7/16/1999	12/1/99	1/11/2000	5/20/2003	7/16/1999
TPH (ug/L)	100	NE	NE	NA	ND<100	NA	ND<100	NA	NA	NA	870	NA	ND<100	NA	650
VOCs (ug/L)															
Benzene	1	710	130	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Butylbenzene	61	10	1,500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
sec-Butylbenzene	61	10	1,500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroethane	1,000	10,000	12,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	6	14100	26	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethane	70	4,100	3,000	ND<1.0	1.8	5.0	7	13	ND<1.0	ND<1.0	64.0	ND<1.0	11.0	21.0	ND<1.0
1,2-Dichloroethane	1	2970	6.5	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethene	7	96	190	ND<1.0	ND<1.0	1.0	ND<1.0	4	ND<1.0	ND<1.0	3.4	ND<1.0	1.0	2.0	ND<1.0
cis-1,2-Dichloroethene	70	6,200	830	ND<1.0	ND<1.0	4.0	3	4	ND<1.0	ND<1.0	130.0	ND<1.0	18.0	30.0	ND<1.0
Ethylbenzene	700	580,000	2,700	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Isopropylbenzene	700	210	2,800	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
p-Isopropyltoleune	NE	NE	NE	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Naphthalene	280	210	NE	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Propylbenzene	61	NE	NE	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Tetrachloroethene	5	88	340	ND<1.0	1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	2.0	ND<1.0	ND<1.0
1,1,1-Trichloroethane	200	62000	6,500	3.0	3.0	10.0	5	2	0.7	13.0	20.0	12.0	12.0	15.0	ND<1.0
Trichloroethene	5	2340	27	ND<1.0	ND<1.0	10.0	6.0	10.0	10.3	45.0	120.0	36.0	36.0	41.0	ND<1.0
1,2,4-Trimethylbenzene	350	160	360	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,3,5-Trimethylbenzene	350	260	280	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Vinyl Chloride	2	15750	1.6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Toluene	1000	4000000	7,100	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Xylenes	530	270	8,700	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
trans- 1,2- Dichloroethylene	100	5,600	1,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Total Metals (mg/L)				NA						NA		NA		NA	
Lead	0.015	0.057	NE		0.41	BDL	BDL	BDL	BDL		ND<0.013		ND<0.013		ND<0.013
Cadmium	0.005	0.064	NE		0.017	BDL	BDL	BDL	0.018		ND<0.013		ND<0.013		ND<0.013
Chromium	0.05	NE	NE			BDL	BDL	BDL	BDL						
Dissolved Metals (mg/L)				NA		NA				NA		NA		NA	
Lead	0.015	0.057	NE		ND<0.013						ND<0.013		ND<0.013		ND<0.013
Cadmium	0.005	0.064	NE		ND<0.013						ND<0.013		ND<0.013		ND<0.013
Copper	1.3	0.048	NE		NA						NA		NA		NA
Barium	1	2.2	NE		NA						NA		NA		NA
() ·	-	•			•	•	•		•	•	•	•	•	-	•

Notes:

*Alternative SWPC calculated for cadmium and lead.

Only parameters detected are shown

Bold and shaded concentrations exceed one or more of the RSR criteria

Italicized criteria are taken from DEEP Proposed Revisions to RSRs (Dated August ?

ND = Not Detected at the indicated detection limit

NE = None Established

RSR = Remediation Standard Regulations

GWPC = Groundwater Classification A Groundwater Protection Criteria

SWPC = Surface Water Protection Criteria

Proposed Res. VC = Proposed revisions to the RSRs Residential Volatilization Crite

Summary of Analytes Detected in Historic Groundwater Samples

Former JT Slocomb Facility
68 Matson Hill Road - Glastonbury, CT

		RSR Criteri	ia						Sample I.D./	Sample Date				MW-7S 5/20/2003 NA ND<1.0	
Compound	GWPC	SWPC ¹	Proposed Res. VC	MW-6 5/20/2003	MW-6 1/20/05	MW-6 12/8/05	MW-6 5/11/2006	MW-6 10/1/2006	MW-6 2/13/2007	MW-6	MW-7 7/16/1999	MW-7 12/1/1999	MW-7S 1/11/2000		MW-7D 1/11/2000
TPH (ug/L)	100	NE	NE	ND<100	ND<100	NA	NA	ND<100	ND<100	120	640	NA	ND<100	NA	NA
8		•			•						•	•	•	•	•
VOCs (ug/L)															
Benzene	1	710	130	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Butylbenzene	61	10	1,500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
sec-Butylbenzene	61	10	1,500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroethane	1,000	10,000	12,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Chloroform	6	14100	26	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethane	70	4,100	3,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	25.0	ND<1.0	8.6	ND<1.0	ND<1.0
1,2-Dichloroethane	1	2970	6.5	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,1-Dichloroethene	7	96	190	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	2.0	ND<1.0	2.2		ND<1.0
cis-1,2-Dichloroethene	70	6,200	830	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	15.0	ND<1.0	4.3	ND<1.0	ND<1.0
Ethylbenzene	700	580,000	2,700	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0
Isopropylbenzene	700	210	2,800	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
p-Isopropyltoleune	NE	NE	NE	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Naphthalene	280	210	NE	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
n-Propylbenzene	61	NE	NE	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Tetrachloroethene	5	88	340	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0		ND<1.0
1,1,1-Trichloroethane	200	62000	6,500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	140.0	38.0	38.0		ND<1.0
Trichloroethene	5	2340	27	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	38.0	27.0	27.0		1.4
1,2,4-Trimethylbenzene	350	160	360	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
1,3,5-Trimethylbenzene	350	260	280	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Vinyl Chloride	2	15750	1.6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Toluene	1000	4000000	7,100	ND<1.0	ND<1.0	ND<1.0	ND<1.0	29.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Xylenes	530	270	8,700	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
trans- 1,2- Dichloroethylene	100	5,600	1,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0
Total Metals (mg/L)							NA	NA		NA		NA	NA	NA	NA
Lead	0.015	0.057	NE	ND<0.013	ND<0.013	ND<0.013			ND<0.013		0.033				
Cadmium	0.005	0.064	NE	ND<0.013	ND<0.013	ND<0.013			ND<0.013		ND<0.013				
Chromium	0.05	NE	NE	ND<0.013	ND<0.013	ND<0.013			ND<0.013		ND<0.013				
Dissolved Metals (mg/L)				NA	NA	NA	NA	NA	NA	NA		NA	NA	NA	NA
Lead	0.015	0.057	NE								ND<0.013				
Cadmium	0.005	0.064	NE								ND<0.013				
Copper	1.3	0.048	NE								NA				
Barium	1	2.2	NE								NA				
NT-4									•				•		

Notes:

*Alternative SWPC calculated for cadmium and lead.

Only parameters detected are shown

Bold and shaded concentrations exceed one or more of the RSR criteria

Italicized criteria are taken from DEEP Proposed Revisions to RSRs (Dated August ?

ND = Not Detected at the indicated detection limit

NE = None Established

RSR = Remediation Standard Regulations

GWPC = Groundwater Classification A Groundwater Protection Criteria

SWPC = Surface Water Protection Criteria

Proposed Res. VC = Proposed revisions to the RSRs Residential Volatilization Crite

Summary of Analytes Detected in Historic Groundwater Samples

Former JT Slocomb Facility 68 Matson Hill Road - Glastonbury, CT

		RSR Criter	a	Sample I.D./Sample Date										
Compound	GWPC	SWPC ¹	Proposed Res. VC	MW-101 5/20/2003	MW-102 5/20/2003	MW-103 5/20/2003	MW-104 5/20/2003	MW-105 5/20/2003	MW-107 5/20/2003	MW-109 5/20/2003	MW-7D 5/20/2003			
TPH (ug/L)	100	NE	NE	NA	NA	NA	NA	NA	NA	NA	NA			
		*	1						<u>l</u>					
VOCs (ug/L)														
Benzene	1	710	130	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			
n-Butylbenzene	61	10	1,500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	2.0	ND<1.0			
sec-Butylbenzene	61	10	1,500	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	2.0	4.0	ND<1.0			
Chloroethane	1,000	10,000	12,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	44.0	189.0	ND<1.0			
Chloroform	6	14100	26	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			
1,1-Dichloroethane	70	4,100	3,000	4.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	47.0	23.0	ND<1.0			
1,2-Dichloroethane	1	2970	6.5	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	1.0	ND<1.0			
1,1-Dichloroethene	7	96	190	1.0	ND<1.0									
cis-1,2-Dichloroethene	70	6,200	830	13.0	ND<1.0	3.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			
Ethylbenzene	700	580,000	2,700	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	5.0	ND<1.0			
Isopropylbenzene	700	210	2,800	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	1.0	4.0	ND<1.0			
p-Isopropyltoleune	NE	NE	NE	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	3.0	ND<1.0			
Naphthalene	280	210	NE	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	43.0	ND<1.0			
n-Propylbenzene	61	NE	NE	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	2.0	6.0	ND<1.0			
Tetrachloroethene	5	88	340	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			
1.1.1-Trichloroethane	200	62000	6,500	154.0	ND<1.0	2.0	5.0	2.0	2.0	2.0	ND<1.0			
Trichloroethene	5	2340	27	70.0	ND<1.0	56.0	16.0	5.0	3.0	1.0	ND<1.0			
1,2,4-Trimethylbenzene	350	160	360	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	99.0	ND<1.0			
1,3,5-Trimethylbenzene	350	260	280	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	19.0	ND<1.0			
Vinyl Chloride	2	15750	1.6	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			
Toluene	1000	4000000	7,100	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0			
Xylenes	530	270	8,700	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	24.0	ND<1.0			
trans- 1,2- Dichloroethylene	100	5,600	1,000	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	ND<1.0	24.0	ND<1.0			
, , , , , , , , , , , , , , , , , , , ,		.,,,,,	,											
Total Metals (mg/L)				NA	NA	NA	NA	NA	NA	NA	NA			
Lead	0.015	0.057	NE	1,111	1,112	1,11	1,112	1,112	1,11	1,111	1,12			
Cadmium	0.005	0.064	NE											
Chromium	0.05	NE	NE NE											
	5.03	1.45	1111				<u> </u>		<u> </u>					
Dissolved Metals (mg/L)	1	1		NA	NA	NA	NA	NA	NA	NA	NA			
Lead	0.015	0.057	NE	1111	1111	1111	1111	1111	1171	1111	1111			
Cadmium	0.005	0.064	NE NE				1							
Copper	1.3	0.048	NE NE											
Barium	1.5	2.2	NE NE											
Notes:		2.2	1,12				I .		l					

Notes:

*Alternative SWPC calculated for cadmium and lead.

Only parameters detected are shown

Bold and shaded concentrations exceed one or more of the RSR criteria

Italicized criteria are taken from DEEP Proposed Revisions to RSRs (Dated August 2

ND = Not Detected at the indicated detection limit

NE = None Established

RSR = Remediation Standard Regulations

GWPC = Groundwater Classification A Groundwater Protection Criteria

SWPC = Surface Water Protection Criteria

Proposed Res. VC = Proposed revisions to the RSRs Residential Volatilization Crite

Table 4

Summary of Analytes Detected in Pond Sediment Samples

Former JT Slocomb Facility 68 Matson Hill Road - Glastonbury, CT

Compound				#1 Slocomb	#2 Slocomb	#3 Slocomb	SED-1	SED-2	SED-3
•	Res DEC	I/C DEC	GA	8/16/06	8/16/06	8/16/06	12/3/07	12/3/07	12/3/07
Volatile Organic Compounds by 8260 (mg/kg)	Various	Various	Various	ND	ND	ND	NA	NA	NA
Polynuclear Aromatic Hydrocarbons (mg/kg)							NA	NA	NA
Anthracene	1000	2500	40	ND<0.33	ND<0.33	0.33			
Benzo(b)fluoranthene	1	7.8	1	ND<0.33	ND<0.33	0.37			
Fluoranthene	1000	2500	5.6	ND<0.33	ND<0.33	0.54			
Phenanthrene	1000	2500	4	ND<0.33	ND<0.33	0.34			
Pyrene	1000	2500	4	ND<0.33	ND<0.33	0.55			
Total Metals (mg/kg)									
Arsenic	10	10	NE	ND<1	ND<1	ND<1	ND<1.5	ND<5.0	ND<2.5
Barium	4,700	140,000	NE	24.8	19.7	25.8	36	200	73
Cadmium	34	1,000	NE	ND<0.5	ND<0.5	ND<0.5	ND<1.0	ND<2.0	ND<1.5
Chromium (total)	NE	NE	NE	5.13	4.84	17.4	4.7	29	11
Lead	500	1,000	NE	14.3	3.5	8.9	12	58.0	23
Mercury	20	610	NE	ND<0.1	ND<0.1	ND<0.1	ND<0.3	ND<1.0	ND<0.5
Selenium	340	10,000	NE	ND<2.5	ND<2.5	ND<2.5	ND<1.5	ND<5.0	ND<2.5
Silver	340	10,000	NE	ND<0.5	ND<0.5	ND<0.5	ND<2.5	ND<9.5	ND<5.0
Total PCBs	1	10	NE	ND<0.40	ND<0.40	ND<0.40	ND<0.4	ND<1.2	ND<0.7
Total Pesticides	Various	Various	Various	ND	ND	ND	ND	ND	ND
	** .	** .	** .	NIA	NIA	NIA	ND	NID	ND
Total Herbicides	Various	Various	Various	NA	NA	NA	ND	ND	ND

Notes:

Only parameters detected are shown

Bold and shaded concentrations exceed one or more of the RSR criteria

* - Soil at this location was excavated during remedial actions.

mg/kg - milligram per kilogram

mg/L - milligram per liter

NA - Not applicable or not analyzed

NE - None established

RSR - Remediation Standard Regulations

Res DEC - Residential Direct Exposure Criteria

I/C DEC - Industrial/Commercial Direct Exposure Criteria

GA PMC - GA Pollutant Mobility Criteria

Appendix A Documentation of Public Notice

Town of Glastonbury

GLASTONBURY

FILE COPY

2155 MAIN STREET · P.O. BOX 6523 · GLASTONBURY, CONNECTICUT 06033-6523

February 26, 2013

Mr. David W. Boone, MPH, RS Director of Health Town of Glastonbury 2155 Main Street Glastonbury, CT 06033

Re:

Notification of Soil Remediation Activities

44 and 68 Matson Hill Road, Glastonbury, CT

Dear Mr. Boone:

This is to inform you that the Town of Glastonbury will be initiating the completion of environmental investigation and remediation activities at the former J.T. Slocomb facility located at 44 and 68 Matson Hill Road, Glastonbury, Connecticut. The Town's retained Licensed Environmental Professional, Triton Environmental, Inc., will be conducting remediation activities at the site in accordance with the Connecticut Transfer Act (C.G.S. Section 22a-134) and the State of Connecticut Department of Environmental Protection (CTDEP) Remediation Standard Regulations (RSRs). The purpose of this letter is to formally notify your department of intended remediation activities (as required by Section 22a-134) and to provide you with a description of the proposed activities.

The remediation activities will consist of the excavation of limited areas of soil impacted with either petroleum hydrocarbons, trichloroethylene, or metals (cadmium and lead). The excavated soils will be transported off-site for disposal and replaced with clean fill.

All of the remediation activities will be conducted under the supervision of a State of Connecticut Licensed Environmental Professional (LEP). If you have any questions or comments, please contact me at (860) 652-7736.

Sincerely,

Daniel A. Pennington, P.E.

Town Engineer/Manager of

Physical Services

DAP/ce

CC:

Richard J. Johnson, Town Manager

J. Carver Glezen, LEP, Triton Environmental, Inc.

Affidavit of Publication

State of Connecticut

Wednesday, March 06, 2013

County of Hartford

I, Rena Matus, do solemnly swear that I am Financial Operations Assistant of the Hartford Courant, printed and published daily, in the state of Connecticut and that from my own personal knowledge and reference to the files of said publication the advertisement of Public Notice was inserted in the regular edition.

On dates as follows: 3/6/2013 \$53.54

In the amount of \$53.54
TOWN OF GLASTONBURY ACCN
42920
387501
ZONE 4

Financial Operations Assistant Rena Matus

Subscribed and sworn to before me on March 6, 2013

Notary Public

WILLIAM B. McDONALD NOTARY PUBLIC, CONNECTICUT MY COMMISSION EXPIRES FED. 28, 2014 2537950

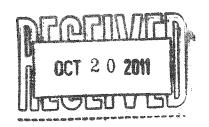
LEGAL NOTICE

NOTICE OF REMEDIATION ACTIVITIES

44 and 68 Matson Hill Road
Glastonbury, CT

In accordance with State of Connecticut Department of Environmental Protection (CTDEP) Regulations, Section 22a-134, remediation activities will be conducted at the above site under the supervision of a Connecticut Licensed Environmental Professional. This Notice of Remediation Activities is published in accordance with Connecticut Regulations, Section 22a-134a(j). To obtain more information regarding the remediation activities at the site, please contact Daniel Pennington, Town Engineer, at (860) 652-7736.

Public Notice Sign
Installed by Triton Environmental, Inc. on February 27, 2013


Appendix B Approval of Alternative Volatilization Criteria

October 18, 2011

APPROVAL

Mr. J. Carver Glezen Triton Environmental, Inc. 385 Church Street, Suite 201 Guilford, CT 06437

RE:

Request for Approval of Alternative Criteria (Use of the 2003 Draft Volatilization

Criteria)

Former J.T. Slocum Facility, 44 & 68 Matson Hill Road, Glastonbury

Rem I.D. No. 8827

Dear Mr. Glezen,

The Remediation Division of the Bureau of Water Protection and Land Reuse has received your May, 2011 request for approval to use both methodologies and numeric criteria contained in a document issued by DEEP titled "Proposed Revisions - Connecticut's Remediation Standard Regulations Volatilization Criteria - March 2003" as site-specific volatilization criteria at the above referenced site.

Pursuant to RCSA 22a-133k(c)(4), the DEEP hereby approves, as site-specific alternative criteria, the use of the methodologies and numeric criteria contained in the above-referenced 2003 document as a whole at this site. Please note that the above-referenced approval applies to the 2003 document in its entirety, and is not an approval to use some but not all of the methodologies and numeric criteria.

Nothing in this approval shall affect the authority of the Commissioner under any other statute or regulation, including, but not limited to, any authority to institute any proceeding, or take any other action to prevent or abate pollution, to recover costs and natural resource damages, and to impose penalties for violations of law. If at any time the Commissioner determines that the actions at the parcel have not fully characterized the extent and degree of pollution or have not successfully abated or prevented pollution, the Commissioner may institute any proceeding, or take any action to require further investigation or further action to prevent or abate pollution.

In addition, nothing in this approval shall relieve any person of his or her obligations under applicable federal, state and local law.

If you have any questions regarding this approval, please contact Craig Bobrowiecki of my staff at (860) 424-3798.

Sincerely,

Patrick F. Bowe, Director Remediation Division

Bureau of Water Protection and Land Reuse

PFB:cjb

Craig Bobrowiecki CT DEEP cc:

Maurice Hamel, CT DEEP

Mr. Richard J. Johnson, Town Manager, Town of Glastonbury, 2155 Main Street, Glastonbury, CT 06033

Appendix C Conservation Commission/Inland Wetlands Agency Approval

Town of Glastonbury

2155 MAIN STREET • P.O. BOX 6523 • GLASTONBURY, CONNECTICUT 06033-6523

June 2, 2011

CONSERVATION COMMISSION AND INLAND WETLANDS & WATERCOURSES AGENCY

Daniel A. Pennington, Town Engineer Town of Glastonbury 2155 Main Street Glastonbury, Connecticut 06033

Re: Application of the Town of Glastonbury for an inland wetlands and watercourses permit to demolish building structures and perform soils remediation activities at the former JT Slocomb facility at 44 & 68 Matson Hill Road – Daniel A. Pennington, Town Engineer – Triton Environmental, Inc., consultant

Dear Dan:

At its Regular Meeting of May 26, 2011, the Conservation Commission/Inland Wetlands & Watercourses Agency approved an Inland Wetlands and Watercourses Permit, in accordance with the plans and conditions cited in the attached motion.

Please read the conditions of approval carefully and comply with them. Some of the conditions may require interacting with the Environmental Planner (e.g. inspection of soil erosion and sediment control); it will be your responsibility to schedule such interactions. Any questions you may have about the stated conditions can be directed to the Office of Community Development at (860) 652-7511.

This Permit:

- requires that the approved regulated activities be completed within one (1) year from commencement of said activities;
- is valid for five (5) years and thus expires on May 26, 2016; and
- may not be transferred unless authorized by the Inland Wetlands & Watercourses Agency

This Permit may be revoked if you exceed the conditions or limitations of this Permit or have secured this Permit through inaccurate information.

Once again should you have any questions, please do not hesitate to contact this office.

Sincerely,

Tom Mocko

Environmental Planner

TM:gfm Attachment

APPROVED WETLANDS PERMIT MOTION

MOVED, that the Inland Wetlands and Watercourses Agency issues an inland wetlands and watercourses permit to the Town of Glastonbury for the demolition of buildings and remediation of soils within the upland review areas at the former JT Slocomb facility located at 44 & 68 Matson Hill Road, in accordance with the application material on file in the Office of Community Development, and in compliance with the following conditions:

- 1. Installation of the debris barriers and the soil erosion and sedimentation control and stabilization measures shall be the Permittee's responsibility. Once installed these measures shall then be inspected by the Environmental Planner prior to land disturbance activities. Afterwards it then shall be the Permittee's responsibility to inspect these control measures during, and immediately following, substantial storm events and maintain and/or replace the control measures, when needed, on a regular basis until the site is vegetatively stabilized. Hay bales shall be replaced every 60 days. The Environmental Planner is hereby authorized to require additional soil erosion and sediment controls and stabilization measures to address situations that arise on the site.
- 2. Periodic inspections of the brook shall be conducted for the presence of building debris in the brook. Any such debris shall be removed upon detection. Enhancements to the debris barriers shall be implemented to the satisfaction of the Environmental Planner if debris continues to enter the brook.
- 3. Metal waste containers shall be provided at the site to facilitate the collection of refuse material generated from construction activities. Such material shall not be buried or burned at the site.
- Once disturbed land areas have been topsoiled, then lime and fertilizer amendments shall be made, and the seed mix selection and application rates all developed in consultation with the Environmental Planner.
- 5. Shade trees, with their species selection and caliper sizes determined under consultation with the Environmental Planner, shall be planted at the top of the wall along the southern edge of Roaring Brook at 40-foot intervals.
- 6. The Permittee shall be fully responsible for damages caused by all activities undertaken pursuant to this permit that may have a detrimental effect on wetlands and/or watercourses, and all such activities that cause erosion and sedimentation problems.

The bases for this decision are that:

- a. All proposed regulated activities are limited to within the upland review area;
- b. The proposed mitigation measures within the application should prevent or drastically minimize any direct adverse impact upon the wetlands and watercourses;
- c. The proposed remediation of soils should serve to protect and conserve the immediately adjacent Roaring Brook and its downstream resources in the long-term as opposed to a "do nothing" approach; and
- d. Removing the existing buildings and pavement restoration of the disturbed land areas facilitates the soils remediation, reduces impervious surfaces and enhances the wildlife habitat.

Appendix D Laboratory Analytical Data

04/01/13

Technical Report for

Triton Environmental, Inc.

68 Matson Hill Road, Glastonbury, CT

103139

Accutest Job Number: MC19057

Sampling Date: 03/15/13

Report to:

Triton Environmental, Inc. 385 Church Street Suite 201 Guilford, CT 06437 mpaulsson@tritonenvironmental.com

ATTN: Mark Paulsson

Total number of pages in report: 56

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Matthew Morrell 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) WI (399080220) ISO 17025:2005 (L2235)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Lab Director

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	
Section 3: Summary of Hits	
Section 4: Sample Results	8
4.1: MC19057-1: TB-301(0-2')	9
4.2: MC19057-2: TB-301(2-4')	11
4.3: MC19057-3: TB-302(0-2')	13
4.4: MC19057-4: TB-303(0-2')	15
4.5: MC19057-5: TB-311(5-7')	17
4.6: MC19057-6: TB-312(5-7')	19
4.7: MC19057-7: TB-313(4-6')	21
4.8: MC19057-8: TB-314(0-2')	23
4.9: MC19057-9: TB-315(0-2')	25
4.10: MC19057-10: TB-316(0-2')	
4.11: MC19057-11: TB-317(2-4')	29
4.12: MC19057-12: TB-318(2-4')	31
4.13: MC19057-13: TB-319(2-4')	32
4.14: MC19057-14: TB-320(4-6')	33
Section 5: Misc. Forms	34
5.1: Chain of Custody	35
5.2: RCP Form	38
5.3: Sample Tracking Chronicle	39
Section 6: GC/MS Volatiles - QC Data Summaries	41
6.1: Method Blank Summary	42
6.2: Leachate Blank Summary	
6.3: Blank Spike/Blank Spike Duplicate Summary	44
6.4: Leachate Spike Summary	
6.5: Internal Standard Area Summaries	48
6.6: Surrogate Recovery Summaries	49
Section 7: Metals Analysis - QC Data Summaries	
7.1: Prep QC MP20693: Cd	

Sample Summary

Job No:

MC19057

Triton Environmental, Inc.

68 Matson Hill Road, Glastonbury, CT Project No: 103139

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
MC19057-1	03/15/13	09:30 DSM	03/19/13	SO	Soil	TB-301(0-2')
MC19057-2	03/15/13	09:40 DSM	03/19/13	SO	Soil	TB-301(2-4')
MC19057-3	03/15/13	09:45 DSM	03/19/13	SO	Soil	TB-302(0-2')
MC19057-4	03/15/13	09:50 DSM	03/19/13	SO	Soil	TB-303(0-2')
MC19057-5	03/15/13	10:30 DSM	03/19/13	SO	Soil	TB-311(5-7')
MC19057-6	03/15/13	10:45 DSM	03/19/13	SO	Soil	TB-312(5-7')
MC19057-7	03/15/13	11:05 DSM	03/19/13	SO	Soil	TB-313(4-6')
MC19057-8	03/15/13	11:25 DSM	03/19/13	SO	Soil	TB-314(0-2')
MC19057-9	03/15/13	11:55 DSM	03/19/13	SO	Soil	TB-315(0-2')
MC19057-10	03/15/13	12:30 DSM	03/19/13	SO	Soil	TB-316(0-2')
MC19057-11	03/15/13	12:45 DSM	03/19/13	SO	Soil	TB-317(2-4')
MC19057-12	03/15/13	14:10 DSM	03/19/13	SO	Soil	TB-318(2-4')
MC19057-13	03/15/13	13:30 DSM	03/19/13	SO	Soil	TB-319(2-4')

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

Sample Summary (continued)

Triton Environmental, Inc.

Job No: MC19057

68 Matson Hill Road, Glastonbury, CT Project No: 103139

Sample	Collected			Matr	rix	C	Client
Number	Date	Time By	Received	Code	Type	S	ample ID
MC19057-14	03/15/13	13:55 DSM	03/19/13	SO	Soil	T	'B-320(4-6')

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Triton Environmental, Inc. Job No MC19057

Site: 68 Matson Hill Road, Glastonbury, CT Report Date 4/1/2013 2:28:34 PM

14 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were collected on 03/15/2013 and were received at Accutest on 03/19/2013 properly preserved, at 1.1 Deg. C and intact. These Samples received an Accutest job number of MC19057. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix: AQ Batch ID: MSK2240

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

MSK2240-BS/BSD for Dichlorodifluoromethane: Outside control limits. Blank Spike meets program technical requirements.

Initial calibration verification MSK2235-ICV2235 for dichlorodifluoromethane exceed 35% Difference.

Only selected compounds requested.

Matrix: LEACHATE Batch ID: GP15772

All samples were analyzed within the recommended method holding time.

All method blanks for this batch meet method specific criteria.

Sample(s) MC19057-1LS were used as the QC samples indicated.

Only selected compounds requested.

GP15772-LS1 for Dichlorodifluoromethane: Outside control limits due to possible matrix interference. Refer to Blank Spike.

Metals By Method SW846 6010C

Matrix: LEACHATE Batch ID: MP20693

- All samples were digested within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) MC19276-1SDL were used as the QC samples for metals.
- Only Cadmium requested.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report (MC 19057).

Summary of Hits Job Number: MC19057

Account:

Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Collected: 03/15/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
MC19057-1	TB-301(0-2')					
Trichloroethene		0.0176	0.0010		mg/l	SW846 8260B
MC19057-2	TB-301(2-4')					
1,1,1-Trichloroet Trichloroethene	thane	0.0031 0.0410	0.0010 0.0010		mg/l mg/l	SW846 8260B SW846 8260B
MC19057-3	TB-302(0-2')					
Trichloroethene		0.0172	0.0010		mg/l	SW846 8260B
MC19057-4	TB-303(0-2')					
Trichloroethene		0.0073	0.0010		mg/l	SW846 8260B
MC19057-5	TB-311(5-7')					
Chloroethane 1,1-Dichloroetha cis-1,2-Dichloroet 1,1,1-Trichloroet Trichloroethene Vinyl chloride	ethene	0.0092 0.0094 0.0042 0.0102 0.0100 0.0014	0.0020 0.0010 0.0010 0.0010 0.0010 0.0010		mg/l mg/l mg/l mg/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B
MC19057-6	TB-312(5-7')					
Methylene chlori	de	0.0022	0.0020		mg/l	SW846 8260B
MC19057-7	TB-313(4-6')					
1,1-Dichloroetha cis-1,2-Dichloroe trans-1,2-Dichlor 1,1,1-Trichloroet Trichloroethene	ethene roethene	0.0160 0.0308 0.0027 0.0061 0.0264	0.0010 0.0010 0.0010 0.0010 0.0010		mg/l mg/l mg/l mg/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B
MC19057-8	TB-314(0-2')					
1,1-Dichloroetha cis-1,2-Dichloroe Tetrachloroethen 1,1,1-Trichloroet Trichloroethene	ethene e	0.0053 0.0019 0.0017 0.0230 0.0532	0.0010 0.0010 0.0010 0.0010 0.0010		mg/l mg/l mg/l mg/l mg/l	SW846 8260B SW846 8260B SW846 8260B SW846 8260B SW846 8260B

Summary of Hits Job Number: MC19057

Account: Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

Collected: 03/15/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
MC19057-9	TB-315(0-2')					
Trichloroethene		0.0189	0.0010		mg/l	SW846 8260B
MC19057-10	TB-316(0-2')					
Methylene chlori Trichloroethene	de	0.0020 0.0029	0.0020 0.0010		mg/l mg/l	SW846 8260B SW846 8260B
MC19057-11	TB-317(2-4')					
1,1-Dichloroetha 1,1,1-Trichloroe Trichloroethene		0.0015 0.0136 0.0775	0.0010 0.0010 0.0010		mg/l mg/l mg/l	SW846 8260B SW846 8260B SW846 8260B
MC19057-12	TB-318(2-4')					
Cadmium		0.023	0.0040		mg/l	SW846 6010C
MC19057-13	TB-319(2-4')					
Cadmium		0.36	0.0040		mg/l	SW846 6010C
MC19057-14	TB-320(4-6')					
Cadmium		0.025	0.0040		mg/l	SW846 6010C

Sample Results	
Report of Analysis	

Report of Analysis

Client Sample ID: TB-301(0-2') Lab Sample ID: MC19057-1

Matrix: SO - Soil Method: SW846 8260B SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

Date Sampled: 03/15/13
Date Received: 03/19/13
Percent Solids: n/a

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 K68394.D 1 03/28/13 GK03/27/13 GP15772 MSK2240 Run #2

Purge Volume Run #1 5.0 ml

Run #2

VOA Halogenated List

SPLP Leachate method SW846 1312

CAS No.	Compound	Result	MCL	RL	Units (Q
75-27-4	Bromodichloromethane	ND		0.0010	mg/l	
75-25-2	Bromoform	ND		0.0010	mg/l	
74-83-9	Bromomethane	ND		0.0020	mg/l	
56-23-5	Carbon tetrachloride	ND		0.0010	mg/l	
108-90-7	Chlorobenzene	ND		0.0010	mg/l	
75-00-3	Chloroethane	ND		0.0020	mg/l	
67-66-3	Chloroform	ND		0.0010	mg/l	
74-87-3	Chloromethane	ND		0.0020	mg/l	
124-48-1	Dibromochloromethane	ND		0.0010	mg/l	
95-50-1	1,2-Dichlorobenzene	ND		0.0010	mg/l	
541-73-1	1,3-Dichlorobenzene	ND		0.0010	mg/l	
106-46-7	1,4-Dichlorobenzene	ND		0.0010	mg/l	
75-71-8	Dichlorodifluoromethane	ND		0.0020	mg/l	
75-34-3	1,1-Dichloroethane	ND		0.0010	mg/l	
107-06-2	1,2-Dichloroethane	ND		0.0010	mg/l	
75-35-4	1,1-Dichloroethene	ND		0.0010	mg/l	
156-59-2	cis-1,2-Dichloroethene	ND		0.0010	mg/l	
156-60-5	trans-1,2-Dichloroethene	ND		0.0010	mg/l	
78-87-5	1,2-Dichloropropane	ND		0.0020	mg/l	
10061-01-5	cis-1,3-Dichloropropene	ND		0.00050	mg/l	
10061-02-6	trans-1,3-Dichloropropene	ND		0.00050	mg/l	
75-09-2	Methylene chloride	ND		0.0020	mg/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.0010	mg/l	
127-18-4	Tetrachloroethene	ND		0.0010	mg/l	
71-55-6	1,1,1-Trichloroethane	ND		0.0010	mg/l	
79-00-5	1,1,2-Trichloroethane	ND		0.0010	mg/l	
79-01-6	Trichloroethene	0.0176		0.0010	mg/l	
75-69-4	Trichlorofluoromethane	ND		0.0010	mg/l	
75-01-4	Vinyl chloride	ND		0.0010	mg/l	

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: TB-301(0-2') Lab Sample ID: MC19057-1

 Matrix:
 SO - Soil

 Method:
 SW846 8260B
 SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

SPLP Leachate method SW846 1312

Date Sampled: 03/15/13

Date Received: 03/19/13

Percent Solids: n/a

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		70-130%
2037-26-5	Toluene-D8	93%		70-130%
460-00-4	4-Bromofluorobenzene	97%		70-130%

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

4

Report of Analysis

Client Sample ID: TB-301(2-4')
Lab Sample ID: MC19057-2
Matrix: SO - Soil

Method: SW846 8260B SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

Date Sampled: 03/15/13
Date Received: 03/19/13
Percent Solids: n/a

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 K68395.D 1 03/28/13 GK03/27/13 GP15772 MSK2240 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA Halogenated List

SPLP Leachate method SW846 1312

CAS No.	Compound	Result	MCL	RL	Units	Q
75-27-4	Bromodichloromethane	ND		0.0010	mg/l	
75-25-2	Bromoform	ND		0.0010	mg/l	
74-83-9	Bromomethane	ND		0.0020	mg/l	
56-23-5	Carbon tetrachloride	ND		0.0010	mg/l	
108-90-7	Chlorobenzene	ND		0.0010	mg/l	
75-00-3	Chloroethane	ND		0.0020	mg/l	
67-66-3	Chloroform	ND		0.0010	mg/l	
74-87-3	Chloromethane	ND		0.0020	mg/l	
124-48-1	Dibromochloromethane	ND		0.0010	mg/l	
95-50-1	1,2-Dichlorobenzene	ND		0.0010	mg/l	
541-73-1	1,3-Dichlorobenzene	ND		0.0010	mg/l	
106-46-7	1,4-Dichlorobenzene	ND		0.0010	mg/l	
75-71-8	Dichlorodifluoromethane	ND		0.0020	mg/l	
75-34-3	1,1-Dichloroethane	ND		0.0010	mg/l	
107-06-2	1,2-Dichloroethane	ND		0.0010	mg/l	
75-35-4	1,1-Dichloroethene	ND		0.0010	mg/l	
156-59-2	cis-1,2-Dichloroethene	ND		0.0010	mg/l	
156-60-5	trans-1,2-Dichloroethene	ND		0.0010	mg/l	
78-87-5	1,2-Dichloropropane	ND		0.0020	mg/l	
10061-01-5	cis-1,3-Dichloropropene	ND		0.00050	mg/l	
10061-02-6	trans-1,3-Dichloropropene	ND		0.00050	mg/l	
75-09-2	Methylene chloride	ND		0.0020	mg/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.0010	mg/l	
127-18-4	Tetrachloroethene	ND		0.0010	mg/l	
71-55-6	1,1,1-Trichloroethane	0.0031		0.0010	mg/l	
79-00-5	1,1,2-Trichloroethane	ND		0.0010	mg/l	
79-01-6	Trichloroethene	0.0410		0.0010	mg/l	
75-69-4	Trichlorofluoromethane	ND		0.0010	mg/l	
75-01-4	Vinyl chloride	ND		0.0010	mg/l	

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TB-301(2-4')
Lab Sample ID: MC19057-2
Matrix: SO - Soil

Method: SW846 8260B SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

SPLP Leachate method SW846 1312

n/a

Date Sampled: 03/15/13

Date Received: 03/19/13

Percent Solids:

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	101%		70-130%
2037-26-5	Toluene-D8	94%		70-130%
460-00-4	4-Bromofluorobenzene	94%		70-130%

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

4

Report of Analysis

Client Sample ID: TB-302(0-2')
Lab Sample ID: MC19057-3
Matrix: SO - Soil

Method: SW846 8260B SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

Date Sampled: 03/15/13
Date Received: 03/19/13
Percent Solids: n/a

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 K68396.D
 1
 03/28/13
 GK
 03/27/13
 GP15772
 MSK2240

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA Halogenated List

SPLP Leachate method SW846 1312

CAS No.	Compound	Result	MCL	RL	Units Q
75-27-4	Bromodichloromethane	ND		0.0010	mg/l
75-25-2	Bromoform	ND		0.0010	mg/l
74-83-9	Bromomethane	ND		0.0020	mg/l
56-23-5	Carbon tetrachloride	ND		0.0010	mg/l
108-90-7	Chlorobenzene	ND		0.0010	mg/l
75-00-3	Chloroethane	ND		0.0020	mg/l
67-66-3	Chloroform	ND		0.0010	mg/l
74-87-3	Chloromethane	ND		0.0020	mg/l
124-48-1	Dibromochloromethane	ND		0.0010	mg/l
95-50-1	1,2-Dichlorobenzene	ND		0.0010	mg/l
541-73-1	1,3-Dichlorobenzene	ND		0.0010	mg/l
106-46-7	1,4-Dichlorobenzene	ND		0.0010	mg/l
75-71-8	Dichlorodifluoromethane	ND		0.0020	mg/l
75-34-3	1,1-Dichloroethane	ND		0.0010	mg/l
107-06-2	1,2-Dichloroethane	ND		0.0010	mg/l
75-35-4	1,1-Dichloroethene	ND		0.0010	mg/l
156-59-2	cis-1,2-Dichloroethene	ND		0.0010	mg/l
156-60-5	trans-1,2-Dichloroethene	ND		0.0010	mg/l
78-87-5	1,2-Dichloropropane	ND		0.0020	mg/l
10061-01-5	cis-1,3-Dichloropropene	ND		0.00050	mg/l
10061-02-6	trans-1,3-Dichloropropene	ND		0.00050	mg/l
75-09-2	Methylene chloride	ND		0.0020	mg/l
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.0010	mg/l
127-18-4	Tetrachloroethene	ND		0.0010	mg/l
71-55-6	1,1,1-Trichloroethane	ND		0.0010	mg/l
79-00-5	1,1,2-Trichloroethane	ND		0.0010	mg/l
79-01-6	Trichloroethene	0.0172		0.0010	mg/l
75-69-4	Trichlorofluoromethane	ND		0.0010	mg/l
75-01-4	Vinyl chloride	ND		0.0010	mg/l

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

4

Report of Analysis

Client Sample ID: TB-302(0-2') Lab Sample ID: MC19057-3

 Matrix:
 SO - Soil

 Method:
 SW846 8260B
 SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

SPLP Leachate method SW846 1312

Date Sampled: 03/15/13

Date Received: 03/19/13

Percent Solids: n/a

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		70-130%
2037-26-5	Toluene-D8	93%		70-130%
460-00-4	4-Bromofluorobenzene	96%		70-130%

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: TB-303(0-2') Lab Sample ID: MC19057-4

Project: 68 Matson Hill Road, Glastonbury, CT

Date Sampled: 03/15/13 Matrix: SO - Soil **Date Received:** 03/19/13 Method: SW846 8260B SW846 1312 Percent Solids: n/a

DF **Analytical Batch** File ID Analyzed By **Prep Date Prep Batch** Run #1 K68397.D 1 03/28/13 GK03/27/13 GP15772 MSK2240 Run #2

Purge Volume 5.0 ml

Run #1

Run #2

VOA Halogenated List SPLP Leachate method SW846 1312

CAS No.	Compound	Result	MCL	RL	Units Q
75-27-4	Bromodichloromethane	ND		0.0010	mg/l
75-25-2	Bromoform	ND		0.0010	mg/l
74-83-9	Bromomethane	ND		0.0020	mg/l
56-23-5	Carbon tetrachloride	ND		0.0010	mg/l
108-90-7	Chlorobenzene	ND		0.0010	mg/l
75-00-3	Chloroethane	ND		0.0020	mg/l
67-66-3	Chloroform	ND		0.0010	mg/l
74-87-3	Chloromethane	ND		0.0020	mg/l
124-48-1	Dibromochloromethane	ND		0.0010	mg/l
95-50-1	1,2-Dichlorobenzene	ND		0.0010	mg/l
541-73-1	1,3-Dichlorobenzene	ND		0.0010	mg/l
106-46-7	1,4-Dichlorobenzene	ND		0.0010	mg/l
75-71-8	Dichlorodifluoromethane	ND		0.0020	mg/l
75-34-3	1,1-Dichloroethane	ND		0.0010	mg/l
107-06-2	1,2-Dichloroethane	ND		0.0010	mg/l
75-35-4	1,1-Dichloroethene	ND		0.0010	mg/l
156-59-2	cis-1,2-Dichloroethene	ND		0.0010	mg/l
156-60-5	trans-1,2-Dichloroethene	ND		0.0010	mg/l
78-87-5	1,2-Dichloropropane	ND		0.0020	mg/l
10061-01-5	cis-1,3-Dichloropropene	ND		0.00050	mg/l
10061-02-6	trans-1,3-Dichloropropene	ND		0.00050	mg/l
75-09-2	Methylene chloride	ND		0.0020	mg/l
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.0010	mg/l
127-18-4	Tetrachloroethene	ND		0.0010	mg/l
71-55-6	1,1,1-Trichloroethane	ND		0.0010	mg/l
79-00-5	1,1,2-Trichloroethane	ND		0.0010	mg/l
79-01-6	Trichloroethene	0.0073		0.0010	mg/l
75-69-4	Trichlorofluoromethane	ND		0.0010	mg/l
75-01-4	Vinyl chloride	ND		0.0010	mg/l

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: TB-303(0-2') Lab Sample ID: MC19057-4 Matrix: SO - Soil

 Matrix:
 SO - Soil

 Method:
 SW846 8260B
 SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

SPLP Leachate method SW846 1312

Date Sampled: 03/15/13

Date Received: 03/19/13

Percent Solids: n/a

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		70-130%
2037-26-5	Toluene-D8	92%		70-130%
460-00-4	4-Bromofluorobenzene	96%		70-130%

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: TB-311(5-7')
Lab Sample ID: MC19057-5
Matrix: SO - Soil

Method: SW846 8260B SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

 Date Sampled:
 03/15/13

 Date Received:
 03/19/13

 SW846 1312
 Percent Solids:
 n/a

File ID **Analytical Batch** DF Analyzed By **Prep Date Prep Batch** Run #1 K68398.D 1 03/28/13 GK03/27/13 GP15772 MSK2240 Run #2

Purge Volume Run #1 5.0 ml

Run #2

VOA Halogenated List

SPLP Leachate method SW846 1312

CAS No.	Compound	Result	MCL	RL	Units Q
75-27-4	Bromodichloromethane	ND		0.0010	mg/l
75-25-2	Bromoform	ND		0.0010	mg/l
74-83-9	Bromomethane	ND		0.0020	mg/l
56-23-5	Carbon tetrachloride	ND		0.0010	mg/l
108-90-7	Chlorobenzene	ND		0.0010	mg/l
75-00-3	Chloroethane	0.0092		0.0020	mg/l
67-66-3	Chloroform	ND		0.0010	mg/l
74-87-3	Chloromethane	ND		0.0020	mg/l
124-48-1	Dibromochloromethane	ND		0.0010	mg/l
95-50-1	1,2-Dichlorobenzene	ND		0.0010	mg/l
541-73-1	1,3-Dichlorobenzene	ND		0.0010	mg/l
106-46-7	1,4-Dichlorobenzene	ND		0.0010	mg/l
75-71-8	Dichlorodifluoromethane	ND		0.0020	mg/l
75-34-3	1,1-Dichloroethane	0.0094		0.0010	mg/l
107-06-2	1,2-Dichloroethane	ND		0.0010	mg/l
75-35-4	1,1-Dichloroethene	ND		0.0010	mg/l
156-59-2	cis-1,2-Dichloroethene	0.0042		0.0010	mg/l
156-60-5	trans-1,2-Dichloroethene	ND		0.0010	mg/l
78-87-5	1,2-Dichloropropane	ND		0.0020	mg/l
10061-01-5	cis-1,3-Dichloropropene	ND		0.00050	mg/l
10061-02-6	trans-1,3-Dichloropropene	ND		0.00050	mg/l
75-09-2	Methylene chloride	ND		0.0020	mg/l
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.0010	mg/l
127-18-4	Tetrachloroethene	ND		0.0010	mg/l
71-55-6	1,1,1-Trichloroethane	0.0102		0.0010	mg/l
79-00-5	1,1,2-Trichloroethane	ND		0.0010	mg/l
79-01-6	Trichloroethene	0.0100		0.0010	mg/l
75-69-4	Trichlorofluoromethane	ND		0.0010	mg/l
75-01-4	Vinyl chloride	0.0014		0.0010	mg/l

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 2

Report of Analysis

Client Sample ID: TB-311(5-7') Lab Sample ID: MC19057-5 Matrix: SO - Soil

 Matrix:
 SO - Soil

 Method:
 SW846 8260B
 SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

Date Sampled: 03/15/13
Date Received: 03/19/13
Percent Solids: n/a

VOA Halogenated List

SPLP Leachate method SW846 1312

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	101%		70-130%
2037-26-5	Toluene-D8	93%		70-130%
460-00-4	4-Bromofluorobenzene	96%		70-130%

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: TB-312(5-7')
Lab Sample ID: MC19057-6
Matrix: SO - Soil

Method: SW846 8260B SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

Date Sampled: 03/15/13
Date Received: 03/19/13
Percent Solids: n/a

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 K68399.D 1 03/28/13 GK03/27/13 GP15772 MSK2240 Run #2

Purge Volume Run #1 5.0 ml

Run #2

VOA Halogenated List

SPLP Leachate method SW846 1312

CAS No.	Compound	Result	MCL	RL	Units	Q
75-27-4	Bromodichloromethane	ND		0.0010	mg/l	
75-25-2	Bromoform	ND		0.0010	mg/l	
74-83-9	Bromomethane	ND		0.0020	mg/l	
56-23-5	Carbon tetrachloride	ND		0.0010	mg/l	
108-90-7	Chlorobenzene	ND		0.0010	mg/l	
75-00-3	Chloroethane	ND		0.0020	mg/l	
67-66-3	Chloroform	ND		0.0010	mg/l	
74-87-3	Chloromethane	ND		0.0020	mg/l	
124-48-1	Dibromochloromethane	ND		0.0010	mg/l	
95-50-1	1,2-Dichlorobenzene	ND		0.0010	mg/l	
541-73-1	1,3-Dichlorobenzene	ND		0.0010	mg/l	
106-46-7	1,4-Dichlorobenzene	ND		0.0010	mg/l	
75-71-8	Dichlorodifluoromethane	ND		0.0020	mg/l	
75-34-3	1,1-Dichloroethane	ND		0.0010	mg/l	
107-06-2	1,2-Dichloroethane	ND		0.0010	mg/l	
75-35-4	1,1-Dichloroethene	ND		0.0010	mg/l	
156-59-2	cis-1,2-Dichloroethene	ND		0.0010	mg/l	
156-60-5	trans-1,2-Dichloroethene	ND		0.0010	mg/l	
78-87-5	1,2-Dichloropropane	ND		0.0020	mg/l	
10061-01-5	cis-1,3-Dichloropropene	ND		0.00050	mg/l	
10061-02-6	trans-1,3-Dichloropropene	ND		0.00050	mg/l	
75-09-2	Methylene chloride	0.0022		0.0020	mg/l	
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.0010	mg/l	
127-18-4	Tetrachloroethene	ND		0.0010	mg/l	
71-55-6	1,1,1-Trichloroethane	ND		0.0010	mg/l	
79-00-5	1,1,2-Trichloroethane	ND		0.0010	mg/l	
79-01-6	Trichloroethene	ND		0.0010	mg/l	
75-69-4	Trichlorofluoromethane	ND		0.0010	mg/l	
75-01-4	Vinyl chloride	ND		0.0010	mg/l	

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 2 of 2

Report of Analysis

Client Sample ID: TB-312(5-7') Lab Sample ID: MC19057-6

Project: 68 Matson Hill Road, Glastonbury, CT

Date Sampled: 03/15/13 Matrix: SO - Soil **Date Received:** 03/19/13 Method: SW846 8260B SW846 1312 Percent Solids: n/a

VOA Halogenated List

SPLP Leachate method SW846 1312

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7 2037-26-5	Dibromofluoromethane Toluene-D8	100% 92%		70-130% 70-130%
460-00-4	4-Bromofluorobenzene	99%		70-130%

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: TB-313(4-6') Lab Sample ID: MC19057-7 Matrix: SO - Soil

Method: SW846 8260B SW846 1312 Percent Solids: n/a

Project: 68 Matson Hill Road, Glastonbury, CT

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 K68400.D 1 03/28/13 GK03/27/13 GP15772 MSK2240

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA Halogenated List

SPLP Leachate method SW846 1312

Date Sampled: 03/15/13

Date Received: 03/19/13

CAS No.	Compound	Result	MCL	RL	Units Q
75-27-4	Bromodichloromethane	ND		0.0010	mg/l
75-25-2	Bromoform	ND		0.0010	mg/l
74-83-9	Bromomethane	ND		0.0020	mg/l
56-23-5	Carbon tetrachloride	ND		0.0010	mg/l
108-90-7	Chlorobenzene	ND		0.0010	mg/l
75-00-3	Chloroethane	ND		0.0020	mg/l
67-66-3	Chloroform	ND		0.0010	mg/l
74-87-3	Chloromethane	ND		0.0020	mg/l
124-48-1	Dibromochloromethane	ND		0.0010	mg/l
95-50-1	1,2-Dichlorobenzene	ND		0.0010	mg/l
541-73-1	1,3-Dichlorobenzene	ND		0.0010	mg/l
106-46-7	1,4-Dichlorobenzene	ND		0.0010	mg/l
75-71-8	Dichlorodifluoromethane	ND		0.0020	mg/l
75-34-3	1,1-Dichloroethane	0.0160		0.0010	mg/l
107-06-2	1,2-Dichloroethane	ND		0.0010	mg/l
75-35-4	1,1-Dichloroethene	ND		0.0010	mg/l
156-59-2	cis-1,2-Dichloroethene	0.0308		0.0010	mg/l
156-60-5	trans-1,2-Dichloroethene	0.0027		0.0010	mg/l
78-87-5	1,2-Dichloropropane	ND		0.0020	mg/l
10061-01-5	cis-1,3-Dichloropropene	ND		0.00050	mg/l
10061-02-6	trans-1,3-Dichloropropene	ND		0.00050	mg/l
75-09-2	Methylene chloride	ND		0.0020	mg/l
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.0010	mg/l
127-18-4	Tetrachloroethene	ND		0.0010	mg/l
71-55-6	1,1,1-Trichloroethane	0.0061		0.0010	mg/l
79-00-5	1,1,2-Trichloroethane	ND		0.0010	mg/l
79-01-6	Trichloroethene	0.0264		0.0010	mg/l
75-69-4	Trichlorofluoromethane	ND		0.0010	mg/l
75-01-4	Vinyl chloride	ND		0.0010	mg/l

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Client Sample ID: TB-313(4-6') Lab Sample ID: MC19057-7 Matrix: SO - Soil

Method: SW846 8260B SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

SPLP Leachate method SW846 1312

n/a

Date Sampled: 03/15/13

Date Received: 03/19/13

Percent Solids:

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	98%		70-130%
2037-26-5	Toluene-D8	93%		70-130%
460-00-4	4-Bromofluorobenzene	95%		70-130%

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: TB-314(0-2') Lab Sample ID: MC19057-8

Matrix: SO - Soil Method: SW846 8260B SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

File ID DF **Analytical Batch** Analyzed By **Prep Date Prep Batch** Run #1 K68401.D 1 03/28/13 GK03/27/13 GP15772 MSK2240

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA Halogenated List

SPLP Leachate method SW846 1312

Date Sampled: 03/15/13

Date Received: 03/19/13

Percent Solids: n/a

CAS No.	Compound	Result	MCL	RL	Units Q
75-27-4	Bromodichloromethane	ND		0.0010	mg/l
75-25-2	Bromoform	ND		0.0010	mg/l
74-83-9	Bromomethane	ND		0.0020	mg/l
56-23-5	Carbon tetrachloride	ND		0.0010	mg/l
108-90-7	Chlorobenzene	ND		0.0010	mg/l
75-00-3	Chloroethane	ND		0.0020	mg/l
67-66-3	Chloroform	ND		0.0010	mg/l
74-87-3	Chloromethane	ND		0.0020	mg/l
124-48-1	Dibromochloromethane	ND		0.0010	mg/l
95-50-1	1,2-Dichlorobenzene	ND		0.0010	mg/l
541-73-1	1,3-Dichlorobenzene	ND		0.0010	mg/l
106-46-7	1,4-Dichlorobenzene	ND		0.0010	mg/l
75-71-8	Dichlorodifluoromethane	ND		0.0020	mg/l
75-34-3	1,1-Dichloroethane	0.0053		0.0010	mg/l
107-06-2	1,2-Dichloroethane	ND		0.0010	mg/l
75-35-4	1,1-Dichloroethene	ND		0.0010	mg/l
156-59-2	cis-1,2-Dichloroethene	0.0019		0.0010	mg/l
156-60-5	trans-1,2-Dichloroethene	ND		0.0010	mg/l
78-87-5	1,2-Dichloropropane	ND		0.0020	mg/l
10061-01-5	cis-1,3-Dichloropropene	ND		0.00050	mg/l
10061-02-6	trans-1,3-Dichloropropene	ND		0.00050	mg/l
75-09-2	Methylene chloride	ND		0.0020	mg/l
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.0010	mg/l
127-18-4	Tetrachloroethene	0.0017		0.0010	mg/l
71-55-6	1,1,1-Trichloroethane	0.0230		0.0010	mg/l
79-00-5	1,1,2-Trichloroethane	ND		0.0010	mg/l
79-01-6	Trichloroethene	0.0532		0.0010	mg/l
75-69-4	Trichlorofluoromethane	ND		0.0010	mg/l
75-01-4	Vinyl chloride	ND		0.0010	mg/l

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

Client Sample ID: TB-314(0-2') Lab Sample ID: MC19057-8

 Matrix:
 SO - Soil

 Method:
 SW846 8260B
 SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

SPLP Leachate method SW846 1312

n/a

Date Sampled: 03/15/13

Date Received: 03/19/13

Percent Solids:

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		70-130%
2037-26-5	Toluene-D8	93%		70-130%
460-00-4	4-Bromofluorobenzene	95%		70-130%

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

4

Report of Analysis

 Client Sample ID:
 TB-315(0-2')

 Lab Sample ID:
 MC19057-9

 Matrix:
 SO - Soil

Method: SW846 8260B SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

 File ID
 DF
 Analyzed
 By
 Prep Date
 Prep Batch
 Analytical Batch

 Run #1
 K68402.D
 1
 03/28/13
 GK
 03/27/13
 GP15772
 MSK2240

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA Halogenated List

SPLP Leachate method SW846 1312

Date Sampled: 03/15/13

Date Received: 03/19/13

Percent Solids: n/a

CAS No.	Compound	Result	MCL	RL	Units Q
75-27-4	Bromodichloromethane	ND		0.0010	mg/l
75-25-2	Bromoform	ND		0.0010	mg/l
74-83-9	Bromomethane	ND		0.0020	mg/l
56-23-5	Carbon tetrachloride	ND		0.0010	mg/l
108-90-7	Chlorobenzene	ND		0.0010	mg/l
75-00-3	Chloroethane	ND		0.0020	mg/l
67-66-3	Chloroform	ND		0.0010	mg/l
74-87-3	Chloromethane	ND		0.0020	mg/l
124-48-1	Dibromochloromethane	ND		0.0010	mg/l
95-50-1	1,2-Dichlorobenzene	ND		0.0010	mg/l
541-73-1	1,3-Dichlorobenzene	ND		0.0010	mg/l
106-46-7	1,4-Dichlorobenzene	ND		0.0010	mg/l
75-71-8	Dichlorodifluoromethane	ND		0.0020	mg/l
75-34-3	1,1-Dichloroethane	ND		0.0010	mg/l
107-06-2	1,2-Dichloroethane	ND		0.0010	mg/l
75-35-4	1,1-Dichloroethene	ND		0.0010	mg/l
156-59-2	cis-1,2-Dichloroethene	ND		0.0010	mg/l
156-60-5	trans-1,2-Dichloroethene	ND		0.0010	mg/l
78-87-5	1,2-Dichloropropane	ND		0.0020	mg/l
10061-01-5	cis-1,3-Dichloropropene	ND		0.00050	mg/l
10061-02-6	trans-1,3-Dichloropropene	ND		0.00050	mg/l
75-09-2	Methylene chloride	ND		0.0020	mg/l
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.0010	mg/l
127-18-4	Tetrachloroethene	ND		0.0010	mg/l
71-55-6	1,1,1-Trichloroethane	ND		0.0010	mg/l
79-00-5	1,1,2-Trichloroethane	ND		0.0010	mg/l
79-01-6	Trichloroethene	0.0189		0.0010	mg/l
75-69-4	Trichlorofluoromethane	ND		0.0010	mg/l
75-01-4	Vinyl chloride	ND		0.0010	mg/l

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: TB-315(0-2') Lab Sample ID: MC19057-9 Matrix: SO - Soil

Method: SW846 8260B SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

SPLP Leachate method SW846 1312

n/a

Date Sampled: 03/15/13

Date Received: 03/19/13

Percent Solids:

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	99%		70-130%
2037-26-5	Toluene-D8	93%		70-130%
460-00-4	4-Bromofluorobenzene	95%		70-130%

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Report of Analysis

By

GK

Client Sample ID: TB-316(0-2') Lab Sample ID: MC19057-10

File ID

K68403.D

Matrix: SO - Soil Method: SW846 8260B SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

DF

1

Analyzed

03/28/13

Date Sampled: 03/15/13 **Date Received:** 03/19/13 Percent Solids: n/a

Analytical Batch Prep Date Prep Batch 03/27/13 GP15772 MSK2240

Run #1 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA Halogenated List

SPLP Leachate method SW846 1312

CAS No.	Compound	Result	MCL	RL	Units Q
75-27-4	Bromodichloromethane	ND		0.0010	mg/l
75-25-2	Bromoform	ND		0.0010	mg/l
74-83-9	Bromomethane	ND		0.0020	mg/l
56-23-5	Carbon tetrachloride	ND		0.0010	mg/l
108-90-7	Chlorobenzene	ND		0.0010	mg/l
75-00-3	Chloroethane	ND		0.0020	mg/l
67-66-3	Chloroform	ND		0.0010	mg/l
74-87-3	Chloromethane	ND		0.0020	mg/l
124-48-1	Dibromochloromethane	ND		0.0010	mg/l
95-50-1	1,2-Dichlorobenzene	ND		0.0010	mg/l
541-73-1	1,3-Dichlorobenzene	ND		0.0010	mg/l
106-46-7	1,4-Dichlorobenzene	ND		0.0010	mg/l
75-71-8	Dichlorodifluoromethane	ND		0.0020	mg/l
75-34-3	1,1-Dichloroethane	ND		0.0010	mg/l
107-06-2	1,2-Dichloroethane	ND		0.0010	mg/l
75-35-4	1,1-Dichloroethene	ND		0.0010	mg/l
156-59-2	cis-1,2-Dichloroethene	ND		0.0010	mg/l
156-60-5	trans-1,2-Dichloroethene	ND		0.0010	mg/l
78-87-5	1,2-Dichloropropane	ND		0.0020	mg/l
10061-01-5	cis-1,3-Dichloropropene	ND		0.00050	mg/l
10061-02-6	trans-1,3-Dichloropropene	ND		0.00050	mg/l
75-09-2	Methylene chloride	0.0020		0.0020	mg/l
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.0010	mg/l
127-18-4	Tetrachloroethene	ND		0.0010	mg/l
71-55-6	1,1,1-Trichloroethane	ND		0.0010	mg/l
79-00-5	1,1,2-Trichloroethane	ND		0.0010	mg/l
79-01-6	Trichloroethene	0.0029		0.0010	mg/l
75-69-4	Trichlorofluoromethane	ND		0.0010	mg/l
75-01-4	Vinyl chloride	ND		0.0010	mg/l

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 2

Report of Analysis

Client Sample ID: TB-316(0-2') Lab Sample ID: MC19057-10 Matrix: SO - Soil

Method: SW846 8260B SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT **Date Sampled:** 03/15/13 **Date Received:** 03/19/13

Percent Solids: n/a

SPLP Leachate method SW846 1312

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	98%		70-130%
2037-26-5	Toluene-D8	93%		70-130%
460-00-4	4-Bromofluorobenzene	95%		70-130%

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

GK

Client Sample ID: TB-317(2-4') Lab Sample ID: MC19057-11

File ID

K68404.D

Matrix: SO - Soil Method: SW846 8260B SW846 1312

DF

1

Analyzed

03/28/13

Project: 68 Matson Hill Road, Glastonbury, CT **Date Sampled:** 03/15/13 **Date Received:** 03/19/13 Percent Solids: n/a

Analytical Batch Prep Date Prep Batch 03/27/13 GP15772 MSK2240

Run #1 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA Halogenated List

SPLP Leachate method SW846 1312

CAS No.	Compound	Result	MCL	RL	Units Q
75-27-4	Bromodichloromethane	ND		0.0010	mg/l
75-25-2	Bromoform	ND		0.0010	mg/l
74-83-9	Bromomethane	ND		0.0020	mg/l
56-23-5	Carbon tetrachloride	ND		0.0010	mg/l
108-90-7	Chlorobenzene	ND		0.0010	mg/l
75-00-3	Chloroethane	ND		0.0020	mg/l
67-66-3	Chloroform	ND		0.0010	mg/l
74-87-3	Chloromethane	ND		0.0020	mg/l
124-48-1	Dibromochloromethane	ND		0.0010	mg/l
95-50-1	1,2-Dichlorobenzene	ND		0.0010	mg/l
541-73-1	1,3-Dichlorobenzene	ND		0.0010	mg/l
106-46-7	1,4-Dichlorobenzene	ND		0.0010	mg/l
75-71-8	Dichlorodifluoromethane	ND		0.0020	mg/l
75-34-3	1,1-Dichloroethane	0.0015		0.0010	mg/l
107-06-2	1,2-Dichloroethane	ND		0.0010	mg/l
75-35-4	1,1-Dichloroethene	ND		0.0010	mg/l
156-59-2	cis-1,2-Dichloroethene	ND		0.0010	mg/l
156-60-5	trans-1,2-Dichloroethene	ND		0.0010	mg/l
78-87-5	1,2-Dichloropropane	ND		0.0020	mg/l
10061-01-5	cis-1,3-Dichloropropene	ND		0.00050	mg/l
10061-02-6	trans-1,3-Dichloropropene	ND		0.00050	mg/l
75-09-2	Methylene chloride	ND		0.0020	mg/l
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.0010	mg/l
127-18-4	Tetrachloroethene	ND		0.0010	mg/l
71-55-6	1,1,1-Trichloroethane	0.0136		0.0010	mg/l
79-00-5	1,1,2-Trichloroethane	ND		0.0010	mg/l
79-01-6	Trichloroethene	0.0775		0.0010	mg/l
75-69-4	Trichlorofluoromethane	ND		0.0010	mg/l
75-01-4	Vinyl chloride	ND		0.0010	mg/l

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 2 of 2

Report of Analysis

Client Sample ID: TB-317(2-4')
Lab Sample ID: MC19057-11
Matrix: SO - Soil

Method: SW846 8260B SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

Date Sampled: 03/15/13 **Date Received:** 03/19/13

Percent Solids: n/a

VOA Halogenated List

SPLP Leachate method SW846 1312

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	100%		70-130%
2037-26-5	Toluene-D8	93%		70-130%
460-00-4	4-Bromofluorobenzene	94%		70-130%

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: TB-318(2-4')
Lab Sample ID: MC19057-12
Matrix: SO - Soil

Date Sampled: 03/15/13
Date Received: 03/19/13
Percent Solids: n/a

Project: 68 Matson Hill Road, Glastonbury, CT

Metals Analysis, TCLP Leachate SW846 1311

 Analyte
 Result
 HW#
 MCL
 RL
 Units
 DF
 Prep
 Analyzed By
 Method
 Prep Method

 Cadmium
 0.023
 D006
 1.0
 0.0040
 mg/l
 1
 03/29/13
 03/29/13
 EAL
 SW846
 6010C
 1
 SW846
 3010A
 2

(1) Instrument QC Batch: MA15399(2) Prep QC Batch: MP20693

RL = Reporting Limit

MCL = Maximum Contamination Level (40 CFR 261 6/96)

Report of Analysis

Client Sample ID: TB-319(2-4') Lab Sample ID: MC19057-13 Matrix: SO - Soil

Date Sampled: 03/15/13 **Date Received:** 03/19/13 Percent Solids: n/a

Project: 68 Matson Hill Road, Glastonbury, CT

Metals Analysis, TCLP Leachate SW846 1311

Analyte	Result	HW#	MCL	RL	Units	DF	Prep	Analyzed By	Method	Prep Method
Cadmium	0.36	D006	1.0	0.0040	mg/l	1	03/29/13	03/29/13 EAL	SW846 6010C ¹	SW846 3010A ²

(1) Instrument QC Batch: MA15399 (2) Prep QC Batch: MP20693

RL = Reporting Limit

MCL = Maximum Contamination Level (40 CFR 261 6/96)

Report of Analysis

Client Sample ID: TB-320(4-6')
Lab Sample ID: MC19057-14
Matrix: SO - Soil

Date Sampled: 03/15/13 **Date Received:** 03/19/13 **Percent Solids:** n/a

Project: 68 Matson Hill Road, Glastonbury, CT

Metals Analysis, TCLP Leachate SW846 1311

 Analyte
 Result
 HW#
 MCL
 RL
 Units
 DF
 Prep
 Analyzed By
 Method
 Prep Method

 Cadmium
 0.025
 D006
 1.0
 0.0040
 mg/l
 1
 03/29/13
 03/29/13
 EAL
 SW846 6010C ¹
 SW846 3010A ²

(1) Instrument QC Batch: MA15399(2) Prep QC Batch: MP20693

RL = Reporting Limit

MCL = Maximum Contamination Level (40 CFR 261 6/96)

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- RCP Form
- Sample Tracking Chronicle

ACC	UTEST

CHAIN OF CUSTODY

	CHAIN OF CUSTODY Accutest Laboratories of New England									PAGE \perp OF 2												
ACCUTEST:			ccutest La Technolo									FED-EX	Trackin	9 #			16	овя С	kuer Con	Irol #		1
LABORATORIES		TE	L. 508-48		FAX		81-7	753				Accutest	Quote i	r				Accutest	# dot #	\overline{m}	- 10	057
Client / Reporting Information					formati								Dan	nactor	i Anai	veie /	see TE	STC	Terres Abril		- ' ' '	Matrix Codes
Company Name	Project Name			***********	, or it is				2000			+		Jester	Alla	yaia	See IL	310	ODL	siteetj	-	Wath Codes
Tr. ton Environmental Inc	68 M		M Roc	1						1000			4									DW - Drinking Water GW - Ground Water WW - Water
BES CHURCH STREET CHY State 20 CHY STATE CT 643 Project Contact mpowlescon E-mell A fritonic vi ronne estal.com Phone # 203 - 458-7208 Empler(s) Name(s) Down Miller/Mark Parkson 203-458-720	68 Mg	itson h	ill Roac	Con	Billing Ir		n (If	differe	nt fro	m Rej	oort to)	1	1									SW - Surface Water SO - Soil
anilford OT 0643)	absto	nbury.	<u>CT</u>									Ö						l				SL- Sludge SED-Sediment OI - Oil
Project Contact Mpaulsson E-mail	Project#	129"		Stre	et Address							6	1							ĺ		LIQ - Other Liquid
Phone # Fax #	Client PO#			City	,			State			Zip	I	7	. [l			ĺ				AIR - Air SOL - Other Solid
203-458-7200 203-458-7201	10	1031391012								-		WP - Wipe FB-Field Blank										
Sampler(s) Name(s) Phone #	Project Manager	0.	· · · · · · · · · · · · · · · · · · ·	Atte	ntion:				PO#			1		्र						1		EB- Equipment Blank RB- Rinse Blank
Day Miller/Mark Hulson 203-458-1200	Mark	Paulsson	•			.,						1	t		- 1			- 1		ŀ		TB-Trip Blank
			Collection	·	1		L	Numbe	r of pres	erved B		a	4	0					ŀ			
Accuresi			l	Sample				E 8	Q 및	Vater	MEOH ENCORE Bisutfate	8	D	7						l		İ
Sample # Field ID / Point of Collection	MEOH/D? Vial #	Date	Time	by	Matrix	# of bottle	후	NaOH HNO3	H2SO.	Di Wate	MEOH ENCO Bisuita		4	7				_				LAB USE ONLY
-1 TB-301 (0-2)		3/15/13	930	DZ.	450	1	Ш			Ш	X	×				~~~~						
-a TB-301 (2-4)			940	DSA	1	1	\sqcup			Ш	<u>x</u>	×										
-3 TB-302 (0-2')			945				Ш	\Box		Ш	ス	X										
-4 TB-303(0-2)			9:50	Ш		- (Ш				3	X										
-5 TB-311 (5-7)			10:30	Ш		1					オ	×										
-6 TB-312 (5-7)			10:45	Ш		1	Ш				×	×										
-7 TB-313 (4-6)			11.65			1					×	×										
-8 +B-314(0-2)			11:25	TT		i					Ж	×						\Box				
-9 + B-3/5 (0-2)			11:55	\prod		1				Ш	Х	×										EN2,10A
-10 + B- 316(0-Z)		4	12:50			1					×	メ										,
-11 +B-317(2-4)		3/15/13	12:45		SU	1	П				X		13									
-12 TB-318(2-4)		3/15/13	14:10	15/	150	1			X			V	版	\times								
1 1							-	verabl								С	ommen	ts / S	pecia	Instru	ctions	
	Approved By (Acc.	itest PM): / Date:			Commerc				Name of Street		SP Catego			T-1-			C	~~			1/15	5/12
Std. 10 Business Days Std. 5 Business Days (By Contract only)	Commercial 18 (Level 2) NYASP Category B Encores Grozen 3/15/13																					
5 Day RUSH	CTRCP EDD Format a 17.00																					
3 Day EMERGENCY	MAMCP Other At = Results Only #Hold TCLP samples for further						ш															
2 Day EMERGENCY							-Ther															
	% solids					Commerc	"B" leic	' ≖ Resu	ills + Q	C Sum	mary			C-	nal	٠٠٢	•					
Emergency & Rush T/A data available VIA Lablink		ple Custody mu	et he doore	l antad i	alow ear	h time e	ample	es cha	nga pr	nećão	eion inci	uding o	nurie:	~~~~	•	17	· .	aline.	1988 (60%			
Relinquished by Samples Date Time:		Received By:	at be uocun	ioined I	JEIOW GAL	unid S					,, ,,,tc	Juniy C				e: 14	7 Re	ceived	By:	$\overline{}$		/
Daylo I day		1-	Ti	1				quisper	/_(\	D					ate Time	187	20	B		//	. /	_

Intact
Not inta

rved where applicable

MC19057: Chain of Custody

Page 1 of 3

Cooler Temp.

CHAIN OF CUSTODY

Client / Reporting Information Project Information Project Information Requested Analysis (see TEST CODE sheet) Matrix Codes Company Name The Environmental Inc Sa Matsan Hill Road Street Address Street Grant Sine Zip City: Company Name Colleged Control of Collection City Sine Company Name Topical Control of Collection Name Coll	MACCUIES!			Technolog									FED-EX Tracking #				Bottle Order Control #						
Client / Reporting Information Project Information Requested Analysis (see TEST CODE sheet) Matrix Codes Company Name The Codes Address Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GS Matson H: Road Size Church Street GIV: GOMPANY Manne Size Church Street GIV: Size Address JOI-Oil Lia Chief Hord All r-Air Sol. One Size Church GIV: Size Address JOI-Oil Lia Chief Lia Chief Lia All r-Air Sol. One Size Church GIV: Size Address JOI-Oil Lia Chief Lia Chief Lia All r-Air Sol. One Size Church GIV: Size Address JOI-Oil Lia Chief Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil Lia Chief Lia JOI-Oil	LABGRATORIES												Accul	esi Quote	,			Ac	cutest Jo	10 4	0100	E^ 1	7
Company Name The Environmental Inc (8 Matson Hill Road Street Address Street Address Street Collection Froject Name Carpany Name Divident Name Carpany Name Divident Name Street Address Street Address Company Name Company Name Divident Name (If different from Report to) Company Name Company Name Company Name Control Company Name Company Name Control Company Name Company Name Control Company Name Company Nam																		<i>I</i>					
The true and the street of the				Pro	ect Inf	ormatic	n							Red	ueste	Analy	/sis (s	ee TES	ST CO	DE shee	t)		Matrix Codes
Sign Sine Sine Sine Sine Sine Sine Sine Sin			Matson	HII R	oad	55, 24w-30	ecard-lens-and		Solitore III			***************************************	ر ا										DW - Drinking Water GW - Ground Water
C3 - 45 8 - 720 20 3 - 458 - 720 Project Manager Attention: PO# FB-Field Blank	365 Church Street	68 M	atson Hil	11 Ranch				ı (lf d	liffere	nt fron	n Repo	ort to)	۾				İ						SW - Surface Water SO - Soil
C3 - 45 8 - 720 20 3 - 458 - 720 Project Manager Attention: PO# FB-Field Blank	Wilford CT 06437	Glas to	Clastanbuy, CT Street Address							_				-						SED-Sediment OI - Oil			
C3 - 45 8 - 720 20 3 - 458 - 720 Project Manager Attention: PO# FB-Field Blank	triton environmentalicom	Client PO#							- 1			-		The state of the s					AIR - Air SOL - Other Solid				
Tony Miles / Municipal Jason 203-468-7200 Mark Paulsson Collection Number of proserved Bolifes Pield ID / Point of Collection MECHIDI Vial # Dale Time Samples by Markx # of bottlee \$\frac{\frac{\pi}{2}}{2} \frac{\pi}{2} \	03-458-7200 203-458-7201	103	139 POI	2									_]]	7				İ					FB-Field Blank
Courtest Field ID / Point of Collection MECHOI Vial # Date Time Sampled by Marix # of bottles P. P. P. P. P. P. P. P	ampier(s) Name(s) Phone # Your Adde / Mark Paul Sec 203-458-7200	Project Manager	Paulsson		Attent	ion:	,	,		PO#				31								ľ	RB- Rinse Blank
13 TB-319 (Z-4) 3/15/13 1330 DSM SU 1 X				Collection		1			Numbe	of prese	rved Bo		J →	44					İ			L	
	coutest Field ID / Point of Collection	MECH/DI Vial#	Date	Time		Matrix	# of bottles	NaOH HC	HNO3	HZSO4 NONE	DI Water MEOH	ENCORE	alleginess	17.									LAB USE ONLY
	13 +13-319 (2-4)		3/15/13	1330	DS4	Sc	1			×		П	J.A	X				T			T	\top	
			3/15/13	1355	DSW	So)		П	×		П	1/4										
									П			П		T					T			T	
									\top		П	TT										T	
								\top	\top			Ħ	1							1		7	***************************************
				***************************************	 			\top	$\dagger \dagger$	-11	Ħ	П		+					_			T	
								\vdash	++	+		H	+-	+			-+		-	-	++	+	
								-	H	+	+	\vdash	+	+			-			+	+ +	+	
				ļ				+	Н	+	+	₩		+		-	-+					+	
								+	+	\dashv	+	-						_	\dashv		+-+	-	
								\perp	+		_	\vdash		ļ							4	4	
								4	11		_	4		-					_		1-1-	_	
									Ш	Ш		Ш		<u> </u>								\perp	
Data Deliverable Information Comments / Special Instructions Turnaround Time (Business days) Approved By (Acculest PM): / Date: Commercial "A" (Level 1) NYASP Category A					<u> </u>	~	-			Infor		-	aoni A							***************************************	*	_	
Turnaround Time (Business days) Approved By (Acculest PM): Date: Commercial "B" (Level 1) NYASP Category B Std. 10 Business Days TLLP samples for further	The state of the s	Approved by (Acci	ntest rmy. 1 Date.		t-reserved.										* H	del	TL	LP	501	ples	ter to	JH	r
Std. 5 Business Days (By Contract only)	Std. 5 Business Days (By Contract only)						Level 3+4)								- 1				•			
5 Day RUSH			***************************************										t		~	اها	<u>7515.</u>						
3 Day EMERGENCY																							
1 by EMERGENCY Commercial "9" = Results + QC Summery											Summ	ary											7/
Emergency & Rush T/A dala available VIA Lablink					L										4.12			lane.	าสอเลียก	900 CENTRO	_/_	\angle	-/-
Sample Custody must be documented below each time samples change possession, including courier delivery. Date Time: Received By: Page	Pulling School by Paragraphy Date Time:			st be docum	ented be	low eac						on, in	ciudin	g courie	r deliv	ery. Date Time	14/2	Rec	eived By			_	
Relinquished by Sampler: Date Time: Date Time: 1/3 Received By: Relinquished py:	Relinquished by Sampler. Date Time: Received By: Received By:					2 1	16	200	U_	_	3-19-12 2 B. My												

MC19057: Chain of Custody

Page 2 of 3

45

ACCUTEST

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: MC1905	7 Client: TR	RITON ENV.	Immediate Client Serv	vices Action Required:	No
Date / Time Received: 3/19/20	13	Delivery Method:	Client Service Act	ion Required at Login:	No
Project: 68 MATSON HILL RD		No. Coolers:	1 Airbill #'s:		
Cooler Security 1. Custody Seals Present: 2. Custody Seals Intact: Cooler Temperature 1. Temp criteria achieved:	N 3. COC Prese 4. Smpl Dates/Ti		Sample Integrity - Documentation 1. Sample labels present on bottles: 2. Container labeling complete: 3. Sample container label / COC agree:	Y or N ✓ □ ✓ □ ✓ □ ✓ □ ✓ □	
Cooler temp verification: Cooler media:	Infared gun Ice (bag) Y or N N/A		Sample Integrity - Condition 1. Sample recvd within HT: 2. All containers accounted for: 3. Condition of sample:	✓ □ Intact	
2. Trip Blank listed on COC:3. Samples preserved properly:			Sample Integrity - Instructions 1. Analysis requested is clear: 2. Bottles received for unspecified tests 3. Sufficient volume recvd for analysis: 4. Compositing instructions clear: 5. Filtering instructions clear:	Y or N V V V V V	N/A
Comments					
Accutest Laboratories V:508.481.6200			nter West, Bldg One 81.7753		oorough, MA

MC19057: Chain of Custody Page 3 of 3

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Laboratory Name: Accutest New England Client: Triton Environmental, Inc.

Project Location: Project Number: 68 Matson Hill Road, Glastonbury, CT 103139

Sampling Date(s): 3/15/2013

Laboratory Sample ID(s):

7, MC19057-8, MC19057-9, MC19057-10, MC19057-11, MC19057-12, MC19057-13,

MC19057-14

SW846 6010C, SW846 8260B Methods:

	3W040 0010C, 3W040 0200B				
1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents)?	Yes	<u> </u>	No	□
1A	Where all the method specified preservation and holding time requirements met?	Yes	~	No	
1B	VPH and EPH mehods only: Was the VPH or EPH method conducted without significant modifications (See section 11.3 of respective methods)	Yes	□ NA	No 🔽	
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Yes	<u> </u>	No	П
3	Were samples received at an appropriate temperature (<6° C)?	Yes	<u>~</u>	No	
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	Yes		No	<u> </u>
5	a) Were reporting limits specified or referenced on the chain-of-custody?	Yes		No	~
	b) Were these reporting limits met?	Yes		No	~
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes		No	7
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	Yes	<u> </u>	No	

Note: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized

Signature:

Position: Lab Director

Printed Name: Reza Tand Accutest New England Date:

4/1/2013

Internal Sample Tracking Chronicle

Triton Environmental, Inc.

MC19057 Job No:

68 Matson Hill Road, Glastonbury, CT Project No: 103139

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
MC19057-1 TB-301(0-2	Collected: 15-MAR-13	09:30 By: DSM	Receiv	ed: 19-MAR	-13 By	y:
MC19057-1	SW846 8260B	28-MAR-13 13:05	GK	27-MAR-13	HS	V8260SPLP8010L
MC19057-2 TB-301(2-4	Collected: 15-MAR-13	09:40 By: DSM	Receiv	ed: 19-MAR	-13 By	y:
MC19057-2	SW846 8260B	28-MAR-13 13:33	GK	27-MAR-13	HS	V8260SPLP8010L
MC19057-3 TB-302(0-2)	Collected: 15-MAR-13	09:45 By: DSM	Receiv	ed: 19-MAR	-13 By	y:
MC19057-3	SW846 8260B	28-MAR-13 14:00	GK	27-MAR-13	HS	V8260SPLP8010L
MC19057-4 TB-303(0-2)	Collected: 15-MAR-13	09:50 By: DSM	Receiv	ed: 19-MAR	-13 By	y:
MC19057-4	SW846 8260B	28-MAR-13 14:28	GK	27-MAR-13	HS	V8260SPLP8010L
MC19057-5 TB-311(5-7)	Collected: 15-MAR-13	10:30 By: DSM	Receiv	ed: 19-MAR	-13 By	y:
MC19057-5	SW846 8260B	28-MAR-13 14:55	GK	27-MAR-13	HS	V8260SPLP8010L
MC19057-6 TB-312(5-7)	Collected: 15-MAR-13	10:45 By: DSM	Receiv	ed: 19-MAR	-13 By	y:
MC19057-6	SW846 8260B	28-MAR-13 15:24	GK	27-MAR-13	HS	V8260SPLP8010L
MC19057-7 TB-313(4-6	Collected: 15-MAR-13	11:05 By: DSM	Receiv	ed: 19-MAR	-13 By	y:
MC19057-7	SW846 8260B	28-MAR-13 15:51	GK	27-MAR-13	HS	V8260SPLP8010L
MC19057-8 TB-314(0-2	Collected: 15-MAR-13	11:25 By: DSM	Receiv	ed: 19-MAR	-13 By	y:
MC19057-8	SW846 8260B	28-MAR-13 16:18	GK	27-MAR-13	HS	V8260SPLP8010L

MC19057

Job No:

Internal Sample Tracking Chronicle

Triton Environmental, Inc.

68 Matson Hill Road, Glastonbury, CT Project No: 103139

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
MC19057-9 TB-315(0-2)	Collected: 15-MAR-13	11:55 By: DSM	Receiv	ed: 19-MAR	-13 By	:
MC19057-9	SW846 8260B	28-MAR-13 16:46	GK	27-MAR-13	HS	V8260SPLP8010L
MC19057-1 TB-316(0-2	Collected: 15-MAR-13	12:30 By: DSM	Receiv	ed: 19-MAR	-13 By	
MC19057-1	© W846 8260B	28-MAR-13 17:13	GK	27-MAR-13	HS	V8260SPLP8010L
MC19057-1 TB-317(2-4	Collected: 15-MAR-13	12:45 By: DSM	Receiv	ed: 19-MAR	-13 By	:
MC19057-1	ISW846 8260B	28-MAR-13 17:41	GK	27-MAR-13	HS	V8260SPLP8010L
MC19057-1 TB-318(2-4	Collected: 15-MAR-13	14:10 By: DSM	Receiv	ed: 19-MAR	-13 By	:
MC19057-1	2SW846 6010C	29-MAR-13 18:28	EAL	29-MAR-13	DA	ECD
MC19057-1 TB-319(2-4	Collected: 15-MAR-13	13:30 By: DSM	Receiv	ed: 19-MAR	-13 By	
MC19057-1	3 W846 6010C	29-MAR-13 18:32	EAL	29-MAR-13	DA	ECD
MC19057-1 TB-320(4-6	4Collected: 15-MAR-13	13:55 By: DSM	Receiv	ed: 19-MAR	-13 By	:
MC19057-1	4SW846 6010C	29-MAR-13 18:37	EAL	29-MAR-13	DA	ECD

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Internal Standard Area Summaries
- Surrogate Recovery Summaries

Method: SW846 8260B

Method Blank Summary

Job Number: MC19057

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample MSK2240-MB	File ID K68391.D	DF 1	Analyzed 03/28/13	By GK	Prep Date n/a	Prep Batch n/a	Analytical Batch MSK2240

The QC reported here applies to the following samples:

MC19057-1, MC19057-2, MC19057-3, MC19057-4, MC19057-5, MC19057-6, MC19057-7, MC19057-8, MC19057-9, MC19057-10, MC19057-11

CAS No.	Compound	Result	RL	Units Q
75-27-4	Bromodichloromethane	ND	1.0	ug/l
75-25-2	Bromoform	ND	1.0	ug/l
74-83-9	Bromomethane	ND	2.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
75-00-3	Chloroethane	ND	2.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87-3	Chloromethane	ND	2.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ug/l
75-09-2	Methylene chloride	ND	2.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethene	ND	1.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l
79-01-6	Trichloroethene	ND	1.0	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	1.0	ug/l
CAS No.	Surrogate Recoveries		Limits	

CAS No. **Surrogate Recoveries**

1868-53-7	Dibromofluoromethane	99%	70-130%
2037-26-5	Toluene-D8	93%	70-130%
460-00-4	4-Bromofluorobenzene	95%	70-130%

Method: SW846 8260B

Leachate Blank Summary

Job Number: MC19057

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample GP15772-LB1	File ID K68392.D	DF 1	Analyzed 03/28/13	By GK	Prep Date 03/27/13	Prep Batch GP15772	Analytical Batch MSK2240

The QC reported here applies to the following samples:

MC19057-1, MC19057-2, MC19057-3, MC19057-4, MC19057-5, MC19057-6, MC19057-7, MC19057-8, MC19057-9, MC19057-10, MC19057-11

CAS No.	Compound	Result	RL	Units Q
75-27-4	Bromodichloromethane	ND	2.0	ug/l
75-25-2	Bromoform	ND	2.0	ug/l
74-83-9	Bromomethane	ND	2.0	ug/l
56-23-5	Carbon tetrachloride	ND	2.0	ug/l
108-90-7	Chlorobenzene	ND	2.0	ug/l
75-00-3	Chloroethane	ND	5.0	ug/l
67-66-3	Chloroform	ND	2.0	ug/l
74-87-3	Chloromethane	ND	5.0	ug/l
124-48-1	Dibromochloromethane	ND	2.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	2.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	2.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	2.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	ug/l
75-34-3	1,1-Dichloroethane	ND	2.0	ug/l
107-06-2	1,2-Dichloroethane	ND	2.0	ug/l
75-35-4	1,1-Dichloroethene	ND	2.0	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	2.0	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	2.0	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ug/l
75-09-2	Methylene chloride	ND	2.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	ug/l
127-18-4	Tetrachloroethene	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	2.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	2.0	ug/l
79-01-6	Trichloroethene	ND	2.0	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	ug/l
75-01-4	Vinyl chloride	ND	2.0	ug/l

CAS No. Surrogate Recoveries Limits

1868-53-7	Dibromofluoromethane	98%	70-130%
2037-26-5	Toluene-D8	93%	70-130%
460-00-4	4-Bromofluorobenzene	95%	70-130%

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC19057

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
MSK2240-BS	K68388.D	1	03/28/13	GK	n/a	n/a	MSK2240
MSK2240-BSD	K68389.D	1	03/28/13	GK	n/a	n/a	MSK2240

The QC reported here applies to the following samples:

MC19057-1, MC19057-2, MC19057-3, MC19057-4, MC19057-5, MC19057-6, MC19057-7, MC19057-8, MC19057-9, MC19057-10, MC19057-11

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
0120 1100	00mp0umu	~- 	~- 	, 0		, •		1100/1112
75-27-4	Bromodichloromethane	50	50.2	100	50.5	101	1	70-130/25
75-25-2	Bromoform	50	49.3	99	49.2	98	0	70-130/25
74-83-9	Bromomethane	50	56.2	112	54.8	110	3	70-130/25
56-23-5	Carbon tetrachloride	50	49.2	98	48.2	96	2	70-130/25
108-90-7	Chlorobenzene	50	44.4	89	43.8	88	1	70-130/25
75-00-3	Chloroethane	50	56.8	114	57.0	114	0	70-130/25
67-66-3	Chloroform	50	47.4	95	46.5	93	2	70-130/25
74-87-3	Chloromethane	50	58.5	117	56.3	113	4	70-130/25
124-48-1	Dibromochloromethane	50	52.3	105	51.4	103	2	70-130/25
95-50-1	1,2-Dichlorobenzene	50	46.9	94	46.6	93	1	70-130/25
541-73-1	1,3-Dichlorobenzene	50	43.7	87	43.4	87	1	70-130/25
106-46-7	1,4-Dichlorobenzene	50	50.6	101	50.4	101	0	70-130/25
75-71-8	Dichlorodifluoromethane	50	72.1	144* a	70.0	140* a	3	70-130/25
75-34-3	1,1-Dichloroethane	50	48.8	98	47.9	96	2	70-130/25
107-06-2	1,2-Dichloroethane	50	48.9	98	49.0	98	0	70-130/25
75-35-4	1,1-Dichloroethene	50	47.9	96	47.1	94	2	70-130/25
156-59-2	cis-1,2-Dichloroethene	50	46.6	93	45.0	90	3	70-130/25
156-60-5	trans-1,2-Dichloroethene	50	47.2	94	46.9	94	1	70-130/25
78-87-5	1,2-Dichloropropane	50	48.5	97	47.9	96	1	70-130/25
	cis-1,3-Dichloropropene	50	51.1	102	50.6	101	1	70-130/25
10061-02-6	trans-1,3-Dichloropropene	50	55.2	110	54.9	110	1	70-130/25
75-09-2	Methylene chloride	50	49.4	99	49.5	99	0	70-130/25
79-34-5	1,1,2,2-Tetrachloroethane	50	55.3	111	56.5	113	2	70-130/25
127-18-4	Tetrachloroethene	50	47.4	95	45.5	91	4	70-130/25
71-55-6	1,1,1-Trichloroethane	50	48.2	96	47.8	96	1	70-130/25
79-00-5	1,1,2-Trichloroethane	50	48.6	97	49.5	99	2	70-130/25
79-01-6	Trichloroethene	50	44.5	89	43.5	87	2	70-130/25
75-69-4	Trichlorofluoromethane	50	52.3	105	50.6	101	3	70-130/25
75-01-4	Vinyl chloride	50	52.6	105	51.1	102	3	70-130/25

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	91%	92%	70-130%
	Toluene-D8	96%	96%	70-130%
460-00-4	4-Bromofluorobenzene	95%	96%	70-130%

^{* =} Outside of Control Limits.

Page 2 of 2

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC19057

Account: TRTCTG Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

Sample MSK2240-BS MSK2240-BSD	File ID K68388.D K68389.D	DF 1 1	Analyzed 03/28/13 03/28/13	By GK GK	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch MSK2240 MSK2240

The QC reported here applies to the following samples:

MC19057-1, MC19057-2, MC19057-3, MC19057-4, MC19057-5, MC19057-6, MC19057-7, MC19057-8, MC19057-9, MC19057-10, MC19057-11

(a) Outside control limits. Blank Spike meets program technical requirements.

^{* =} Outside of Control Limits.

Method: SW846 8260B

Leachate Spike Summary Job Number: MC19057

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
GP15772-LS1	K68411.D	5	03/28/13	GK	03/27/13	GP15772	MSK2240
MC19057-1	K68394.D	1	03/28/13	GK	03/27/13	GP15772	MSK2240

The QC reported here applies to the following samples:

MC19057-1, MC19057-2, MC19057-3, MC19057-4, MC19057-5, MC19057-6, MC19057-7, MC19057-8, MC19057-9, MC19057-10, MC19057-11

		MC19057-1	Spike	LS	S LS	
CAS No.	Compound	ug/l Q	ug/l	ug/l	%	Limits
75-27-4	Bromodichloromethane	ND	250	271	108	70-130
75-27-4 75-25-2	Bromoform	ND ND	250	258	103	70-130
73-23-2 74-83-9	Bromomethane	ND ND	250	238	103	70-130
74-63-9 56-23-5	Carbon tetrachloride	ND ND	250	272	109	70-130
30-23-3 108-90-7	Chlorobenzene	ND ND	250	220	88	70-130
75-00-3	Chloroethane	ND ND	250	281	112	70-130
67-66-3	Chloroform	ND ND	250	257	103	70-130
74-87-3	Chloromethane	ND ND	250	290	116	70-130
124-48-1	Dibromochloromethane	ND	250	272	109	70-130
95-50-1	1,2-Dichlorobenzene	ND	250	239	96	70-130
541-73-1	1,3-Dichlorobenzene	ND	250	222	89	70-130
106-46-7	1,4-Dichlorobenzene	ND	250	260	104	70-130
75-71-8	Dichlorodifluoromethane	ND	250	372	149* a	70-130
75-34-3	1,1-Dichloroethane	ND	250	256	102	70-130
107-06-2	1,2-Dichloroethane	ND	250	279	112	70-130
75-35-4	1,1-Dichloroethene	ND	250	238	95	70-130
156-59-2	cis-1,2-Dichloroethene	ND	250	233	93	70-130
156-60-5	trans-1,2-Dichloroethene	ND	250	233	93	70-130
78-87-5	1,2-Dichloropropane	ND	250	254	102	70-130
	cis-1,3-Dichloropropene	ND	250	263	105	70-130
	trans-1,3-Dichloropropene	ND	250	293	117	70-130
75-09-2	Methylene chloride	ND	250	250	100	70-130
79-34-5	1,1,2,2-Tetrachloroethane	ND	250	182	73	70-130
127-18-4	Tetrachloroethene	ND	250	236	94	70-130
71-55-6	1,1,1-Trichloroethane	ND	250	259	104	70-130
79-00-5	1,1,2-Trichloroethane	ND	250	258	103	70-130
79-01-6	Trichloroethene	17.6	250	321	121	70-130
75-69-4	Trichlorofluoromethane	ND	250	276	110	70-130
75-01-4	Vinyl chloride	ND	250	262	105	70-130
	·					
CAS No.	Surrogate Recoveries	LS	MC1905	57-1 Lim	its	
	-					
1868-53-7	Dibromofluoromethane	93%	99%		30%	
2037-26-5	Toluene-D8	96%	93%	70-1	30%	
460-00-4	4-Bromofluorobenzene	97%	97%	70-1	30%	

* = Outside of Control Limits.

Leachate Spike Summary Page 2 of 2

Job Number: MC19057

Account: TRTCTG Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
GP15772-LS1	K68411.D	5	03/28/13	GK	03/27/13	GP15772	MSK2240
MC19057-1	K68394.D	1	03/28/13	GK	03/27/13	GP15772	MSK2240

The QC reported here applies to the following samples: **Method:** SW846 8260B

MC19057-1, MC19057-2, MC19057-3, MC19057-4, MC19057-5, MC19057-6, MC19057-7, MC19057-8, MC19057-9, MC19057-10, MC19057-11

(a) Outside control limits due to possible matrix interference. Refer to Blank Spike.

^{* =} Outside of Control Limits.

Volatile Internal Standard Area Summary

Job Number: MC19057

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

IS 1

Injection Date: 03/28/13 Check Std: MSK2240-CC2235 Lab File ID: K68387.D **Injection Time:** 09:54 **Instrument ID:** GCMSK Method: SW846 8260B

IS 2

AREA RT AREA RT AREA RT AREA RT AREA RT Check Std 219911 8.83 277795 9.68 155942 12.94 149670 15.50 41197 6.41 Upper Limit ^a 439822 555590 10.18 311884 13.44 299340 16.00 82394 9.33 6.91 Lower Limit b 109956 8.33 138898 9.18 77971 12.44 74835 15.00 20599 5.91 IS 1 IS 2 IS₃ IS 4 IS₅ Lab AREA Sample ID **AREA AREA AREA** RT RT RT **AREA** RT RT 284969 MSK2240-BS 225851 8.83 9.68 157723 12.94 151064 15.50 43430 6.41 MSK2240-BSD 223195 8.83 281634 9.68 157516 12.94 149065 15.50 43905 6.41 MSK2240-MB 220532 282174 150783 12.94 145478 15.50 47991 8.83 9.68 6.41 12.94 139317 15.50 42738 GP15772-LB1 213485 8.83 274042 9.68 145692 6.41 MC19098-6 201332 8.83 258610 9.68 141066 12.94 135080 15.50 38469 6.41 MC19057-1 205324 260956 140310 12.94 133754 15.50 41094 8.83 9.68 6.41 MC19057-2 195656 8.83 249564 9.68 136225 12.94 130513 15.50 37593 6.41 MC19057-3 244622 9.68 133378 12.94 126778 15.50 36994 191137 8.83 6.41 247195 134700 15.50 37233 MC19057-4 194168 8.83 9.68 12.94 127237 6.41 MC19057-5 192823 8.83 245420 9.68 135206 12.94 130080 15.50 41235 6.41 MC19057-6 191306 8.83 244205 9.68 133358 12.94 128280 15.50 39048 6.41 MC19057-7 207037 8.83 262842 9.68 143465 12.94 139079 15.50 40300 6.41 15.50 37918 MC19057-8 201439 8.83 261232 9.68 140314 12.94 137376 6.41 142505 12.94 138075 15.50 38986 MC19057-9 207083 8.83 265661 9.68 6.41 MC19057-10 136631 12.94 133013 15.50 37742 200526 8.83 257744 9.68 6.41 12.94 126098 MC19057-11 188130 8.83 242370 9.68 131127 15.50 35679 6.41 **ZZZZZZ** 189252 8.83 241538 9.68 133236 12.94 127161 15.50 36919 6.41 ZZZZZZ 238266 130535 12.94 126024 15.50 37729

9.68

9.68

9.68

9.68

9.68

9.68

9.68

9.68

132357

131537

133172

131709

141115

143570

144875

12.94 127570

12.94 127806

12.94 126979

12.94 128424

12.94 135397

12.94 135371

12.94 136628

IS 3

IS 4

IS 5

IS₁ = Pentafluorobenzene IS 2 = 1,4-Difluorobenzene IS 3 = Chlorobenzene-D5 IS 4 = 1,4-Dichlorobenzene-d4 IS 5 = Tert Butyl Alcohol-D9

188080

190014

186724

187941

184973

195367

198574

ZZZZZZ

ZZZZZZ

ZZZZZZ

ZZZZZZ

GP15772-LS1

MC19098-6MS

MC19098-6MSD 199008

8.83

8.83

8.83

8.83

8.83

8.83

8.83

8.83

239504

234379

234935

231061

244588

249139

252119

6.41

6.41

6.41

6.41

6.41

6.41

6.41

6.41

15.50 38802

15.50 40047

15.50 38301

15.50 38431

15.50 39298

15.50 38808

15.50 36915

⁽a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

⁽b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Volatile Surrogate Recovery Summary Job Number: MC19057

Account: TRTCTG Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

Method: SW846 8260B Matrix: LEACHATE

Samples and QC shown here apply to the above method

Lab	Lab			
Sample ID	File ID	S1	S2	S3
MC19057-1	K68394.D	99.0	93.0	97.0
MC19057-2	K68395.D	101.0	94.0	94.0
MC19057-3	K68396.D	99.0	93.0	96.0
MC19057-4	K68397.D	99.0	92.0	96.0
MC19057-5	K68398.D	101.0	93.0	96.0
MC19057-6	K68399.D	100.0	92.0	99.0
MC19057-7	K68400.D	98.0	93.0	95.0
MC19057-8	K68401.D	99.0	93.0	95.0
MC19057-9	K68402.D	99.0	93.0	95.0
MC19057-10	K68403.D	98.0	93.0	95.0
MC19057-11	K68404.D	100.0	93.0	94.0
GP15772-LB1	K68392.D	98.0	93.0	95.0
GP15772-LS1	K68411.D	93.0	96.0	97.0
MSK2240-BS	K68388.D	91.0	96.0	95.0
MSK2240-BSD	K68389.D	92.0	96.0	96.0
MSK2240-MB	K68391.D	99.0	93.0	95.0

Surrogate Recovery Compounds Limits

S1 = Dibromofluoromethane70-130% S2 = Toluene-D870-130% S3 = 4-Bromofluorobenzene 70-130%

Metals Analysis

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC19057

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20693 Matrix Type: LEACHATE Methods: SW846 6010C

Units: mg/l

Prep Date:

03/29/13

Metal	RL	IDL	MDL	MB raw	final
Aluminum	0.20	.015	.04		
Antimony	0.0060	.001	.0019		
Arsenic	0.010	.0017	.0029		
Barium	0.50	.00041	.00081		
Beryllium	0.0040	.00017	.00025		
Boron	0.10	.00057	.0014		
Cadmium	0.0040	.00035	.0005	0.00020	<0.0040
Calcium	5.0	.0052	.038		
Chromium	0.010	.0006	.0014		
Cobalt	0.050	.00028	.0004		
Copper	0.025	.0011	.007		
Gold	0.050	.0023	.005		
Iron	0.10	.0054	.02		
Lead	0.010	.0009	.0017		
Magnesium	5.0	.04	.059		
Manganese	0.015	.00015	.00081		
Molybdenum	0.10	.00034	.00077		
Nickel	0.040	.00043	.00057		
Palladium	0.050	.0024	.0076		
Platinum	0.050	.01	.014		
Potassium	5.0	.057	.16		
Selenium	0.025	.0016	.0048		
Silicon	0.10	.011	.045		
Silver	0.0050	.00092	.001		
Sodium	5.0	.019	.06		
Strontium	0.010	.0002	.00026		
Tin	0.10	.0008	.0014		
Titanium	0.050	.0011	.0018		
Tungsten	0.10	.0086	.016		
Vanadium	0.010	.0011	.0028		
Zinc	0.10	.00032	.0005		
Zirconium	0.050	.00056	.0022		

Associated samples MP20693: MC19057-12, MC19057-13, MC19057-14

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC19057

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20693 Methods: SW846 6010C Matrix Type: LEACHATE Units: $\mbox{mg/l}$

Prep Date:

Metal

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: MC19057 Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20693 Methods: SW846 6010C Matrix Type: LEACHATE Units: mg/1

Prep Date: 03/29/13 03/29/13

Prep Date.			03/29/13	•		03/29/13			
Metal	BSP Result	Spikelot MPICP	% Rec	QC Limits	BSD Result	Spikelo MPICP	t % Rec	BSD RPD	QC Limit
Aluminum									
Antimony	anr								
Arsenic	anr								
Barium	anr								
Beryllium									
Boron									
Cadmium	0.50	0.50	100.0	80-120	0.50	0.50	100.0	0.0	20
Calcium									
Chromium	anr								
Cobalt									
Copper									
Gold									
Iron									
Lead	anr								
Magnesium									
Manganese									
Molybdenum									
Nickel	anr								
Palladium									
Platinum									
Potassium									
Selenium	anr								
Silicon									
Silver	anr								
Sodium									
Strontium									
Tin									
Titanium									
Tungsten									
Vanadium									
Zinc									
Zirconium									

Associated samples MP20693: MC19057-12, MC19057-13, MC19057-14

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: MC19057

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20693 Methods: SW846 6010C Matrix Type: LEACHATE Units: $\mbox{mg/l}$

Prep Date:

Metal

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC19057
Account: TRTCTG - Triton Environmental, Inc.
Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20693 Methods: SW846 6010C Matrix Type: LEACHATE Units: ug/l

Prep Date: 03/29/13

Prep Date:			03/29/13	
Metal	MC19276- Original	1 SDL 1:5	%DIF	QC Limits
Aluminum				
Antimony	anr			
Arsenic	anr			
Barium	anr			
Beryllium				
Boron				
Cadmium	0.00	0.00	NC	0-10
Calcium				
Chromium	anr			
Cobalt				
Copper				
Gold				
Iron				
Lead	anr			
Magnesium				
Manganese				
Molybdenum				
Nickel	anr			
Palladium				
Platinum				
Potassium				
Selenium	anr			
Silicon				
Silver	anr			
Sodium				
Strontium				
Tin				
Titanium				
Tungsten				
Vanadium				
Zinc				
Zirconium				

Associated samples MP20693: MC19057-12, MC19057-13, MC19057-14

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC19057

Account: TRTCTG - Triton Environmental, Inc.

Project: 68 Mateon Hill Bood, Clastophyry, C.

Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20693 Methods: SW846 6010C Matrix Type: LEACHATE Units: ug/l

Prep Date:

Metal

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (anr) Analyte not requested

04/01/13

Technical Report for

Triton Environmental, Inc.

68 Matson Hill Road, Glastonbury, CT

103139

Accutest Job Number: MC19086

Sampling Date: 03/19/13

Report to:

Triton Environmental, Inc. 385 Church Street Suite 201 Guilford, CT 06437 mpaulsson@tritonenvironmental.com

ATTN: Mark Paulsson

Total number of pages in report: 35

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Client Service contact: Matthew Morrell 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) WI (399080220) ISO 17025:2005 (L2235)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Lab Director

Sections:

-1-

Table of Contents

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Summary of Hits	5
Section 4: Sample Results	6
4.1: MC19086-1: TB-304(0-2')	
4.2: MC19086-2: TB-305(0-2')	10
4.3: MC19086-3: TB-305(2-4')	13
4.4: MC19086-4: TB-306(0-2')	16
4.5: MC19086-5: TB-306(2-4')	
Section 5: Misc. Forms	18
5.1: Chain of Custody	19
5.2: RCP Form	
5.3: Sample Tracking Chronicle	22
Section 6: GC/MS Volatiles - QC Data Summaries	
6.1: Method Blank Summary	24
6.2: Leachate Blank Summary	25
6.3: Blank Spike/Blank Spike Duplicate Summary	26
6.4: Leachate Spike Summary	
6.5: Internal Standard Area Summaries	30
6.6: Surrogate Recovery Summaries	31
Section 7: GC Semi-volatiles - QC Data Summaries	32
7.1: Method Blank Summary	33
7.2: Blank Spike Summary	34
7.3: Surrogate Recovery Summaries	35

CI

O

Sample Summary

Triton Environmental, Inc.

Job No: MC19086

68 Matson Hill Road, Glastonbury, CT Project No: 103139

Sample Number	Collected Date	Time By	Received	Matri Code		Client Sample ID
MC19086-1	03/19/13	09:00 DM	03/20/13	SO	Soil	TB-304(0-2')
MC19086-2	03/19/13	09:15 DM	03/20/13	SO	Soil	TB-305(0-2')
MC19086-3	03/19/13	09:20 DM	03/20/13	SO	Soil	TB-305(2-4')
MC19086-4	03/19/13	09:30 DM	03/20/13	SO	Soil	TB-306(0-2')
MC19086-5	03/19/13	09:40 DM	03/20/13	SO	Soil	TB-306(2-4')

Soil samples reported on a dry weight basis unless otherwise indicated on result page.

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Triton Environmental, Inc. Job No MC19086

Site: 68 Matson Hill Road, Glastonbury, CT Report Date 4/1/2013 3:53:24 PM

5 Sample(s) were collected on 03/19/2013 and were received at Accutest on 03/20/2013 properly preserved, at 0.9 Deg. C and intact. These Samples received an Accutest job number of MC19086. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix AO Batch ID: MSK2240

MSK2240-BS/BSD for Dichlorodifluoromethane: Outside control limits. Blank Spike meets program technical requirements.
 Only selected compounds requested.

Initial calibration verification standard MSK2235-ICV2235 for dichlorodifluoromethane exceeds 35% Difference

All method blanks for this batch meet method specific criteria.

All samples were analyzed within the recommended method holding time.

Matrix LEACHATE Batch ID: GP15772

- Sample(s) MC19057-1LS were used as the QC samples indicated.
- = GP15772-LS1 for Dichlorodifluoromethane: Outside control limits due to possible matrix interference. Refer to Blank Spike.

Extractables by GC By Method CT-ETPH 7/06

Matrix SO Batch ID: OP32428

- All samples were extracted within the recommended method holding time.
- All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report(MC19086).

Summary of Hits Job Number: MC19086

Account: Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

Collected: 03/19/13

Lab Sample ID Analyte	Client Sample ID	Result/ Qual	RL	MDL	Units	Method
MC19086-1	TB-304(0-2')					
CT-ETPH (C9-C Methylene chlori Trichloroethene	· ·	440 0.0040 0.0415	19 0.0020 0.0010		mg/kg mg/l mg/l	CT-ETPH 7/06 SW846 8260B SW846 8260B
MC19086-2	TB-305(0-2')					
Methylene chlori	de	0.0024	0.0020		mg/l	SW846 8260B
MC19086-3	TB-305(2-4')					
CT-ETPH (C9-C Methylene chlorid Trichloroethene		367 0.0033 0.0020	19 0.0020 0.0010		mg/kg mg/l mg/l	CT-ETPH 7/06 SW846 8260B SW846 8260B
MC19086-4	TB-306(0-2')					
No hits reported in this sample.						
MC19086-5	TB-306(2-4')					
СТ-ЕТРН (С9-С	36)	31.4	18		mg/kg	CT-ETPH 7/06

Sample Results	
Report of Analysis	

Report of Analysis

Client Sample ID: TB-304(0-2') Lab Sample ID: MC19086-1

 Lab Sample ID:
 MC19086-1
 Date Sampled:
 03/19/13

 Matrix:
 SO - Soil
 Date Received:
 03/20/13

 Method:
 SW846 8260B
 SW846 1312
 Percent Solids:
 87.8

Project: 68 Matson Hill Road, Glastonbury, CT

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 K68405.D 1 03/28/13 GK 03/27/13 GP15772 MSK2240

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA Halogenated List

SPLP Leachate method SW846 1312

CAS No.	Compound	Result	MCL	RL	Units Q
75-27-4	Bromodichloromethane	ND		0.0010	mg/l
75-25-2	Bromoform	ND		0.0010	mg/l
74-83-9	Bromomethane	ND		0.0020	mg/l
56-23-5	Carbon tetrachloride	ND		0.0010	mg/l
108-90-7	Chlorobenzene	ND		0.0010	mg/l
75-00-3	Chloroethane	ND		0.0020	mg/l
67-66-3	Chloroform	ND		0.0010	mg/l
74-87-3	Chloromethane	ND		0.0020	mg/l
124-48-1	Dibromochloromethane	ND		0.0010	mg/l
95-50-1	1,2-Dichlorobenzene	ND		0.0010	mg/l
541-73-1	1,3-Dichlorobenzene	ND		0.0010	mg/l
106-46-7	1,4-Dichlorobenzene	ND		0.0010	mg/l
75-71-8	Dichlorodifluoromethane	ND		0.0020	mg/l
75-34-3	1,1-Dichloroethane	ND		0.0010	mg/l
107-06-2	1,2-Dichloroethane	ND		0.0010	mg/l
75-35-4	1,1-Dichloroethene	ND		0.0010	mg/l
156-59-2	cis-1,2-Dichloroethene	ND		0.0010	mg/l
156-60-5	trans-1,2-Dichloroethene	ND		0.0010	mg/l
78-87-5	1,2-Dichloropropane	ND		0.0020	mg/l
10061-01-5	cis-1,3-Dichloropropene	ND		0.00050	mg/l
10061-02-6	trans-1,3-Dichloropropene	ND		0.00050	mg/l
75-09-2	Methylene chloride	0.0040		0.0020	mg/l
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.0010	mg/l
127-18-4	Tetrachloroethene	ND		0.0010	mg/l
71-55-6	1,1,1-Trichloroethane	ND		0.0010	mg/l
79-00-5	1,1,2-Trichloroethane	ND		0.0010	mg/l
79-01-6	Trichloroethene	0.0415		0.0010	mg/l
75-69-4	Trichlorofluoromethane	ND		0.0010	mg/l
75-01-4	Vinyl chloride	ND		0.0010	mg/l

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

VOA Halogenated List

Page 2 of 2

4

Report of Analysis

Client Sample ID: TB-304(0-2') Lab Sample ID: MC19086-1

 Matrix:
 SO - Soil

 Method:
 SW846 8260B
 SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

SPLP Leachate method SW846 1312

03/20/13

87.8

Date Sampled: 03/19/13

Date Received:

Percent Solids:

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7	Dibromofluoromethane	100%		70-130%
2037-26-5	Toluene-D8	93%		70-130%
460-00-4	4-Bromofluorobenzene	95%		70-130%

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

GBI714

Report of Analysis

Client Sample ID: TB-304(0-2') Lab Sample ID: MC19086-1

BI19809.D

 Lab Sample ID:
 MC19086-1
 Date Sampled:
 03/19/13

 Matrix:
 SO - Soil
 Date Received:
 03/20/13

 Method:
 CT-ETPH 7/06
 SW846 3546
 Percent Solids:
 87.8

03/31/13

Project: 68 Matson Hill Road, Glastonbury, CT

1

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch

03/28/13

OP32428

AP

Run #1 Run #2

Run #1 15.2 g Final Volume
1.0 ml

Run #2

CAS No. Compound Result RL Units Q

CT-ETPH (C9-C36) 440 19 mg/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

84-15-1 o-Terphenyl 77% 50-137%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

 $B = \ Indicates \ analyte \ found \ in \ associated \ method \ blank$

N = Indicates presumptive evidence of a compound

4

Report of Analysis

Client Sample ID: TB-305(0-2') Lab Sample ID: MC19086-2

 Matrix:
 SO - Soil
 Date Received:
 03/20/13

 Method:
 SW846 8260B
 SW846 1312
 Percent Solids:
 83.4

Project: 68 Matson Hill Road, Glastonbury, CT

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 K68406.D 1 03/28/13 GK 03/27/13 GP15772 MSK2240

Run #2

Purge Volume

Run #1 5.0 ml

Run #2

VOA Halogenated List

SPLP Leachate method SW846 1312

Date Sampled: 03/19/13

CAS No.	Compound	Result	MCL	RL	Units Q
75-27-4	Bromodichloromethane	ND		0.0010	mg/l
75-25-2	Bromoform	ND		0.0010	mg/l
74-83-9	Bromomethane	ND		0.0020	mg/l
56-23-5	Carbon tetrachloride	ND		0.0010	mg/l
108-90-7	Chlorobenzene	ND		0.0010	mg/l
75-00-3	Chloroethane	ND		0.0020	mg/l
67-66-3	Chloroform	ND		0.0010	mg/l
74-87-3	Chloromethane	ND		0.0020	mg/l
124-48-1	Dibromochloromethane	ND		0.0010	mg/l
95-50-1	1,2-Dichlorobenzene	ND		0.0010	mg/l
541-73-1	1,3-Dichlorobenzene	ND		0.0010	mg/l
106-46-7	1,4-Dichlorobenzene	ND		0.0010	mg/l
75-71-8	Dichlorodifluoromethane	ND		0.0020	mg/l
75-34-3	1,1-Dichloroethane	ND		0.0010	mg/l
107-06-2	1,2-Dichloroethane	ND		0.0010	mg/l
75-35-4	1,1-Dichloroethene	ND		0.0010	mg/l
156-59-2	cis-1,2-Dichloroethene	ND		0.0010	mg/l
156-60-5	trans-1,2-Dichloroethene	ND		0.0010	mg/l
78-87-5	1,2-Dichloropropane	ND		0.0020	mg/l
10061-01-5	cis-1,3-Dichloropropene	ND		0.00050	mg/l
10061-02-6	trans-1,3-Dichloropropene	ND		0.00050	mg/l
75-09-2	Methylene chloride	0.0024		0.0020	mg/l
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.0010	mg/l
127-18-4	Tetrachloroethene	ND		0.0010	mg/l
71-55-6	1,1,1-Trichloroethane	ND		0.0010	mg/l
79-00-5	1,1,2-Trichloroethane	ND		0.0010	mg/l
79-01-6	Trichloroethene	ND		0.0010	mg/l
75-69-4	Trichlorofluoromethane	ND		0.0010	mg/l
75-01-4	Vinyl chloride	ND		0.0010	mg/l

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

VOA Halogenated List

Report of Analysis

Client Sample ID: TB-305(0-2')
Lab Sample ID: MC19086-2
Matrix: SO - Soil

Method: SW846 8260B SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

SPLP Leachate method SW846 1312

03/20/13

83.4

Date Sampled: 03/19/13

Date Received:

Percent Solids:

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7 2037-26-5	Dibromofluoromethane Toluene-D8	100% 94%		70-130% 70-130%
460-00-4	4-Bromofluorobenzene	96%		70-130%

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: TB-305(0-2')

Lab Sample ID: MC19086.2

Lab Sample ID: MC19086-2 **Matrix:** SO - Soil

Method: CT-ETPH 7/06 SW846 3546

Project: 68 Matson Hill Road, Glastonbury, CT

Date Sampled: 03/19/13 **Date Received:** 03/20/13

Percent Solids: 83.4

File ID DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** Run #1 BI19806.D 1 03/31/13 AP 03/28/13 OP32428 **GBI714** Run #2

Run #1 15.3 g 1.0 ml

Run #2

CAS No. Compound Result RL Units Q

CT-ETPH (C9-C36) ND 20 mg/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

84-15-1 o-Terphenyl 73% 50-137%

ND = Not detected

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: TB-305(2-4')
Lab Sample ID: MC19086-3
Matrix: SO - Soil

Method: SW846 8260B SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

Date Sampled: 03/19/13
Date Received: 03/20/13
Percent Solids: 86.0

	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
Run #1	K68407.D	1	03/28/13	GK	03/27/13	GP15772	MSK2240
Run #2							

Purge Volume Run #1 5.0 ml

Run #2

VOA Halogenated List

SPLP Leachate method SW846 1312

CAS No.	Compound	Result	MCL	RL	Units Q
75-27-4	Bromodichloromethane	ND		0.0010	mg/l
75-25-2	Bromoform	ND		0.0010	mg/l
74-83-9	Bromomethane	ND		0.0020	mg/l
56-23-5	Carbon tetrachloride	ND		0.0010	mg/l
108-90-7	Chlorobenzene	ND		0.0010	mg/l
75-00-3	Chloroethane	ND		0.0020	mg/l
67-66-3	Chloroform	ND		0.0010	mg/l
74-87-3	Chloromethane	ND		0.0020	mg/l
124-48-1	Dibromochloromethane	ND		0.0010	mg/l
95-50-1	1,2-Dichlorobenzene	ND		0.0010	mg/l
541-73-1	1,3-Dichlorobenzene	ND		0.0010	mg/l
106-46-7	1,4-Dichlorobenzene	ND		0.0010	mg/l
75-71-8	Dichlorodifluoromethane	ND		0.0020	mg/l
75-34-3	1,1-Dichloroethane	ND		0.0010	mg/l
107-06-2	1,2-Dichloroethane	ND		0.0010	mg/l
75-35-4	1,1-Dichloroethene	ND		0.0010	mg/l
156-59-2	cis-1,2-Dichloroethene	ND		0.0010	mg/l
156-60-5	trans-1,2-Dichloroethene	ND		0.0010	mg/l
78-87-5	1,2-Dichloropropane	ND		0.0020	mg/l
10061-01-5	cis-1,3-Dichloropropene	ND		0.00050	mg/l
10061-02-6	trans-1,3-Dichloropropene	ND		0.00050	mg/l
75-09-2	Methylene chloride	0.0033		0.0020	mg/l
79-34-5	1,1,2,2-Tetrachloroethane	ND		0.0010	mg/l
127-18-4	Tetrachloroethene	ND		0.0010	mg/l
71-55-6	1,1,1-Trichloroethane	ND		0.0010	mg/l
79-00-5	1,1,2-Trichloroethane	ND		0.0010	mg/l
79-01-6	Trichloroethene	0.0020		0.0010	mg/l
75-69-4	Trichlorofluoromethane	ND		0.0010	mg/l
75-01-4	Vinyl chloride	ND		0.0010	mg/l

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

VOA Halogenated List

Page 2 of 2

4

Report of Analysis

Client Sample ID: TB-305(2-4') Lab Sample ID: MC19086-3

 Matrix:
 SO - Soil

 Method:
 SW846 8260B
 SW846 1312

Project: 68 Matson Hill Road, Glastonbury, CT

SPLP Leachate method SW846 1312

03/20/13

86.0

Date Sampled: 03/19/13

Date Received:

Percent Solids:

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
1868-53-7 2037-26-5	Dibromofluoromethane Toluene-D8	100% 94%		70-130% 70-130%
460-00-4	4-Bromofluorobenzene	95%		70-130%

ND = Not detected

MCL = Maximum Contamination Level (not available)

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Client Sample ID: TB-305(2-4') MC19086-3 Lab Sample ID: Matrix: SO - Soil

File ID

BI19810.D

Method: CT-ETPH 7/06 SW846 3546

Project: 68 Matson Hill Road, Glastonbury, CT

1

Date Sampled: 03/19/13 **Date Received:** 03/20/13 **Percent Solids:** 86.0

DF **Prep Date Analytical Batch** Analyzed By **Prep Batch** 03/31/13 AP 03/28/13 OP32428 **GBI714**

Run #1 Run #2

Initial Weight Final Volume Run #1 1.0 ml 15.1 g

Run #2

CAS No. Compound Result RLUnits Q

> CT-ETPH (C9-C36) 367 19 mg/kg

CAS No. **Surrogate Recoveries** Run#1 Run# 2 Limits

84-15-1 o-Terphenyl 74% 50-137%

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Date Sampled: 03/19/13

Report of Analysis

Client Sample ID: TB-306(0-2') **Lab Sample ID:** MC19086-4

 Matrix:
 SO - Soil
 Date Received:
 03/20/13

 Method:
 CT-ETPH 7/06
 SW846 3546
 Percent Solids:
 94.3

Project: 68 Matson Hill Road, Glastonbury, CT

File ID DF Analyzed By Prep Date Prep Batch Analytical Batch
Run #1 BI19807.D 1 03/31/13 AP 03/28/13 OP32428 GBI714

Run #2

Initial Weight Final Volume

Run #1 15.4 g 1.0 ml

Run #2

CAS No. Compound Result RL Units Q

CT-ETPH (C9-C36) ND 17 mg/kg

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

84-15-1 o-Terphenyl 71% 50-137%

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

1

Page 1 of 1

Report of Analysis

By

AP

03/28/13

Client Sample ID: TB-306(2-4')
Lab Sample ID: MC19086-5
Matrix: SO - Soil

File ID

BI19808.D

Method: CT-ETPH 7/06 SW846 3546

Project: 68 Matson Hill Road, Glastonbury, CT

DF

1

Date Sampled: 03/19/13 Date Received: 03/20/13 Percent Solids: 90.3

OP32428

Prep Date Prep Batch Analytical Batch

GBI714

Initial Weight Final Volume

Run #1 15.7 g 1.0 ml

Run #2

Run #1

Run #2

CAS No. Compound Result RL Units Q

CT-ETPH (C9-C36) 31.4 18 mg/kg

Analyzed

03/31/13

CAS No. Surrogate Recoveries Run# 1 Run# 2 Limits

84-15-1 o-Terphenyl 80% 50-137%

ND = Not detected RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

- Chain of Custody
- RCP Form
- Sample Tracking Chronicle

PAGE ___ OF ___

A	\Box	\Box	L	Т	E	S	T.
			LA	80	BAT	OB	EB

CHAIN OF CUSTODY

LABORATORIES			Technolo									FED-	EX Trackin	g#				Bottle Orc	der Cantrol	#			
EABURAIDHIEB			L. 508-48	1-6200	FAX	: 508-48						Acout	est Quote	#				Accutest .	Job#				
				ww.acc		enveloper and	No.	-	- January	No.									<u> </u>	10	908	56	
Client / Reporting Information			Pro	ject Inf	ormati	on							Rec	ueste	d Ana	lysis (see T	EST CO	ODE she	eet)			Matrix Codes
Company Name	Project Name	MI	11 II A									ı			i	1					Ì		
Triton Environmental Street Address	68	Matson	HIII Rac	<i>ندا</i>	00.000000000000000000000000000000000000			Navasie	573-150s 75	one in the	renes established									-			N - Drinking Water W - Ground Water
	68 A	1.1	H.11 Row	1	Talk and solve		2235/4		00000110	500000011	1000000	7							-	- 1			WW - \Vater
385 Church Street	68 /	141204	111/00	Com	Billing In pany Nam	rformatio	n (lfd	iffere	nt fror	n Rep	ort to	4					li			- 1		100	W - Surface Water SO - Soil
Guilford CT 06437	C.16	rd. CT		-												1							SL- Sludge SED-Sediment
Project Contact _ E-mail	Project#	70t, C1	-,	Stree	t Address							\dashv											O1 - Oil
Mark Paulsson	/03 / Client PO#	39												ļ				. 1				L	IQ - Other Liquid AIR - Air
	Client PO#			City			SI	ate		2	ip	_	١.					.				s	OL - Other Solid
203 - 458-7200/203-458-720 Sampler(s) Name(s) Phone #	Project Manage	39 PO1											Ŭ								- 1	ļ	WP - Wipe FB-Field Blank
Sampler(s) Name(s) Phone #	Project Manage			Atten	tion:				PO#			7	10										- Equipment Blank RB- Rinse Blank
Day Miller 207-458-7200	Mark	Padsson										⊣ ≖	13	1									TB-Trip Blank
			Collection					Vumba	of prese	rved B	ottles	ھ ا	SPLPHVOC							-		L	
]		1	1	ž 111	aler	표	E C	12									Г	
Accuses Sample # Field ID / Point of Collection	MEOH/DI Viai #	Date	Time	Sampled by	Matrix	# of bottles	Na A	HND3	NONE	Di Wa	ENCORE	Bisulfate	1 5									1	AB USE ONLY
-1 TB-304 (0-2)		3/19/2013	9:00	0/1	S)						1	1									- 1	
-2 TB - 305 (0-2)		1	9:15	DM	(1	1										
-3 TB - 305 (2-4)			9:20	DM	Ŝ	1		\sqcap	1		П	1	Ż					\neg					
-4 tp = 306 (0-2)		 Y			5	 `	+-	H		H	+	1.0		7	1.				-	+	_	-	
		 	9.30	DM	-		\vdash	H	+	+	+	4~	M	1	lol c				+	+		-	
-5 173 - 306 (2-4)		₩.	9:40	DA	S	1					\perp	1	0	2									
,												1	Al				i					1	
				1				T		+	11									\top	\top	_	
				+		-	\vdash	++	+	+	H	-						+			-	+	
				ļ					\perp	_	11		-					\rightarrow	-	_			
																					ŀ	10	DC
								П															
				-				П	\top	1	\Box	<u> </u>								+	_	+	
						Data	Delive	rable	Infor	natio	п			100000		C	ommei	nts / Sr	secial In	stru	tions		
Turnaround Time (Business days)	Approved By (Ac	utest PM): / Date:			Commerc	oiai "A" (Li	evel 1)			NYA	SP Cat	egory A		-	• C					_~			/ ->
Std. 10 Business Days)		ial "B" (Li						egory B			+	Pos	51610		11_	114	<u>, - 50</u>	<u> </u>	(5-0)
Std. 5 Business Days (By Contract only)						(Level 3+4	1)				e Form:			תד	7 - 7	ine	· (m	Cc.	_	_1	TO	_7.	05(2-4)
☐ 5 Day RUSH ☐ 3 Day EMERGENCY				Louis	CT RCP MA MCP				\vdash	EDD Othe	Forma	et	—		<u> </u>	<u> </u>	V	-6)	, 01	3/	115	- >	0516-47
3 Day EMERGENCY 2 Day EMERGENCY				L	MA MCP	Germerci	al "A" =	Resu	ئىستا دts Only	Oine	"			fe	,_	SDI	DI	110	Cr.				İ
1 Day EMERGENCY					_	Commerci				Sumi	mary				-			1 V V	<u> </u>				
Emergency & Rush T/A data available VIA Lablink					/																		
$-\alpha$ 1	la Sai	nple Custody mu	ist be docum	neated be	elow eac					sses	sion, l	neluding	courie				,,,						
Relinguished by Sampler: Date Time:	10-130	Received By:		•			Relinqui	ished l	By:		6-				Date Tin	20-		Received B					
Relinquished by Sampler: Date Time:		Received By:					Relinqui	ished I	By:		~~~				Date Tin	ie:	R	Received B	з _{у:}				
3		3					4										4	<u> </u>					
Relinquished by: Date Time:		Received By:					Custody	Seal #						Preserve	d when	applicat	ole			n Ice	Cor	oler Temp	P-p
5		5										Not into	ect									0.9	

MC19086: Chain of Custody

Page 1 of 2

Accutest Laboratories Sample Receipt Summary

Accutest Job Number: MC19		Client: TRIT	ON ENV		Immediate Client Serv	ices Actio	n Rec	uired:	No
Date / Time Received: 3/20/2	.013		Delivery Meth	od:	Client Service Acti	on Requir	ed at	Login:	No
Project: 68 MATSON HILL RO	DAD	N	No. Coolers:		1 Airbill #'s:				
Cooler Security Y	or N		Y or	· N	Sample Integrity - Documentation	<u>Y</u>	or	N	
Custody Seals Present:		3. COC Present			Sample labels present on bottles:	~			
2. Custody Seals Intact: ✓		4. Smpl Dates/Time	e OK 🔽		Container labeling complete:	~			
Cooler Temperature	Y or	<u>N</u> _			3. Sample container label / COC agree:	\checkmark			
1. Temp criteria achieved:	✓				Sample Integrity - Condition	<u>Y</u>	or	N	
Cooler temp verification:	Infared				Sample recvd within HT:	✓			
3. Cooler media:	Ice (t	pag)			All containers accounted for:	✓			
Quality Control Preservation	Y or	N N/A			3. Condition of sample:		Intact		
1. Trip Blank present / cooler:					Sample Integrity - Instructions	<u>Y</u>	or	N	N/A
2. Trip Blank listed on COC:					Analysis requested is clear:	✓			
3. Samples preserved properly:	✓				2. Bottles received for unspecified tests			✓	
4. VOCs headspace free:					3. Sufficient volume recvd for analysis:	~			
					4. Compositing instructions clear:				✓
					5. Filtering instructions clear:				~
Comments									
Accutest Laboratories V:508 491 6200			495 Techi		nter West, Bidg One 181 7753				borough, M

MC19086: Chain of Custody

Page 2 of 2

į.

U

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Laboratory Name: Accutest New England Client: Triton Environmental, Inc.

Project Location: 68 Matson Hill Road, Glastonbury, CT Project Number: 103139

Sampling Date(s): 3/19/2013

Laboratory Sample ID(s): MC19086-1, MC19086-2, MC19086-3, MC19086-4, MC19086-5

Methods: CT-ETPH 7/06, SM21 2540 B MOD., SW846 8260B

Methods:	CT-ETPH 7/06, SM21 2540 B MOD., SW846 8260B		
1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents)?	Yes 🔽	No 🗖
1A	Where all the method specified preservation and holding time requirements met?	Yes 🗹	No 🗖
1B	VPH and EPH mehods only: Was the VPH or EPH method conducted without significant modifications (See section 11.3 of respective methods)	Yes 🗖	No I
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Yes 🔽	No 🗖
3	Were samples received at an appropriate temperature (<6° C)?	Yes 🔽	No 🗖
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	Yes 🗖	No 🔽
5	a) Were reporting limits specified or referenced on the chain-of-custody?	Yes 🗖	No 🔽
	b) Were these reporting limits met?	Yes 🗖	No 🔽
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes 🗖	No 🔽
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	Yes 🗹	No 🗖

Note: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized

Signature: from from

Position: Lab Director

Printed Name: Reza Tand

Date: 4/1/2013

Accutest New England

Job No:

Internal Sample Tracking Chronicle

Triton Environmental, Inc.

68 Matson Hill Road, Glastonbury, CT Project No: 103139

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
MC19086-1 TB-304(0-2	Collected: 19-MAR-13	09:00 By: DM	Receiv	ved: 20-MAR	R-13 By	y:
MC19086-1	SM21 2540 B MOD. SW846 8260B CT-ETPH 7/06	22-MAR-13 28-MAR-13 18:08 31-MAR-13 10:58		27-MAR-13 28-MAR-13		% SOL V8260SPLP8010L BCTTPH
MC19086-2 TB-305(0-2	Collected: 19-MAR-13	09:15 By: DM	Receiv	ved: 20-MAR	R-13 By	y:
MC19086-2	2 SM21 2540 B MOD. 2 SW846 8260B 2 CT-ETPH 7/06	22-MAR-13 28-MAR-13 18:35 31-MAR-13 09:34				% SOL V8260SPLP8010L BCTTPH
MC19086-3 TB-305(2-4	Collected: 19-MAR-13	09:20 By: DM	Receiv	ved: 20-MAR	R-13 By	y:
MC19086-3	SM21 2540 B MOD. SW846 8260B CT-ETPH 7/06	22-MAR-13 28-MAR-13 19:02 31-MAR-13 11:27		27-MAR-13 28-MAR-13		% SOL V8260SPLP8010L BCTTPH
MC19086-4 TB-306(0-2	Collected: 19-MAR-13	09:30 By: DM	Receiv	ved: 20-MAR	R-13 By	y:
	SM21 2540 B MOD. CT-ETPH 7/06	26-MAR-13 31-MAR-13 10:02	HS AP	28-MAR-13	3 FC	% SOL BCTTPH
MC19086-5 TB-306(2-4	Collected: 19-MAR-13	09:40 By: DM	Receiv	ved: 20-MAR	R-13 By	y:
	SM21 2540 B MOD. CT-ETPH 7/06	26-MAR-13 31-MAR-13 10:30	HS AP	28-MAR-13	3 FC	% SOL BCTTPH

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Internal Standard Area Summaries
- Surrogate Recovery Summaries

Method: SW846 8260B

Method Blank Summary Job Number: MC19086

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample MSK2240-MB	File ID K68391.D	DF 1	Analyzed 03/28/13	By GK	Prep Date n/a	Prep Batch n/a	Analytical Batch MSK2240

The QC reported here applies to the following samples:

MC19086-1, MC19086-2, MC19086-3

CAS No.	Compound	Result	RL	Units Q
75-27-4	Bromodichloromethane	ND	1.0	ug/l
75-25-2	Bromoform	ND	1.0	ug/l
74-83-9	Bromomethane	ND	2.0	ug/l
56-23-5	Carbon tetrachloride	ND	1.0	ug/l
108-90-7	Chlorobenzene	ND	1.0	ug/l
75-00-3	Chloroethane	ND	2.0	ug/l
67-66-3	Chloroform	ND	1.0	ug/l
74-87-3	Chloromethane	ND	2.0	ug/l
124-48-1	Dibromochloromethane	ND	1.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	1.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	1.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	1.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	ug/l
75-34-3	1,1-Dichloroethane	ND	1.0	ug/l
107-06-2	1,2-Dichloroethane	ND	1.0	ug/l
75-35-4	1,1-Dichloroethene	ND	1.0	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	1.0	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	1.0	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	ug/l
10061-01-5	cis-1,3-Dichloropropene	ND	0.50	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ug/l
75-09-2	Methylene chloride	ND	2.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	1.0	ug/l
127-18-4	Tetrachloroethene	ND	1.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	1.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	1.0	ug/l
79-01-6	Trichloroethene	ND	1.0	ug/l
75-69-4	Trichlorofluoromethane	ND	1.0	ug/l
75-01-4	Vinyl chloride	ND	1.0	ug/l
CAS No.	Surrogate Recoveries		Limits	

1868-53-7	Dibromofluoromethane	99%	70-130%
2037-26-5	Toluene-D8	93%	70-130%
460-00-4	4-Bromofluorobenzene	95%	70-130%

Method: SW846 8260B

Leachate Blank Summary

Job Number: MC19086

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample GP15772-LB1	File ID K68392.D	DF 1	Analyzed 03/28/13	By GK	Prep Date 03/27/13	Prep Batch GP15772	Analytical Batch MSK2240

The QC reported here applies to the following samples:

MC19086-1, MC19086-2, MC19086-3

CAS No.	Compound	Result	RL	Units Q
75-27-4	Bromodichloromethane	ND	2.0	ug/l
75-25-2	Bromoform	ND	2.0	ug/l
74-83-9	Bromomethane	ND	2.0	ug/l
56-23-5	Carbon tetrachloride	ND	2.0	ug/l
108-90-7	Chlorobenzene	ND	2.0	ug/l
75-00-3	Chloroethane	ND	5.0	ug/l
67-66-3	Chloroform	ND	2.0	ug/l
74-87-3	Chloromethane	ND	5.0	ug/l
124-48-1	Dibromochloromethane	ND	2.0	ug/l
95-50-1	1,2-Dichlorobenzene	ND	2.0	ug/l
541-73-1	1,3-Dichlorobenzene	ND	2.0	ug/l
106-46-7	1,4-Dichlorobenzene	ND	2.0	ug/l
75-71-8	Dichlorodifluoromethane	ND	2.0	ug/l
75-34-3	1,1-Dichloroethane	ND	2.0	ug/l
107-06-2	1,2-Dichloroethane	ND	2.0	ug/l
75-35-4	1,1-Dichloroethene	ND	2.0	ug/l
156-59-2	cis-1,2-Dichloroethene	ND	2.0	ug/l
156-60-5	trans-1,2-Dichloroethene	ND	2.0	ug/l
78-87-5	1,2-Dichloropropane	ND	2.0	ug/l
	cis-1,3-Dichloropropene	ND	0.50	ug/l
10061-02-6	trans-1,3-Dichloropropene	ND	0.50	ug/l
75-09-2	Methylene chloride	ND	2.0	ug/l
79-34-5	1,1,2,2-Tetrachloroethane	ND	2.0	ug/l
127-18-4	Tetrachloroethene	ND	2.0	ug/l
71-55-6	1,1,1-Trichloroethane	ND	2.0	ug/l
79-00-5	1,1,2-Trichloroethane	ND	2.0	ug/l
79-01-6	Trichloroethene	ND	2.0	ug/l
75-69-4	Trichlorofluoromethane	ND	2.0	ug/l
75-01-4	Vinyl chloride	ND	2.0	ug/l
CAS No.	Surrogate Recoveries		Limits	

CAS No. **Surrogate Recoveries**

1868-53-7	Dibromofluoromethane	98%	70-130%
2037-26-5	Toluene-D8	93%	70-130%
460-00-4	4-Bromofluorobenzene	95%	70-130%

Method: SW846 8260B

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC19086

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Analytical Batch	Prep Batch	Prep Date	By	Analyzed	DF	File ID	Sample
MSK2240	n/a	n/a	GK	03/28/13	1	K68388.D	MSK2240-BS
MSK2240	n/a	n/a	GK	03/28/13	1	K68389.D	MSK2240-BSD
MS.	n/a	n/a	GK	03/28/13	1	K68389.D	MSK2240-BSD

The QC reported here applies to the following samples:

MC19086-1, MC19086-2, MC19086-3

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	BSD ug/l	BSD %	RPD	Limits Rec/RPD
CAS NO.	Compound	ug/1	ug/1	70	ug/1	70	KI D	KC/KI D
75-27-4	Bromodichloromethane	50	50.2	100	50.5	101	1	70-130/25
75-25-2	Bromoform	50	49.3	99	49.2	98	0	70-130/25
74-83-9	Bromomethane	50	56.2	112	54.8	110	3	70-130/25
56-23-5	Carbon tetrachloride	50	49.2	98	48.2	96	2	70-130/25
108-90-7	Chlorobenzene	50	44.4	89	43.8	88	1	70-130/25
75-00-3	Chloroethane	50	56.8	114	57.0	114	0	70-130/25
67-66-3	Chloroform	50	47.4	95	46.5	93	2	70-130/25
74-87-3	Chloromethane	50	58.5	117	56.3	113	4	70-130/25
124-48-1	Dibromochloromethane	50	52.3	105	51.4	103	2	70-130/25
95-50-1	1,2-Dichlorobenzene	50	46.9	94	46.6	93	1	70-130/25
541-73-1	1,3-Dichlorobenzene	50	43.7	87	43.4	87	1	70-130/25
106-46-7	1,4-Dichlorobenzene	50	50.6	101	50.4	101	0	70-130/25
75-71-8	Dichlorodifluoromethane	50	72.1	144* a	70.0	140* a	3	70-130/25
75-34-3	1,1-Dichloroethane	50	48.8	98	47.9	96	2	70-130/25
107-06-2	1,2-Dichloroethane	50	48.9	98	49.0	98	0	70-130/25
75-35-4	1,1-Dichloroethene	50	47.9	96	47.1	94	2	70-130/25
156-59-2	cis-1,2-Dichloroethene	50	46.6	93	45.0	90	3	70-130/25
156-60-5	trans-1,2-Dichloroethene	50	47.2	94	46.9	94	1	70-130/25
78-87-5	1,2-Dichloropropane	50	48.5	97	47.9	96	1	70-130/25
10061-01-5	cis-1,3-Dichloropropene	50	51.1	102	50.6	101	1	70-130/25
10061-02-6	trans-1,3-Dichloropropene	50	55.2	110	54.9	110	1	70-130/25
75-09-2	Methylene chloride	50	49.4	99	49.5	99	0	70-130/25
79-34-5	1,1,2,2-Tetrachloroethane	50	55.3	111	56.5	113	2	70-130/25
127-18-4	Tetrachloroethene	50	47.4	95	45.5	91	4	70-130/25
71-55-6	1,1,1-Trichloroethane	50	48.2	96	47.8	96	1	70-130/25
79-00-5	1,1,2-Trichloroethane	50	48.6	97	49.5	99	2	70-130/25
79-01-6	Trichloroethene	50	44.5	89	43.5	87	2	70-130/25
75-69-4	Trichlorofluoromethane	50	52.3	105	50.6	101	3	70-130/25
75-01-4	Vinyl chloride	50	52.6	105	51.1	102	3	70-130/25

CAS No.	Surrogate Recoveries	BSP	BSD	Limits
1868-53-7	Dibromofluoromethane	91%	92%	70-130%
2037-26-5	Toluene-D8	96%	96%	70-130%
460-00-4	4-Bromofluorobenzene	95%	96%	70-130%

^{* =} Outside of Control Limits.

6.3.1

Page 2 of 2

Method: SW846 8260B

G

Blank Spike/Blank Spike Duplicate Summary

Job Number: MC19086

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
MSK2240-BS	K68388.D	1	03/28/13	GK	n/a	n/a	MSK2240
MSK2240-BSD	K68389.D	1	03/28/13	GK	n/a	n/a	MSK2240

The QC reported here applies to the following samples:

MC19086-1, MC19086-2, MC19086-3

(a) Outside control limits. Blank Spike meets program technical requirements.

^{* =} Outside of Control Limits.

Method: SW846 8260B

Leachate Spike Summary Job Number: MC19086

TRTCTG Triton Environmental, Inc. Account: **Project:** 68 Matson Hill Road, Glastonbury, CT

ile ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
68411.D	5	03/28/13	GK	03/27/13	GP15772	MSK2240
K68394.D	1	03/28/13	GK	03/27/13	GP15772	MSK2240
	68411.D	68411.D 5	68411.D 5 03/28/13	68411.D 5 03/28/13 GK	68411.D 5 03/28/13 GK 03/27/13	68411.D 5 03/28/13 GK 03/27/13 GP15772

The QC reported here applies to the following samples:

MC19086-1, MC19086-2, MC19086-3

		MC19057-1				LS LS	
CAS No.	Compound	ug/l Q	ug/l	ug/	I	%	Limits
75 27 4	D 111 d	ND	250	071		100	70.120
75-27-4	Bromodichloromethane	ND	250	271		108	70-130
75-25-2	Bromoform	ND	250	258		103	70-130
74-83-9	Bromomethane	ND	250	272		109	70-130
56-23-5	Carbon tetrachloride	ND	250	271		108	70-130
108-90-7	Chlorobenzene	ND	250	220		88	70-130
75-00-3	Chloroethane	ND	250	281		112	70-130
67-66-3	Chloroform	ND	250	257		103	70-130
74-87-3	Chloromethane	ND	250	290		116	70-130
124-48-1	Dibromochloromethane	ND	250	272		109	70-130
95-50-1	1,2-Dichlorobenzene	ND	250	239		96	70-130
541-73-1	1,3-Dichlorobenzene	ND	250	222		89	70-130
106-46-7	1,4-Dichlorobenzene	ND	250	260		104	70-130
75-71-8	Dichlorodifluoromethane	ND	250	372	,	149* a	70-130
75-34-3	1,1-Dichloroethane	ND	250	256		102	70-130
107-06-2	1,2-Dichloroethane	ND	250	279		112	70-130
75-35-4	1,1-Dichloroethene	ND	250	238		95	70-130
156-59-2	cis-1,2-Dichloroethene	ND	250	233		93	70-130
156-60-5	trans-1,2-Dichloroethene	ND	250	233		93	70-130
78-87-5	1,2-Dichloropropane	ND	250	254		102	70-130
10061-01-5	cis-1,3-Dichloropropene	ND	250	263		105	70-130
10061-02-6	trans-1,3-Dichloropropene	ND	250	293		117	70-130
75-09-2	Methylene chloride	ND	250	250	1	100	70-130
79-34-5	1,1,2,2-Tetrachloroethane	ND	250	182		73	70-130
127-18-4	Tetrachloroethene	ND	250	236		94	70-130
71-55-6	1,1,1-Trichloroethane	ND	250	259		104	70-130
79-00-5	1,1,2-Trichloroethane	ND	250	258		103	70-130
79-01-6	Trichloroethene	17.6	250	321		121	70-130
75-69-4	Trichlorofluoromethane	ND	250	276		110	70-130
75-01-4	Vinyl chloride	ND	250	262		105	70-130
	Ž						
CAS No.	Surrogate Recoveries	LS	MC190	57-1	Lim	its	
1868-53-7	Dibromofluoromethane	93%	99%		70-1	30%	
2037-26-5	Toluene-D8	96%	93%		70-1		
460-00-4	4-Bromofluorobenzene	97%	97%		70-1		
.50 00 1	. 2. c. non do con Lone	2170	11/0		, 0 1	23/0	

^{* =} Outside of Control Limits.

Page 2 of 2

Leachate Spike Summary

Job Number: MC19086

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
GP15772-LS1	K68411.D	5	03/28/13	GK	03/27/13	GP15772	MSK2240
MC19057-1	K68394.D	1	03/28/13	GK	03/27/13	GP15772	MSK2240

The QC reported here applies to the following samples: Method: SW846 8260B

MC19086-1, MC19086-2, MC19086-3

(a) Outside control limits due to possible matrix interference. Refer to Blank Spike.

^{* =} Outside of Control Limits.

Volatile Internal Standard Area Summary

Job Number: MC19086

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

 Check Std:
 MSK2240-CC2235
 Injection Date:
 03/28/13

 Lab File ID:
 K68387.D
 Injection Time:
 09:54

 Instrument ID:
 GCMSK
 Method:
 SW846 8260B

	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
Check Std Upper Limit ^a Lower Limit ^b	219911 439822 109956	8.83 9.33 8.33	277795 555590 138898	9.68 10.18 9.18	155942 311884 77971	12.94 13.44 12.44	149670 299340 74835		41197 82394 20599	6.41 6.91 5.91
Lab Sample ID	IS 1 AREA	RT	IS 2 AREA	RT	IS 3 AREA	RT	IS 4 AREA	RT	IS 5 AREA	RT
MSK2240-BS MSK2240-BSD MSK2240-MB GP15772-LB1 MC19098-6 ZZZZZ ZZZZZ ZZZZZ ZZZZZ ZZZZZ ZZZZZ ZZZZ	225851 223195 220532 213485 201332 205324 195656 191137 194168 192823 191306 207037 201439 207083 200526 188130 189252 188080 190014 186724	8.83 8.83 8.83 8.83 8.83 8.83 8.83 8.83	284969 281634 282174 274042 258610 260956 249564 244622 247195 245420 244205 262842 261232 265661 257744 242370 241538 238266 239504 234379	9.68 9.68 9.68 9.68 9.68 9.68 9.68 9.68	157723 157516 150783 145692 141066 140310 136225 133378 134700 135206 133358 143465 140314 142505 136631 131127 133236 130535 132357 131537	12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94 12.94	151064 149065 145478 139317 135080 133754 130513 126778 127237 130080 128280 139079 137376 138075 133013 126098 127161 126024 127570 127806	15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50 15.50	36994 37233 41235 39048 40300 37918 38986 37742 35679 36919 37729 38802 40047	6.41 6.41 6.41 6.41 6.41 6.41 6.41 6.41
ZZZZZZ ZZZZZZ GP15772-LS1 MC19098-6MS MC19098-6MSD	187941 184973 195367 198574 199008	8.83 8.83 8.83 8.83 8.83	234935 231061 244588 249139 252119	9.68 9.68 9.68 9.68 9.68	133172 131709 141115 143570 144875	12.94 12.94 12.94 12.94 12.94	126979 128424 135397 135371 136628	15.50 15.50 15.50	38431 39298	6.41 6.41 6.41 6.41 6.41

IS 1 = Pentafluorobenzene IS 2 = 1,4-Difluorobenzene IS 3 = Chlorobenzene-D5 IS 4 = 1,4-Dichlorobenzene-d4 IS 5 = Tert Butyl Alcohol-D9

⁽a) Upper Limit = +100% of check standard area; Retention time +0.5 minutes.

⁽b) Lower Limit = -50% of check standard area; Retention time -0.5 minutes.

Volatile Surrogate Recovery Summary

Job Number: MC19086

Account: TRTCTG Triton Environmental, Inc.

Project: 68 Matson Hill Road, Glastonbury, CT

Method: SW846 8260B Matrix: LEACHATE

Samples and QC shown here apply to the above method

Lab	Lab			
Sample ID	File ID	S1	S2	S3
MC19086-1	K68405.D	100.0	93.0	95.0
MC19086-2	K68406.D	100.0	94.0	96.0
MC19086-3	K68407.D	100.0	94.0	95.0
GP15772-LB1	K68392.D	98.0	93.0	95.0
GP15772-LS1	K68411.D	93.0	96.0	97.0
MSK2240-BS	K68388.D	91.0	96.0	95.0
MSK2240-BSD	K68389.D	92.0	96.0	96.0
MSK2240-MB	K68391.D	99.0	93.0	95.0

Surrogate Recovery Compounds Limits

 $\mathbf{S1} = \text{Dibromofluoromethane}$ 70-130% $\mathbf{S2} = \text{Toluene-D8}$ 70-130% $\mathbf{S3} = 4\text{-Bromofluorobenzene}$ 70-130%

GC Semi-volatiles

QC Data Summaries

Includes the following where applicable:

- · Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries
- Surrogate Recovery Summaries

Method: CT-ETPH 7/06

Method Blank Summary

Job Number: MC19086

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample OP32428-MB	File ID BI19785.D	DF 1	Analyzed 03/29/13	By KN	Prep Date 03/28/13	Prep Batch OP32428	Analytical Batch GBI712

The QC reported here applies to the following samples:

MC19086-1, MC19086-2, MC19086-3, MC19086-4, MC19086-5

CAS No. Compound Result RL Units Q

CT-ETPH (C9-C36) ND 16 mg/kg

CAS No. Surrogate Recoveries Limits

84-15-1 o-Terphenyl 75% 50-137%

Method: CT-ETPH 7/06

Blank Spike Summary

Job Number: MC19086

Account: TRTCTG Triton Environmental, Inc. **Project:** 68 Matson Hill Road, Glastonbury, CT

Sample OP32428-BS	File ID BI19787.D	DF 1	Analyzed 03/29/13	By KN	Prep Date 03/28/13	Prep Batch OP32428	Analytical Batch GBI712

The QC reported here applies to the following samples:

MC19086-1, MC19086-2, MC19086-3, MC19086-4, MC19086-5

CAS No.	Compound	Spike mg/kg	BSP mg/kg	BSP %	Limits
	СТ-ЕТРН (С9-С36)	44.8	36.5	81	60-120

CAS No. Surrogate Recoveries BSP Limits

84-15-1 o-Terphenyl 79% 50-137%

^{* =} Outside of Control Limits.

Semivolatile Surrogate Recovery Summary

Job Number: MC19086

Account: TRTCTG Triton Environmental, Inc.
Project: 68 Matson Hill Road, Glastonbury, CT

Method: CT-ETPH 7/06 Matrix: SO

Samples and QC shown here apply to the above method

Lab	Lab	
Sample ID	File ID	S1 a
MC19086-1	BI19809.D	77.0
MC19086-2	BI19806.D	73.0
MC19086-3	BI19810.D	74.0
MC19086-4	BI19807.D	71.0
MC19086-5	BI19808.D	80.0
OP32428-BS	BI19787.D	79.0
OP32428-MB	BI19785.D	75.0

Surrogate Recovery Compounds Limits

S1 = o-Terphenyl 50-137%

(a) Recovery from GC signal #1

04/09/13

Technical Report for

Triton Environmental, Inc.

68 Matson Hill Road, Glastonbury, CT

103139

Accutest Job Number: MC19057R

Sampling Date: 03/15/13

Report to:

Triton Environmental, Inc. 385 Church Street Suite 201 Guilford, CT 06437 mpaulsson@tritonenvironmental.com

ATTN: Mark Paulsson

Total number of pages in report: 26

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Lab Director

Client Service contact: Matthew Morrell 508-481-6200

Certifications: MA (M-MA136,SW846 NELAC) CT (PH-0109) NH (250210) RI (00071) ME (MA00136) FL (E87579) NY (11791) NJ (MA926) PA (6801121) ND (R-188) CO MN (11546AA) NC (653) IL (002337) WI (399080220) ISO 17025:2005 (L2235)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

New England • 495 Tech Center West • Building 1 • Marlborough, MA 01752 • tel: 508-481-6200 • fax: 508-481-7753 • http://www.accutest.com ACCUTEST

MC19057R LABORA

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	
Section 3: Summary of Hits	3
Section 4: Sample Results	
4.1: MC19057-12R: TB-318(2-4')	
4.2: MC19057-13R: TB-319(2-4')	
4.3: MC19057-14R: TB-320(4-6')	
Section 5: Misc. Forms	10
5.1: Chain of Custody	11
5.2: RCP Form	
5.3: Sample Tracking Chronicle	15
Section 6: Metals Analysis - QC Data Summaries	
6.1: Prep OC MP20735: Cd	

Sample Summary

Triton Environmental, Inc.

Job No:

MC19057R

68 Matson Hill Road, Glastonbury, CT Project No: 103139

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID	
MC19057-1	2R03/15/13	14:10 DSM	03/19/13	so	Soil	TB-318(2-4')	
MC19057-1	3R03/15/13	13:30 DSM	03/19/13	so	Soil	TB-319(2-4')	
MC19057-1	4R03/15/13	13:55 DSM	03/19/13	SO	Soil	TB-320(4-6')	

SAMPLE DELIVERY GROUP CASE NARRATIVE

Client: Triton Environmental, Inc.

Job No

MC19057R

Site:

68 Matson Hill Road, Glastonbury, CT

Report Date

4/9/2013 2:15:36 PM

3 Sample(s), 0 Trip Blank(s) and 0 Field Blank(s) were collected on 03/15/2013 and were received at Accutest on 03/19/2013 properly preserved, at 1.1 Deg. C and intact. These Samples received an Accutest job number of MC19057R. A listing of the Laboratory Sample ID, Client Sample ID and dates of collection are presented in the Results Summary Section of this report.

Except as noted below, all method specified calibrations and quality control performance criteria were met for this job. For more information, please refer to QC summary pages.

Metals By Method SW846 6010C

Matrix: LEACHATE

Batch ID: MP20735

- * All samples were digested within the recommended method holding time.
- * All samples were analyzed within the recommended method holding time.
- All method blanks for this batch meet method specific criteria.
- Sample(s) MC19057-12RMS, MC19057-12RMSD, MC19057-12RSDL were used as the QC samples for metals.
- RPD(s) for Serial Dilution for Cadmium are outside control limits for sample MP20735-SD1. Percent difference acceptable due to low initial sample concentration (< 50 times IDL).
- Only Cadmium requested.

The Accutest Laboratories of New England certifies that all analysis were performed within method specification. It is further recommended that this report to be used in its entirety. The Accutest Laboratories of NE, Laboratory Director or assignee as verified by the signature on the cover page has authorized the release of this report (MC19057R).

Summary of Hits

Job Number:

MC19057R

Account:

Triton Environmental, Inc.

Project:

68 Matson Hill Road, Glastonbury, CT

Collected:

03/15/13

Page 1 of 1

Lab Sample ID Client Sample ID Result/
Analyte Qual RL MDL Units Method

MC19057-12R TB-318(2-4')

No hits reported in this sample.

MC19057-13R TB-319(2-4')

No hits reported in this sample.

MC19057-14R TB-320(4-6')

No hits reported in this sample.

Sample Results	· · · · · · · · · · · · · · · · · · ·
Report of Analysis	

Lab Sample ID:

Client Sample ID: TB-318(2-4')

Matrix:

MC19057-12R

SO - Soil

Date Sampled: 03/15/13

Date Received: 03/19/13

Percent Solids: n/a

Project:

68 Matson Hill Road, Glastonbury, CT

Metals Analysis, SPLP Leachate SW846 1312

Analyte Result MCL RL

Units DF

Analyzed By Prep

Method

Prep Method

Cadmium

< 0.0040

0.0040 mg/l

04/06/13 04/08/13 EAL SW846 6010C ¹ SW846 3010A ²

(1) Instrument QC Batch: MA15430 (2) Prep QC Batch: MP20735

RL = Reporting Limit

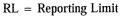
MCL = Maximum Contamination Level (not available)

Report of Analysis

Page 1 of 1

Client Sample ID: TB-319(2-4') Lab Sample ID: MC19057-13R Matrix: SO - Soil

Date Sampled: 03/15/13 Date Received: 03/19/13


Project: 68 Matson Hill Road, Glastonbury, CT Percent Solids: n/a

Metals Analysis, SPLP Leachate SW846 1312

Prep Method MCL RL Units DF Prep Analyzed By Method Analyte Result

04/06/13 04/08/13 EAL SW846 6010C 1 SW846 3010A 2 0.0040 mg/lCadmium < 0.0040

(1) Instrument QC Batch: MA15430 (2) Prep QC Batch: MP20735

Lab Sample ID:

Client Sample ID: TB-320(4-6') MC19057-14R

SO - Soil

Date Sampled: 03/15/13

Date Received: 03/19/13

Matrix: Project:

68 Matson Hill Road, Glastonbury, CT

Percent Solids: n/a

Metals Analysis, SPLP Leachate SW846 1312

Analyte

Result

MCL RL

Units DF

Prep

Analyzed By

Method

Prep Method

Cadmium

< 0.0040

0.0040 mg/l

04/06/13 04/08/13 EAL SW846 6010C 1 SW846 3010A 2

(1) Instrument QC Batch: MA15430

(2) Prep QC Batch: MP20735

Misc. For	rms		a.a	refuggered, and the second second second	
Custody D	ocuments	and Othe	r Forms		

Includes the following where applicable:

- Chain of Custody
- RCP Form
- Sample Tracking Chronicle

CHAIN OF CUSTODY Accutest Laboratories of New England

PAGE __OF _2

LABORATO	RIEE	495 Technology Center West, Building One TEL. 508-481-6200 FAX: 508-481-7753				ne			reor	X Traci	ang #			18:	Bisite Order Control #					
		113			cutest.		01-//2	3			Accut	est Duot	0#			Ac	culest Job	'm	190	257R
Client / Reporting Information	/	v 2015-3410488	Pro	iect in	formati	on	W.A.E.	3.76		105, 330		ъ.	nuart	ad An	elizate f	on TES	T COD	E sheet)		Matrix Codes
Company Name	Project Name	A 1 11	M D	1				*****	2000000		1	10	T	T	1	T T	7, 500	Lancoy	TH	Iviatrix Codes
Tr.ton Enuranmenta	I Inc 68 A	latson H	IN Roc	<u>ol</u>							_	1 7	$\ \setminus$					ĺ		DW - Drinking Water GW - Ground Water
		L H	illRoce	1	<u> </u>	10/19/19/19/5/5	Sections:	Superior (<u> </u>	daugrapiani i	74	_	1 4	S			1	-		WW - Water
385 Church 8tree	Zip City:	11300 11	1111000	Com	Billing Ir pany Nam		n (If dif	feren	t from	Report to)	┥.,	م ا		131		ł				SW - Surface Water SO - Soil
Cuilford CT 060 Project Contact mon Jerman E-mail	137 Ghst	above o	CT								10		J	Ŋ						SL- Sludge SED-Sediment
Project Contact Mpaulsson E-mail @ tritonen vironmento	Project#	136		Stree	al Address						ر ا	1	10							01-08
@ tritorien vi conmersta	I.com OS	139] =		UV	M				ĺ		LIQ - Other Liquid AIR - Air
203-458-7200 203-49	8-2011 10	3139PC	12	City			Sta	ie.		Zip	1		الع ال							SOL - Other Solid WP - Wipe FB-Field Blank
Sampler(s) Name(s) Phone		Ω .		Alten	ition:			P	O#	· · · · · · · · · · · · · · · · · · ·	74		TP							EB - Equipment Blank
Day Miller/Mark Rulson 203-	158-720 Mar	Paulsson	*		·		-				17	1	111	1						RB- Rinse Blank TB-Trip Blank
	•		Collection	·	1		N	mber	d preserve		10	1	I.							
Acodest				Sampled	,	1	- E	8 3	NONE	MEOH	e v	l d	讨区						1	
Sample # Field ID / Point of Collection	MECHIOI Vial #	Date	Time	try		# of bottles	¥ 2	Ž 9	NONE	MEOH	5	17	TE							LAB USE ONLY
-1 TB-301 (U-Z)		3/15/13	930	054	50	1				X	×		İ							
-2 TB-301(2-4)		' -	940	DSV		i				1	×	Г	T	T		T				
-3 TB-302 (0-2')			945	1		1		7	\top	1	×		1	1						1
-4 TB -303 (0-2)			9:50		$\dagger \dagger$	1		+	11		X		1	 				+		1
-5 TB-311 (5-7)			10230	-	╁┼	 	+++	+	++	7	T.	-	┼	┼	╁╾┼	+	+	+		
/ 8- 3// 13-/			10:45	H-	$\vdash \vdash$	1	\vdash	+	++	×	-		 	├	+			+		-
7 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				 			$\overline{\square}$	4-	+-		X	-	↓		-			1		
			11:65	Ц		1	Ш	_	11	×	×		<u> </u>							
-8 +B-314(0-2)			11:25			1		\perp		>	×									
-9 + B-3/5 (0-2)			11:55			1				X	×									EN2,10A
-10 + B- 316(0-2)	1	4	12:50		L	ì		Т	П	×	×							\top	\neg	1-19-71-11
-11 +B-317(2-4)			17:45		50	1		\top	\Box	X	×	63	1	1		\dashv	_	1	-	
-12 TB-3/8/2-47			14:10	16/		·		1	7	$\dagger \dagger \dagger$	1~	W	×	1		-		+-+	-	
1 3 9, 9, 5, 4		7,3,3,	2001	سرن	F	Data	Deliver	able I	nforma	tion		Pilas			Col	nments	/ Spec	ial Instru	uctions	1
Turnaround Time (Business days)	Approved By (Acc	rtest PM): / Deta:				ial "A" (L				YASP Cate			Ι.							
Std. 10 Business Days Std. 5 Business Days (By Contract only						ial "B" (L: Levei 3+4				YASP Cate	gory B		=	1CC	<u>re S</u>	Gre	720	تصد	<u>3/15</u>	113
5 Day RUSH	n				FULLIT (STRCP	Level 3+4	1		-	tate Forms DD Format			2	1	17.	`OC	ر ر			1
3 Day EMERGENCY	***************************************		Ì		MA MCP					ther			-	1				1		7.
2 Day EMERGENCY	27					Commerci			,				本	loked	16	ur :	500	465 6	en fer	ther
1 Day EMERGENCY Emergency & Rush T/A date available VIA Lablink	% Solids					Commerci	ai "B" = R	esults	+ QC S	mmany					4555.					
STREET, STREET IN DEED SYSTEMS VIA CROUNK	San	ple Custody mus	t be docume	ented be	low eac	h time sa	mples c	hang	e posš	ssjon, in	cluding	couri			70.3.	200	215000	Janes La		
	Date Time:	Received By:					Relicquis	d By	F	X				Date Tin	143	Rece	ived By:		سنست <i>جوج</i> ر	
1) a/ 9/10000	3/15/13/70	1 Troten	tra	9 C			2/1	乂	SZ.					3-	19/3	2	92			
Relinquished by Sampler:	3-19-13 78	Received By:	€-				Relinquist	ed By:						Date Tin	ne:	Rece	lveo By:	,- 2	-	
		Received By:					Gustady S	t Jee		П	intacl	•	Prosec	ed wheen	applicable	4		On toe		
5		5								ō	Not intac				pproceeding			A Los	toole	rr Temp.

MC19057R: Chain of Custody

Page 1 of 3

MC19057R: Chain of Custody Page 2 of 3

mc 19057R

Matt Morrell

From: Patrick Merolla

Thursday, April 04, 2013 11:50 AM Sent:

Matt Morrell <u>1</u>0:

Reza Tand

Subject: Triton - additional analysis

Mark Paulsson at Trtion needs some additional analysis run on his samples:

TB318: 2-4 - 12 RB319: 2-4 - 13

TB320: 4-6 - 14

He needs SPLP Cadium run. Can we do this in the 5 business day tat? Any thing else you need from me?

ΉX

New England | 50 D'Angelo Drive | Marlborough, MA 01752

Cell (860) 377-6588

patrickin@accutest.com | www.accutest.com Accutest - "The National Testing Laboratory with Total Performance you can count an"

MC19057R: Chain of Custody

Page 3 of 3

4/4/2013

Reasonable Confidence Protocol Laboratory Analysis QA/QC Certification Form

Accutest New England Laboratory Name:

Client:

Triton Environmental, Inc.

Project Location:

68 Matson Hill Road, Glastonbury, CT

Project Number:

103139

Sampling Date(s):

3/15/2013

Laboratory Sample ID(s):

MC19057-12R, MC19057-13R, MC19057-14R

SW846 6010C Methods:

Methods:	SW846 6010C	приначеники ю	*****		
1	For each analytical method referenced in this laboratory report package, were all specified QA/QC performance criteria followed, including the requirement to explain any criteria falling outside of acceptable guidelines, as specified in the CTDEP method-specific Reasonable Confidence Protocol documents)?	Yes	<u>17</u>	No	<u>r</u>
1A	Where all the method specified preservation and holding time requirements met?	Yes	<u> </u>	No	Ľ.
1B	VPH and EPH mehods only: Was the VPH or EPH method conducted without significant modifications (See section 11.3 of respective methods)	Yes		No	<u></u>
2	Were all samples received by the laboratory in a condition consistent with that described on the associated chain-of-custody document(s)?	Yes	7	No	<u></u>
3	Were samples received at an appropriate temperature (<6° C)?	Yes	<u>17</u>	No	
4	Were all QA/QC performance criteria specified in the CTDEP Reasonable Confidence Protocol documents achieved?	Yes	<u>v</u>	No	
5	a) Were reporting limits specified or referenced on the chain-of-custody?	Yes	17	No	Ľ
	b) Were these reporting limits met?	Yes	<u>17</u>	No	Ľ
6	For each analytical method referenced in this laboratory report package, were results reported for all constituents identified in the method-specific analyte lists presented in the Reasonable Confidence Protocol documents?	Yes	二	No	Œ
7	Are project-specific matrix spikes and laboratory duplicates included in this data set?	Yes	<u> 7</u>	No	

Note: For all questions to which the response was "No" (with the exception of question #7), additional information must be provided in an attached narrative. If the answer to question #1, #1A or #1B is "No", the data package does not meet the requirements for "Reasonable Confidence".

I, the undersigned, attest under pains and penalties of perjury that, to the best of my knowledge and belief and based upon my personal inquiry of those responsible for providing the information contained in this analytical report, such information is accurate and complete.

Authorized

Signature:

Position: Lab Director

4/9/2013 Printed Name: Reza Tand Date:

Accutest New England

14 of 26

Internal Sample Tracking Chronicle

Triton Environmental, Inc.

68 Matson Hill Road, Glastonbury, CT Project No: 103139

Tob	No:	MC1	9057	'n
100	INO:	IVICI	JUJ 1	Ľ

Sample Number	Method	Analyzed	Ву	Prepped	Ву	Test Codes
MC19057- TB-318(2-	129ollected: 15-MAR-13 4')			ved: 19-MAR	2-13	By:
MC19057-	129W846 6010C	08-APR-13 14:10	EAL	06-APR-13	SA	ECD
MC19057- TB-319(2-	139ollected: 15-MAR-13 4')	13:30 By: DSM	Recei	ved: 19-MAR	L-13	Ву:
MC19057-	139W846 6010C	08-APR-13 14:36	EAL	06-APR-13	SA	ECD
MC19057- TB-320(4-	14Gollected: 15-MAR-13 6')			ved: 19-MAR		
MC19057-	149W846 6010C	08-APR-13 14:40	EAL	06-APR-13	SA	ECD

4	80	ıR	A	го	A I	ı E	5									

5)

QC Data Summaries

Metals Analysis

Includes the following where applicable:

- Method Blank Summaries
- Matrix Spike and Duplicate Summaries
- Blank Spike and Lab Control Sample Summaries
- Serial Dilution Summaries

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC19057R Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20735 Matrix Type: LEACHATE

Methods: SW846 6010C Units: mg/l

Prep Date:

04/06/13

Metal	RL	IDL	MDL	MB raw	final
Aluminum	0.20	.012	.04		***************************************
Antimony	0.0060	.0011	.0019		
Arsenic	0.010	.0017	.0029		
Barium	0.50	.00032	.00081		
Beryllium	0.0040	.0001	.00025		
Boron	0.10	.0011	.0014		
Cadmium	0.0040	.00025	.0005	0.00040	<0.0040
Calcium	5.0	.021	.038		
Chromium	0.010	.00048	.0014		
Cobalt	0.050	.00029	.0004		
Copper	0.025	.00093	.007		
Gold	0.050	.0015	.005		
Iron	0.10	.0035	.02		
Lead	0.010	.0012	.0017		
Magnesium	5.0	.03	.059		
Manganese	0.015	.00016	.00081		
Molybdenum	0.10	.00031	.00077		
Nickel	0.040	.00045	.00057		
Palladium	0.050	.0022	.0076		
Platinum	0.050	.0064	.014		
Potassium	5.0	.054	.16		
Selenium	0.025	.0017	.0048		
Silicon	0.10	.002	.045		
Silver	0.0050	.00081	.001		
Sodium	5.0	.016	.06		
Strontium	0.010	.00012	.00026		
Thallium	0.0050	.0012	.0019		
Tin	0.10	.00087	.0014		
Titanium	0.050	.00066	.0018		
Tungsten	0.10	.0093	.016		
Vanadium	0.010	.00082	.0028		
Zinc	0.10	.00045	.0005		
Zirconium	0.050	.00045	.0022		

BLANK RESULTS SUMMARY Part 2 - Method Blanks

Login Number: MC19057R Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20735 Matrix Type: LEACHATE

Methods: SW846 6010C

Units: mg/l

Prep Date:

Metal

Associated samples MP20735: MC19057-12R, MC19057-13R, MC19057-14R

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $% \left(\frac{1}{2}\right) =0$ (anr) Analyte not requested

Login Number: MC19057R Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20735 Matrix Type: LEACHATE

Methods: SW846 6010C Units: mg/l

Prep Date:

04/06/13

Metal	MC19057-12R Original MS	Spikelot MPICP % Rec	QC Limits
Aluminum			
Antimony			
Arsenic			
Barium			
Beryllium			
Boron			
Cadmium	0.00040 0.53	0.50 105.9	75-125
Calcium			
Chromium			
Cobalt			
Copper			
Gold			
Iron			
Lead			
Magnesium			
Manganese			
Molybdenum			
Nickel			
Palladium			
Platinum			
Potassium			
Selenium			
Silicon			
Silver			
Sodium			
Strontium			
Thallium			
Tin			
Titaníum			
Tungsten			
Vanadium			
Zinc			
Zirconium			

Login Number: MC19057R Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20735 Matrix Type: LEACHATE

Methods: SW846 6010C

Units: mg/l

Prep Date:

Metal

Associated samples MP20735: MC19057-12R, MC19057-13R, MC19057-14R

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

Login Number: MC19057R Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20735 Matrix Type: LEACHATE

Methods: SW846 6010C Units: mg/l

Prep Date:

04/06/13

Metal	MC19057-12R Original MSD	Spikelot MPICP % Rec	MSD RPD	QC Limit	
Aluminum					
Antimony					
Arsenic					
Barium					
Beryllium					
Boron					
Cadmium	0.00040 0.53	0.50 105.9	0.0	20	
Calcium					
Chromium					
Cobalt					
Copper					
Gold					
Iron					
Lead					
Magnesium					
Manganese					
Molybdenum					
Nickel					
Palladium					
Platinum					
Potassium					
Selenium					
Silicon					
Silver					
Sodium					
Strontium					
Thallium					
Tin					
Titanium					
Tungsten					
Vanadium					
Zinc					
Zirconium					

Login Number: MC19057R Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20735 Matrix Type: LEACHATE

Methods: SW846 6010C Units: mg/l

Prep Date:

Metal

Associated samples MP20735: MC19057-12R, MC19057-13R, MC19057-14R

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits (N) Matrix Spike Rec. outside of QC limits

(anr) Analyte not requested

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: MC19057R Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20735 Matrix Type: LEACHATE

Methods: SW846 6010C Units: mg/l

Prep Date:			04/06/1	.3		04/06/13			
Metal	BSP Result	Spikelot MPICP	% Rec	QC Limits	BSD Result	Spikelot MPICP	% Rec	BSD RPD	QC Limit
Aluminum							***************************************		
Antimony									
Arsenic									
Barium									
Beryllium									
Boron									
Cadmium	0.53	0.50	106.0	80-120	0.52	0.50	104.0	1.9	20
Calcium									
Chromium									
Cobalt									
Copper									
Gold									
Iron									
Lead									
Magnesium									
Manganese									
Molybdenum									
Nickel									
Palladium									
Platinum									
Potassium									
Selenium									
Silicon									
Silver									
Sodium									
Strontium									
Thallium									
lin .									
Titanium									
fungsten									
Vanadium									
Zinc									
Zirconium									

SPIKE BLANK AND LAB CONTROL SAMPLE SUMMARY

Login Number: MC19057R Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20735 Matrix Type: LEACHATE

Methods: SW846 6010C

Units: mg/l

Prep Date:

Metal

Associated samples MP20735: MC19057-12R, MC19057-13R, MC19057-14R

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits $% \left(\frac{1}{2}\right) =0$ (anr) Analyte not requested

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC19057R Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

Methods: SW846 6010C Units: ug/l

QC Batch ID: MP20735

Matrix Type: LEACHATE

Pre	ep Date:		04/06/1	13	
Met	al	MC19057-12R Original SDL 1:5	%DIF	QC Limits	

Aluminum

Antimony

Arsenic

Barium

Beryllium

Boron

Cadmium

0.400 0.00 100.0(a) 0-10

Calcium

Chromium

Cobalt

Copper

Gold

Iron

Lead

Magnesium

Manganese

Molybdenum

Nickel

Palladium

Platinum

Potassium

Selenium

Silicon

Silver

Sodium

Strontium

Thallium

Tin

Titanium

Tungsten

Vanadium

Zinc

Zirconium

SERIAL DILUTION RESULTS SUMMARY

Login Number: MC19057R

Account: TRTCTG - Triton Environmental, Inc. Project: 68 Matson Hill Road, Glastonbury, CT

QC Batch ID: MP20735 Matrix Type: LEACHATE Methods: SW846 6010C

Units: ug/l

Prep Date:

Metal

Associated samples MP20735: MC19057-12R, MC19057-13R, MC19057-14R

Results < IDL are shown as zero for calculation purposes (*) Outside of QC limits

(anr) Analyte not requested

(a) Percent difference acceptable due to low initial sample concentration (< 50 times IDL).

Appendix E PID Action Levels – Compounds with Ionic Potential

APPENDIX E PID Action Levels - Compounds with Ionic Potential

				RAE Correction		PID Action	PID Action
				Factor		Level (10.6 eV)	Level (11.7 eV)
Compound Name	CAS No.	Formula	10.6 (eV)	11.7 (eV)	Limit	(ppm)	(ppm)
Mixtures							
Gasoline ²	8006-61-9	m.w. 93	1.0	0.47	300	300.00	638.30
Diesel Fuel ²	68334-30-5	m.w. 216	0.7	0.35	12	18.18	34.29
Mineral spirits (Stoddard Solvent)	8020-83-5	m.w. 144	0.71	0.39	500	704.23	1282.05
Individual Chemicals							
Dichloroethene, c-1,2-	156-59-2	C2H2C12	0.8		200	250.00	NA
Naphthalene	91-20-3	C10H8	0.42	0.40	10	23.81	25.00
Tetrachloroethylene (PCE)	127-18-4	C2Cl4	0.57	0.31	100	175.44	322.58
Trichloroethylene (TCE)	79-01-6	C2HCl3	0.54	0.43	100	185.19	232.56

Notes:
Unless otherwise noted, Exposure Limits are taken from Table Z-1 of OSHA regulations at 1910.1000.
Correction factors provided by RAE Systems
1. Exposure limit taken rom Table Z-2 of OSHA regulations at 1910.1000.
2. Exposure limit taken from ACGIH Time Weighted Average

Page 1 of 1 Triton Environmental, Inc.