

Stormwater Management Report

Main Street Mixed-Use Development

2283-2389 Main Street, Glastonbury, CT

Prepared For:

Town of Glastonbury

2155 Main Street Glastonbury, CT 06033

Prepared By:

Benesch

120 Hebron Avenue, Floor 2 Glastonbury, CT 06033 www.benesch.com P 860-633-8341

Issued:

IWWC: July 2024

TABLE OF CONTENTS

1	INT	RODU	CTION	4
	1.1	Gener	al Information	4
	1.2	Projec	t Summary	5
	1.3	Existir	ng Site Conditions	5
		1.3.1	Topography	5
		1.3.2	Soils	5
		1.3.3	On-site and Adjacent Waterbody Information	5
		1.3.4	Additional Site Considerations	6
2	HYC	DROLO	GY	6
	2.1	Metho	odology	6
	2.2	Existir	ng Conditions	7
		2.2.1	Watershed Boundaries and Design Points.	7
	2.3	Propo	sed Conditions	7
		2.3.1	Watershed Boundaries and Design Points	7
	2.4	Comp	liance with Performance Criteria	9
		2.4.1	Compliance with Local Criteria	9
		2.4.2	Compliance with Connecticut Stormwater Quality Manual	9
3	HYC	DRAUL	ICS	10
	3.1	Comp	liance with Performance Criteria	10
		3.1.1	Compliance with Local Criteria	
		3.1.2	Compliance with State Criteria	
4	WA		UALITY	11
	4.1	Metho	odology	11
	4.2	Comp	liance with Performance Criteria	11
		4.2.1	Compliance with Local Criteria	
		4.2.2	Compliance with Connecticut Stormwater Quality Manual	
5	SOI	L EROS	SION AND SEDIMENT CONTROL	12
	5.1	Metho	odology	12
6	OPE	RATIC	N AND MAINTENANCE	14
	6.1	Inspec	ction Frequency and Criteria	14

Benesch 120 Hebron Avenue, Floor 2 Glastonbury, CT 06033 www.benesch.com

- **APPENDIX A** Existing Watershed Data
- APPENDIX B Proposed Watershed Data
- **APPENDIX C** Hydraulic Analysis
- **APPENDIX D** Water Quality Computations
- **APPENDIX E** Standpipe Data and Test Pit Evaluation Report
- APPENDIX F NOAA Rainfall Data
- APPENDIX G NRCS Soil Survey
- **APPENDIX H** Grading & Drainage Plan

Benesch 120 Hebron Avenue, Floor 2 Glastonbury, CT 06033 www.benesch.com

Main Street Mixed-Use Development

(Schematic Street View Rendering – By Others)

2283-2389 Main Street

Glastonbury, CT 06033

Main Street Commercial Development - Stormwater Management Report 3

1 INTRODUCTION

1.1 General Information

The property is situated at 2283-2389 Main Street in downtown Glastonbury, Connecticut (Town Center Zone). It consists of several properties, approximately 4.90 acres of proposed development, and is currently occupied by a mixture of commercial businesses including Brides to Be, Liquid Nirvana, Cycling Concepts, and Daybreak Coffee Roasters. The project proposes a mixed-use of commercial restaurants and residential apartment units which will be elevated on structural pylons. Paved parking will be located beneath the buildings and plaza which will be accessible via multiple elevators and stairwells. The site is bordered to the north by Welles-Turner Memorial Library, to the east by Main Street, wetlands to the west (on and past the property), and Glastonbury Riverfront Park Walk to the south.

Site Location Map

The project was designed utilizing the Town of Glastonbury Zoning Regulations, the 2002 Connecticut Department of Transportation (ConnDOT) Drainage Manual for pipe sizing, the latest Connecticut Guidelines for Soil Erosion and Sediment Control, and the latest Connecticut Department of Energy and Environmental (CT DEEP) Water Quality Manual.

1.2 Project Summary

This project proposes to:

- Selectively demolish the existing buildings and amenities located in the main lot.
- Construct a parking garage, mixed-use building(s), and additional site improvements.
- Provide adequate site drainage and water quality.
- Provide ADA accessibility and parking.
- Construct / Rehabilitate utility connections to the existing buildings and proposed building(s).
- Interconnect the existing businesses located on the subject properties.

The project will disturb approximately 4.90 acres.

1.3 Existing Site Conditions

1.3.1 Topography

Flow from the existing site, and the immediately surrounding lots, to the north and south, drain to a large, wooded wetlands system located west of the proposed development via sheet flow and multiple drainage culverts deriving from the site and Main Street. There is an existing drainage network routed around the existing Liquid Nirvana Building and outlets through a 15" RCP in the wetlands. There is another 36" storm trunkline between Cycling Concepts and Daybreak Coffee Roasters that only takes in drainage from Main Street, which also outlets in the wetlands.

1.3.2 Soils

NRCS soils mapping indicates 4 soil types located within the project limits; defined as:

- 15 Scarboro Muck Hydrologic Soil Group A/D
- 36B Windsor Loamy Sand Hydrologic Soil Group A
- 236B Windsor-Urban Land Complex Hydrologic Soil Group A
- 307 Urban Land Hydrologic Soil Group D

1.3.3 On-site and Adjacent Waterbody Information

There is a large wetlands system located on the western portion of the property, that will not be disturbed, and outlets to the Connecticut River. Approximately 50% of the subject properties are located within the wetlands. For purposes of water quality and direct impervious area calculations (DCIA), the subject parcels were only considered from the north, south, and eastern property lines up to the wetland limits. All flow from this site will be discharged to the wetlands and existing drainage patterns from Main Street, entering the wetlands, will be maintained. This portion of the Connecticut River is considered an impaired waterbody for habitat for fish and other aquatic life and wildlife. It is has

not been accessed for drinking water use, but it is classified for fish consumption and recreation. There is only one location in Glastonbury considered an Aquifer Protection Area, per Glastonbury, CT Map (December 23, 2021) and this site is not located near that area, though is upstream the Connecticut River of said area. (approximately 4 miles upstream, direct horizontal distance from site)

1.3.4 Additional Site Considerations

- The site is currently serviced by gravity sewer connections and domestic water service.
- A majority of existing soils have limiting exfiltration characteristics due to being designated as Urban Land per NRCS, a large portion of the site is classified as Scarboro Muck, but is described as Hydrologic Soil Group A/D, with underlying soils being comprised of sandy and gravelly loam.
- The site is not located within a Natural Diversity Database Area, per Glastonbury, CT Map, (June 2024)

2 HYDROLOGY

2.1 Methodology

The analysis to determine peak flows generated from the site was prepared using TR-55 procedures for calculating peak rates of runoff resulting from precipitation events and procedures for developing runoff hydrographs. HydroCAD software was utilized to perform hydrologic computations. Rainfall Frequency Estimates for precipitation frequency, based on National Oceanic and Atmospheric Administration (NOAA) data from 2300+/- Main Street, Glastonbury, CT, were utilized to generate the flows. The following 24-hour, precipitation estimates were utilized:

2-Year	3.10 inches
10-Year	4.88 inches
25-Year	5.99 inches
100-Year	7.70 inches

Design Storm Type: NOAA, 24-hour Type D

Project Type: Demolition, Rehabilitation, and New Construction

2.2 Existing Conditions

2.2.1 Watershed Boundaries and Design Points.

Drainage from the existing site is contained within two (2) watersheds for analysis:

- Watershed E1 (Flow to Wetlands): This watershed consists of the majority of the subject property. All flow under existing conditions consists of untreated sheet flow directly into the wetlands or untreated pipe flow from the one (1) existing drainage system on site. This large wetlands system eventually discharges into the Connecticut River. The cover characteristics of the watershed consist of mostly dilapidated concrete, gravel, smaller grass areas, and roofs. There are some portions of wooded areas on site which are located between the impervious surfaces and the wetlands, and there are very minimal landscape features and plantings currently present on site. The soil characteristics of the site consist of Urban Land (HSG D), Scarboro Muck (HSG A/D), and Windsor-Urban Land Complex (HSG A) which makes up a very small percentage of this watershed.
- Watershed E1A (Flow to Wetlands from Off-Site Improvements): This watershed consists of the location of off-site improvements that has been included in the scope of this project and also discharges to the wetlands located east of the site. It's cover characteristics include various conditions of existing bituminous pavement, grassed areas, some landscaping, and wooded areas abutting the trail head near the wetlands. The soil characteristics of this watershed consists of mostly Windsor-Urban Land Complex (HSG A) and some small portion of Urban Land (HSG D) and Scarboro Much (HSG (A/D).

Existing Watershed Data (Existing Cover Characteristics, Existing Watershed Area Map, and Hydrologic Computations) have been included in Appendix A.

2.3 **Proposed Conditions**

2.3.1 Watershed Boundaries and Design Points

This project proposes to provide water quality in the form of water quality. The large bioretention area (Bioretention Area 1) located on the western portion of the site has adequate storage volume to treat all stormwater on site based on the town of Glastonbury 50% reduction in credit for an existing site containing 40% or more DCIA. Peak flow reduction is met using the individual bioretention area and the proposed dry-wells have not been accounted for peak flow reduction.

Drainage from the proposed site is contained within six (6) watersheds for analysis:

- Watershed P1-1 (Flow to Bioretention Area 1): This watershed consists of all flow being discharged into Bioretention Area 1, either by sheet flow through the proposed leak-offs or through pipe flow being collected from the plaza area and in the parking garage. The cover characteristics are a combination of paved driving surfaces, impervious walkways and plaza areas, grassed and landscaped areas, and the large mixed-use building(s). The discharge from the bioretention area will consist of exfiltration and two broad-crested riprap weirs before discharging into the wetlands. All soils in this watershed consists of HSG A/D and D. This bioretention area will provide sufficient water quality volume before being discharged to the wetlands and will be pretreated with 4ft deep sump catch basin before being discharged to the bioretention area.
- Watershed P1-2 and P1-3 (Flow to Wetlands): This watershed consists of all flow being discharged into the wetlands through a concentrated pipe flow and curbed leak-offs. The cover characteristics consist of paved driving surfaces, impervious walkways, grassed and landscaped areas, as well as building coverage (Daybreak Coffee and Main Street Office Center, LLC). The system will be treated by a shallow drywell and deep sump catch basins (4ft) and the leak-offs will be treated via a modified riprap stone filter strip followed by a landscaped vegetated buffer strip. All soils in this watershed consists of HSG A/D and D.
- Watershed P1-4 (Flow to Wetlands): This watershed consists of sheet flow through curb cut leak-offs that will be treated via a modified riprap stone filter strip before discharging into the wetlands. It's cover characteristics consists of paved driving surfaces, grassed, and landscaped areas. It's soil characteristics consists of all HSG A/D and D.
- Watershed P1-5 (Direct Flow to Wetlands): This watershed consists of the small strip located between the wetlands and Bioretention Area 1. It consists of all wooded areas directly sheet flowing into the wetlands and will be mostly undisturbed throughout construction only including minimal grading, the entire watershed is comprised of Scarboro Muck, HDG A/D.
- Watershed P1-6 (Offsite Improvements Flow to Wetlands): This watershed consists of a small portion located outside of the main development (parking garage, building(s), and plaza area). The proposed work in this area will include a rehabilitated parking area for the trail-head and driveway access to the back (west) of the site. All flow from impervious driving surfaces within this watershed will be treated via two drywells before discharging into the wetlands. These drywells were not accounted for in peak-flow reduction. It's soil characteristics consist mostly of HSG A with small portions of A/D and D soils.

Proposed Watershed Data (Proposed Cover Characteristics, Proposed Watershed Area Map, and Hydrologic Computations) have been included in Appendix B.

2.4 Compliance with Performance Criteria

2.4.1 Compliance with Local Criteria

This project has been designed per the Town of Glastonbury's Stormwater Management Regulations. Furthermore, water quality measures have been provided for the proposed development, where no such measures are in place today.

2.4.2 Compliance with Connecticut Stormwater Quality Manual

2.4.2.1 Standard 1 – Runoff Volume Reduction

The method of analysis for this stormwater management system is providing site specific peak runoff volume reduction for the 2, 10, 25, or 100-year Type NOAA, 24-hr Type D storm.

Low impact development practices have been implemented throughout this stormwater management design utilizing a series of treatment practices to remove temporarily suspended solids from the discharge location. Under existing conditions there are no structural stormwater appurtenances, this includes anything regarding the treatment of site discharge. The proposed site will greatly reduce or remove the possibility of any watercourse impairment being generated by this property. LID practices that are being used on this site to improve the quality of discharged stormwater include:

- Catch Basin Sumps and Deep Sumps These structures are located upstream of the water quality treatment basin and drywells and will act as pre-treatment, removing larger debris and floatable prior to entering the separator. This will allow reduced maintenance of the treatment basin and reduced routine maintenance of the storm drainage system.
- Water Quality Volume Storage and Infiltration Since this site is currently over 40% directly connected impervious, we are storing over 50% of the total required volume in Bioretention Area 1. (Per 'Notice to Engineer Regarding Water Quality Volume and MS4 Permit Tracking Requirements' Town of Glastonbury) This storage volume will allow for temporary suspended solids and pollutants to be filtered out of the stormwater before being discharged to the wetlands.

Peak Flow Comparison

Watershed	Storm Event (NOAA Type D)	Discharge Existing (cfs)	Discharge Proposed (cfs)	Δ (%)
	2-year	10.32	3.11	69.86%
Total Site	10-year	18.38	17.36	5.55%
1 otal Site	25-year	23.44	23.16	1.19%
	100-year	31.24	31.24	0.00%

Peak flows at the off-site analysis point are as follows:

As shown, total site peak flows will be reduced or maintained under proposed conditions for all design storms.

2.4.2.2 Standard 2 – Stormwater Runoff Quantity Control

See Peak Flow Comparison above.

3 HYDRAULICS

The intent of the hydraulic analysis is to ensure that proposed on-site drainage facilities are designed to accommodate and safely convey runoff produced up to and including the 10-year storm event.

3.1 Compliance with Performance Criteria

The site has been designed with a series of structural drainage facilities, including ten (10) catch basins, two (2) concrete area drains, three (3) drywells, four (4) flared ends with outlet protection, and two (2) broad-crested riprap weirs. This drainage system has been designed to remove stormwater from all driving surfaces and divert it through the water quality basins, drywells, and stone / vegetated filter strips. The drainage system has been designed to safely convey flows up to and including the 10-year design storm event. The proposed pipes are designed with sufficient capacity to maintain the hydraulic grade line below proposed grade during a 10-year storm.

3.1.1 Compliance with Local Criteria

The proposed storm sewer system has been designed in compliance with Town of Glastonbury Drainage Regulations.

3.1.2 Compliance with State Criteria

The proposed storm sewer system has been designed in compliance with the State of Connecticut's Drainage Regulations per the 2002 ConnDOT Drainage Manual. (latest revisions)

Computations for the hydraulic analysis and outlet protection can be viewed in Appendix C.

4 WATER QUALITY

4.1 Methodology

The project has been designed to address both short-term and long-term stormwater quality. Short term (during construction) water quality has been provided in the form of erosion control measures and long-term (post construction) water quality has been provided through the use of primary and secondary treatment practices. Erosion control has been designed per the latest Connecticut Erosion Control Guidelines and long-term stormwater quality has been designed per the latest CT DEEP Stormwater Quality Manual.

4.2 Compliance with Performance Criteria

4.2.1 Compliance with Local Criteria

We have provided water quality for the entire proposed drainage network in the form of water quality volume, provided by Bioretention Area 1. Additional water quality for areas not discharging into the bioretention area will be treated with a combination of drywells, stone filter strips, and vegetated filter strips.

4.2.2 Compliance with Connecticut Stormwater Quality Manual

4.2.2.1 Standard 1 – Pollutant Reduction

Long Term Stormwater Quality

The project was designed with guidance from the latest Connecticut Stormwater Quality Manual. The intent of the design is to provide a "stormwater treatment train," where stormwater quality is achieved through a series of treatment measures. Harmful pollutants, such as sediment, pathogens, organic material, hydrocarbons, metals, synthetic organic chemicals, and/or deicing compounds are typically carried by the low-flow storms. Many of these pollutants are associated with vehicular operation and therefore key areas of on-site treatment include parking lots and access drives. Additionally, rooftops are a concern as a result of atmospheric ambient accumulation. Since pollutants typically attach themselves to solid particles, treatment practices are designed to remove suspended solids.

The treatment train for this site includes:

- Source Control and Pollution Prevention
- Drive and parking lot sweeping
- Storm drainage system maintenance

Primary Treatment Practices

- Drywells: These structures are designed to provide additional water quality volume as well as treat stormwater via infiltration, absorption, filtering, and bacterial degradation.
- Deep Sump Catch Basins: These structures function as pre-treatment devices to alleviate some function of the down-stream treatment practices.
- Bioretention: This storage volume will allow for temporary suspended solids and pollutants to be filtered out of the stormwater before being discharged to the wetlands.

Computations for Water Quality can be viewed in Appendix D.

5 SOIL EROSION AND SEDIMENT CONTROL

5.1 Methodology

The proposed soil erosion and sediment controls have been designed in accordance with local regulations, the Connecticut Guidelines for Soil Erosion and Sediment Control, and the requirements of the CTDEEP General Permit for the Discharge of Stormwater and Dewatering Wastewaters from Construction Activities, as applicable. The proposed design considers the specific site characteristics of the site and anticipated construction activities. See the plan set for location and design of proposed short term soil erosion and sediment control measures to be used throughout construction.

Short Term Erosion Control

The proposed erosion and sedimentation controls consider the specific characteristics of the site and the anticipated construction activities. They have been designed in accordance with the latest CT DEEP Guidelines for Soil Erosion and Sediment Control.

Construction Entrances

Construction entrances will be utilized to remove sediment from construction vehicle tires and prevent it from being tracked onto adjoining paved roadway areas.

Erosion Control Barriers

Prior to any construction activity, hay bales, silt fence, or combination hay bale/silt fence barriers will be placed at the downgradient limits of construction and adjacent to the wetlands. Throughout construction, additional barriers will be installed as necessary at the toe of slopes equal to or in excess of 15 feet. These barriers will be inspected once every seven calendar days and within 24 hours after every rainfall generating a discharge and replaced as necessary. Collected silt will be removed when one-half the barrier height is reached.

Temporary Seeding

Temporary Seeding will be utilized on portions where the phasing and sequencing require an initial disturbance followed by an extended period of inactivity that is greater than 30 days but less than 1 year. Temporary seeding will be conducted within 7 days after the suspension of grading work in disturbed areas where the suspension of work is expected to be more than 30 days but less than 1 year.

Soil Stabilization- Mulches

Structural (non-living) soil stabilization will be utilized to protect the soil surface on a temporary basis without the intention of promoting plant growth. When grading of the disturbed area will be suspended for a period of 30 or more consecutive days, but less than 5 months, disturbed areas will be stabilized within 7 days of the suspension of grading through the use of mulch, non-bituminous tackifiers, erosion control netting, or other approved materials appropriate for use as a temporary soil protector. For surfaces that are not to be reworked within 5 months but will be reworked within 1 year, use temporary seeding, seeding-type mulch (hay, straw, or cellulose fiber) or when slopes are less than 3:1, wood chips, bark chips or shredded bark.

Temporary Filter Inserts

Temporary Filter Inserts will be placed in each existing catch basin and yard drains prior to the start of construction, and in each new catch basin or yard drain during construction. These devices will be removed upon final site stabilization. Filter inserts will be inspected once every seven (7) calendar days and within 24 hours after every rainfall generating a discharge. Replacement of the inserts will be as often as necessary to maintain function of the drainage structure and prevent excessive ponding due to clogged fabric. Ripped or otherwise damaged inserts will be replaced immediately.

Stockpile Management

The topsoil stockpiles which will be idle for at least 30 days will be stabilized with temporary seed and mulch no later than 7 days from the last use. Small stockpiles may be covered with impervious tarps or erosion control matting in lieu of seeding and mulching.

A geotextile silt fence or hay bale barrier will be installed around the stockpile area approximately 10 feet from the proposed toe of the slope.

6 OPERATION AND MAINTENANCE

6.1 Inspection Frequency and Criteria

Maintenance and operation will be provided as follows.

During Construction

- **Dust Control:** Moisten disturbed soil areas with water periodically, or use a non-asphaltic soil tacifier to minimize dust.
- **Temporary Soil Protection:** Inspect seeded areas weekly and within 24 hours after a storm generating a discharge.
- **Catch Basin Filter Inserts:** Inspect the fabric at least once a week and within 24 hours after the end of a storm generating a discharge. Check the fabric for structural soundness (i.e. tears), proper anchoring/alignment within the grate and ability to drain runoff (i.e. percent of clogging by sediment). Remove the sediment every week, or sooner if ponding is excessive. Each time the sediment is removed, replace the section of fabric removed with a new section. Do not remove the sediment and reuse the same section of fabric.
- **Hay Bale/ Silt Fence Barrier:** Inspect the barrier at least once a week and within 24 hours after the end of a storm generating a discharge. For dewatering operations, inspect frequently before, during and after pumping operations. Remove the sediment deposits when the depth reaches one half the barrier's height. Repair or replace a barrier within 24 hours of observed failure. Maintain the barrier until the contributing disturbed area is stabilized.
- **Construction Entrance/Exit Pad:** Maintain the pad in a condition that will prevent tracking and washing of sediment onto paved surfaces. Place additional clean gravel on top of gravel that has become silted, or remove the silted gravel and replace the gravel to the depth removed with clean gravel, as conditions warrant. Remove immediately all sediment spilled, dropped, washed or tracked onto paved surfaces. Roads adjacent to the construction site shall be cleaned at the end of each day by hand sweeping or sweeper truck.
- **Existing Catch Basins and Sumps:** Inspect the filter baskets as specified above. After final removal of the filter baskets at the end of construction, clean the sump of all silt and debris.
- **New Catch Basins and Sumps:** As new catch basins are constructed, a sediment trap shall be installed in the unit and a sediment barrier installed around the grate. Inspect the

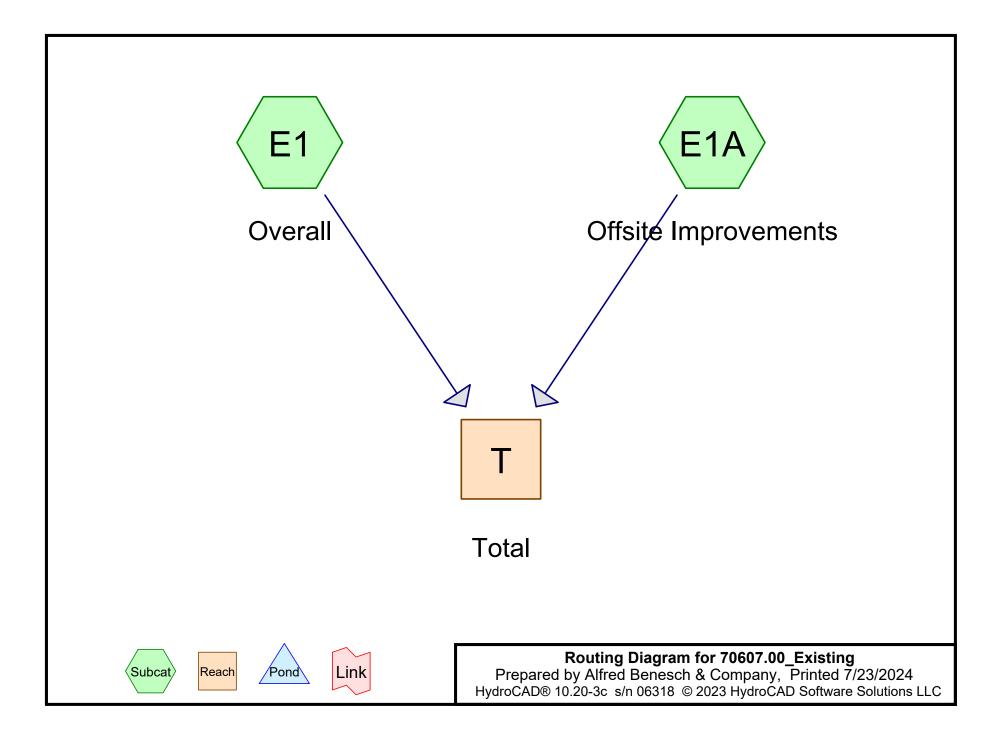
trap and barrier weekly and within 24 hours after a storm generating a discharge. After stabilization of the drainage area entering the catch basin, remove the trap and barrier and clean the basin sump of all silt and debris.

- **Temporary Stockpiles:** Inspect temporary stockpiles at the end of each workday to ensure that tarps are in place and secured. Temporary stockpiles that are expected to be inactive for more than 30 days should be temporarily seeded (see above).
- **Temporary Sediment Traps:** Inspect monthly and within 24 hours after a storm generating a discharge. Sediment and oil shall be removed when the storage volume is reduced by one half, or at least every 6 months during construction.

After Construction

- **Parking Lot and Site Cleanup:** Inspect on a regular basis not to exceed weekly for litter and debris.
- **Parking Lot and Driveway Sweeping:** At least twice a year, with the first occurring as soon as possible after snowmelt and the second not less than 90 days following the first.
- **Catch Basins, Sumps and Drywells:** Maintenance includes removal of trash from the grate and the sump, as well as sediment from the sump. They shall be inspected semi-annually and cleaned when the sump is one half full of sediment. One of the inspections shall be after the snow and ice removal season is over, and prior to the spring rainfall events. If the sumps is filled more than half-filled with sediment at the semi-annual inspections, they shall be inspected quarterly.
- **Landscaped Areas:** Inspect semi-annually for erosion or dying vegetation. Repair and stabilize any bare or eroded areas and replace vegetation as soon as possible.
- **Bioretention Area and Riprap Weirs:** Inspect several times during the first few months to ensure that seed mix / grass cover is established. Inspection semi-annually and after major rain events for the first year. Inspect annually after the first year. Trash should be removed as accumulated. Sediment build-up should be removed when it is dry and at a depth of four inches. Grass should be reseeded if the side or bottom slopes exhibit erosion. Grass should be mowed once per month and should be cut to leave at least two inches of height. The seed mix should be mowed 2-3 times per year. Mowing should not occur when the ground is soft, to avoid ruts.

APPENDIX A


Existing Watershed Data

	-	_
	ber	nesch
	Alfred Benesch 120 Hebron Av	/enue
	Glastonbury, C 860-633-8341	onnecticut 06033
Prepared	for:	
		N V
	HB	NITKIN
	HB Nitkin Grou 230 Mason Stro Greenwich, Co	
	203-861-9000	
	Ż	
	Ш Г	F
	đ	GLASTONBURY, CT
	0	LONBL
ŀ	; Ш	GLAST
MAIN STREET	MMERCIAL REDEVELOPN	
S		
Ζ	, 66 •1	
D	A	
Σ		TREET
	Ř	AIN S
	Σ	283-2389 MAIN STREET
		83-2
	Σ	n
		5
DATE-	Ö	5
DATE:		5
DATE:	Ö	5
DATE:	Ö	
DATE:	Ö	
DATE:	Ö	
DATE:	REVISION:	
PROJECT NO.:	70607.00	
PROJECT NO.: SCALE:	REVISION:	
PROJECT NO.: SCALE: DATE:		CRAWN BY: CSL CHECKED BY: WGW
PROJECT NO.: SCALE: DATE:		DRAWN BY: GSL CHECKED BY: WGW
PROJECT NO.: SCALE: DATE:		DRAWN BY: GSL CHECKED BY: WGW
PROJECT NO.: SCALE: DATE:		DRAWN BY: GSL CHECKED BY: WGW

	Proposed Watershed Cover Characteristics HB Nitkin Mix-Use Development - Glastonbury, CT Project # 70607.00										
Watershed								Total Area (ac)	CN	Tc (min)	
		Grass A	Grass D	Woods A	Woods D	Gravel A	Gravel D	Impervious			
E1	Overall	0.11	0.43	0.15	0.01	0.17	0.13	3.27	4.27	91	7.8
E1A	Southern Area	0.15	0.03	0.13	0.01	0.04	-	0.27	0.62	67	6.9
Total / Weighted =									4.90	88	

70607.00_Existing Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Ground Covers (all nodes)

 HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.260	0.000	0.000	0.460	0.000	0.720	>75% Grass cover, Good	E1, E1A
0.210	0.000	0.000	0.130	0.000	0.340	Gravel roads	E1, E1A
0.000	0.000	0.000	3.540	0.000	3.540	Paved parking	E1, E1A
0.280	0.000	0.000	0.020	0.000	0.300	Woods, Good	E1, E1A
0.750	0.000	0.000	4.150	0.000	4.900	TOTAL AREA	

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Summary for Subcatchment E1: Overall

Runoff = 9.90 cfs @ 12.15 hrs, Volume= Routed to Reach T : Total

0.770 af, Depth= 2.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-Year Rainfall=3.10"

Area	(ac)	CN	Desc	ription									
3.	.270	98	Pave	Paved parking, HSG D									
0.	.430	80	>75%	6 Grass co	over, Good	, HSG D							
0.	.110	39	>75%	6 Grass co	over, Good	, HSG A							
0.	.150	30	Woo	ds, Good,	HSG A								
0.	.010	77	Woo	ds, Good,	HSG D								
0.	.170	76	Grav	el roads, l	HSG A								
0.	.130	91	Grav	el roads, l	HSG D								
4.	.270	91	Weig	hted Aver	age								
1.	.000		23.42	2% Pervio	us Area								
3.	.270		76.58	3% Imper\	/ious Area								
Tc	Length		lope	Velocity	Capacity	Description							
<u>(min)</u>	(feet)		(ft/ft)	(ft/sec)	(cfs)								
6.9	100	0.0	0500	0.24		Sheet Flow, AB							
						Grass: Short n= 0.150 P2= 3.10"							
0.9	184	0.0)489	3.56		Shallow Concentrated Flow, BC							
						Unpaved Kv= 16.1 fps							
7.8	284	- To	tal										

Summary for Subcatchment E1A: Offsite Improvements

Runoff = 0.39 cfs @ 12.15 hrs, Volume= 0.033 af, Depth= 0.64" Routed to Reach T : Total

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-Year Rainfall=3.10"

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Area	(ac) C	N D	escription									
0.	.150	39 >7	75% Grass cover, Good, HSG A									
0.	.030	80 >7	5% Grass c	over, Good	, HSG D							
0.	.130	30 W	oods, Good,	, HSG A								
0.	.010	77 W	oods, Good,	, HSG D								
0.	.040	76 G	avel roads,	HSG A								
0.	.270	98 Pa	ived parking	<u>, HSG D</u>								
0.	.630	67 W	eighted Ave	rage								
0.	.360	57	.14% Pervic	ous Area								
0.	.270	42	.86% Imper	vious Area								
Тс	0	•			Description							
<u>(min)</u>	(feet)	(ft/f	:) (ft/sec)	(cfs)								
6.1	90	0.056	0 0.25		Sheet Flow, AB							
					Grass: Short n= 0.150 P2= 3.10"							
0.3	48	0.021	0 2.94		Shallow Concentrated Flow, BC							
					Paved Kv= 20.3 fps							
0.5	105	0.057	0 3.84		Shallow Concentrated Flow, CD							
					Unpaved Kv= 16.1 fps							
6.9	243	Total										

Summary for Reach T: Total

Inflow Area =	4.900 ac, 72.24% Impervious, Inflow I	Depth = 1.97" for 2-Year event
Inflow =	10.30 cfs @ 12.15 hrs, Volume=	0.804 af
Outflow =	10.30 cfs @ 12.15 hrs, Volume=	0.804 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Summary for Subcatchment E1: Overall

Runoff = 17.12 cfs @ 12.15 hrs, Volume= Routed to Reach T : Total 1.376 af, Depth= 3.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-Year Rainfall=4.88"

Area	(ac)	CN	Desc	cription									
3.	.270	98	Pave	Paved parking, HSG D									
0.	.430	80	>75%	6 Grass co	over, Good	, HSG D							
0.	.110	39	>75%	6 Grass co	over, Good	, HSG A							
0.	.150	30	Woo	ds, Good,	HSG A								
0.	.010	77	Woo	ds, Good,	HSG D								
0.	.170	76	Grav	el roads, l	HSG A								
0.	.130	91	Grav	el roads, l	HSG D								
4.	.270	91	Weig	hted Aver	age								
1.	.000		23.4	2% Pervio	us Area								
3.	.270		76.5	8% Imperv	/ious Area								
Тс	Length		Slope	Velocity	Capacity	Description							
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)								
6.9	100) ().	0500	0.24		Sheet Flow, AB							
						Grass: Short n= 0.150 P2= 3.10"							
0.9	184	10.	0489	3.56		Shallow Concentrated Flow, BC							
						Unpaved Kv= 16.1 fps							
7.8	284	4 To	otal										

Summary for Subcatchment E1A: Offsite Improvements

Runoff = 1.21 cfs @ 12.14 hrs, Volume= 0.090 af, Depth= 1.72" Routed to Reach T : Total

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-Year Rainfall=4.88"

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Area	(ac) C	N Des	cription								
0.	150 3	39 >75	75% Grass cover, Good, HSG A								
0.	030 8	80 >75	% Grass c	over, Good	, HSG D						
0.	130 3		ods, Good,								
0.	010 7	7 Woo	ods, Good,	HSG D							
0.	040 7	'6 Gra	vel roads, l	HSG A							
0.	270 9	8 Pav	ed parking	<u>, HSG D</u>							
0.	630 6	67 Wei	ghted Aver	age							
	360	-	4% Pervio								
0.	270	42.8	86% Imperv	∕ious Area							
-											
		~ .		• •							
	Length	Slope		• •	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)							
	-			• •	Sheet Flow, AB						
<u>(min)</u> 6.1	(feet) 90	(ft/ft) 0.0560	(ft/sec) 0.25	• •	Sheet Flow, AB Grass: Short n= 0.150 P2= 3.10"						
(min)	(feet)	(ft/ft) 0.0560	(ft/sec)	• •	Sheet Flow, AB Grass: Short n= 0.150 P2= 3.10" Shallow Concentrated Flow, BC						
(min) 6.1 0.3	(feet) 90 48	(ft/ft) 0.0560 0.0210	(ft/sec) 0.25 2.94	• •	Sheet Flow, AB Grass: Short n= 0.150 P2= 3.10" Shallow Concentrated Flow, BC Paved Kv= 20.3 fps						
<u>(min)</u> 6.1	(feet) 90	(ft/ft) 0.0560	(ft/sec) 0.25	• •	Sheet Flow, AB Grass: Short n= 0.150 P2= 3.10" Shallow Concentrated Flow, BC Paved Kv= 20.3 fps Shallow Concentrated Flow, CD						
(min) 6.1 0.3	(feet) 90 48	(ft/ft) 0.0560 0.0210	(ft/sec) 0.25 2.94	• •	Sheet Flow, AB Grass: Short n= 0.150 P2= 3.10" Shallow Concentrated Flow, BC Paved Kv= 20.3 fps						

Summary for Reach T: Total

Inflow Area =	4.900 ac, 72.24% Impervious, Inflow	Depth = 3.59" for 10-Year event
Inflow =	18.34 cfs @ 12.15 hrs, Volume=	1.466 af
Outflow =	18.34 cfs @ 12.15 hrs, Volume=	1.466 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Summary for Subcatchment E1: Overall

Runoff = 21.58 cfs @ 12.15 hrs, Volume= Routed to Reach T : Total 1.760 af, Depth= 4.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-Year Rainfall=5.99"

Area	(ac)	CN	Desc	ription					
3.	.270	98	98 Paved parking, HSG D						
0.	.430	80	>75%	6 Grass co	over, Good	, HSG D			
0.	.110	39	>75%	6 Grass co	over, Good	, HSG A			
0.	.150	30	Wood	ds, Good,	HSG A				
0.	.010	77	Wood	ds, Good,	HSG D				
0.	.170	76	Grav	el roads, l	HSG A				
0.	.130	91	Grav	el roads, l	HSG D				
4.	.270	91	Weig	hted Aver	age				
1.	.000		23.42	2% Pervio	us Area				
3.	.270		76.58	3% Imper\	/ious Area				
Tc	Length		lope	Velocity	Capacity	Description			
<u>(min)</u>	(feet)		(ft/ft)	(ft/sec)	(cfs)				
6.9	100	0.0)500	0.24		Sheet Flow, AB			
						Grass: Short n= 0.150 P2= 3.10"			
0.9	184	0.0)489	3.56		Shallow Concentrated Flow, BC			
						Unpaved Kv= 16.1 fps			
7.8	284	То	tal						

Summary for Subcatchment E1A: Offsite Improvements

Runoff = 1.81 cfs @ 12.14 hrs, Volume= 0.132 af, Depth= 2.52" Routed to Reach T : Total

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-Year Rainfall=5.99"

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Area	(ac) C	N Des	cription							
0.	0.150 39 >75% Grass cover, Good, HSG A									
0.	.030	80 >75	% Grass c	over, Good	, HSG D					
0.	.130		Woods, Good, HSG A							
0.	.010	77 Wo	Woods, Good, HSG D							
0.	0.040 76 Gravel roads, HSG A									
0.	.270	<u>98 Pav</u>	ed parking	, HSG D						
0.	.630	67 We	ghted Ave	rage						
0.	.360	57.	14% Pervic	ous Area						
0.	.270	42.8	36% Imper	vious Area						
_										
Tc		Slope			Description					
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)						
6.1	90	0.0560	0.25		Sheet Flow, AB					
					Grass: Short n= 0.150 P2= 3.10"					
0.3	48	0.0210	2.94		Shallow Concentrated Flow, BC					
					Paved Kv= 20.3 fps					
0.5										
0.0	105	0.0570	3.84		Shallow Concentrated Flow, CD					
	105	0.0570	3.84		Shallow Concentrated Flow, CD Unpaved Kv= 16.1 fps					

Summary for Reach T: Total

Inflow Area =	4.900 ac, 72.24% Impervious, Inflow I	Depth = 4.64" for 25-Year event
Inflow =	23.39 cfs @ 12.15 hrs, Volume=	1.893 af
Outflow =	23.39 cfs @ 12.15 hrs, Volume=	1.893 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Summary for Subcatchment E1: Overall

Runoff = 28.39 cfs @ 12.15 hrs, Volume= Routed to Reach T : Total

2.359 af, Depth= 6.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=7.70"

Area	(ac) (CN	Desc	ription					
3.	.270	98	Paved parking, HSG D						
0.	.430	80	>75%	6 Grass co	over, Good	, HSG D			
0.	.110	39	>75%	6 Grass co	over, Good	, HSG A			
0.	.150	30	Wood	ds, Good,	HSG A				
0.	.010	77	Wood	ds, Good,	HSG D				
0.	.170	76	Grav	el roads, l	HSG A				
0.	.130	91	Grav	el roads, l	HSG D				
4.	.270	91	Weig	hted Aver	age				
1.	.000		23.42	2% Pervio	us Area				
3.	.270		76.58	3% Imper\	/ious Area				
Тс	Length		lope	Velocity	Capacity	Description			
(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)				
6.9	100	0.0	0500	0.24		Sheet Flow, AB			
						Grass: Short n= 0.150 P2= 3.10"			
0.9	184	0.0	0489	3.56		Shallow Concentrated Flow, BC			
						Unpaved Kv= 16.1 fps			
7.8	284	То	otal						

Summary for Subcatchment E1A: Offsite Improvements

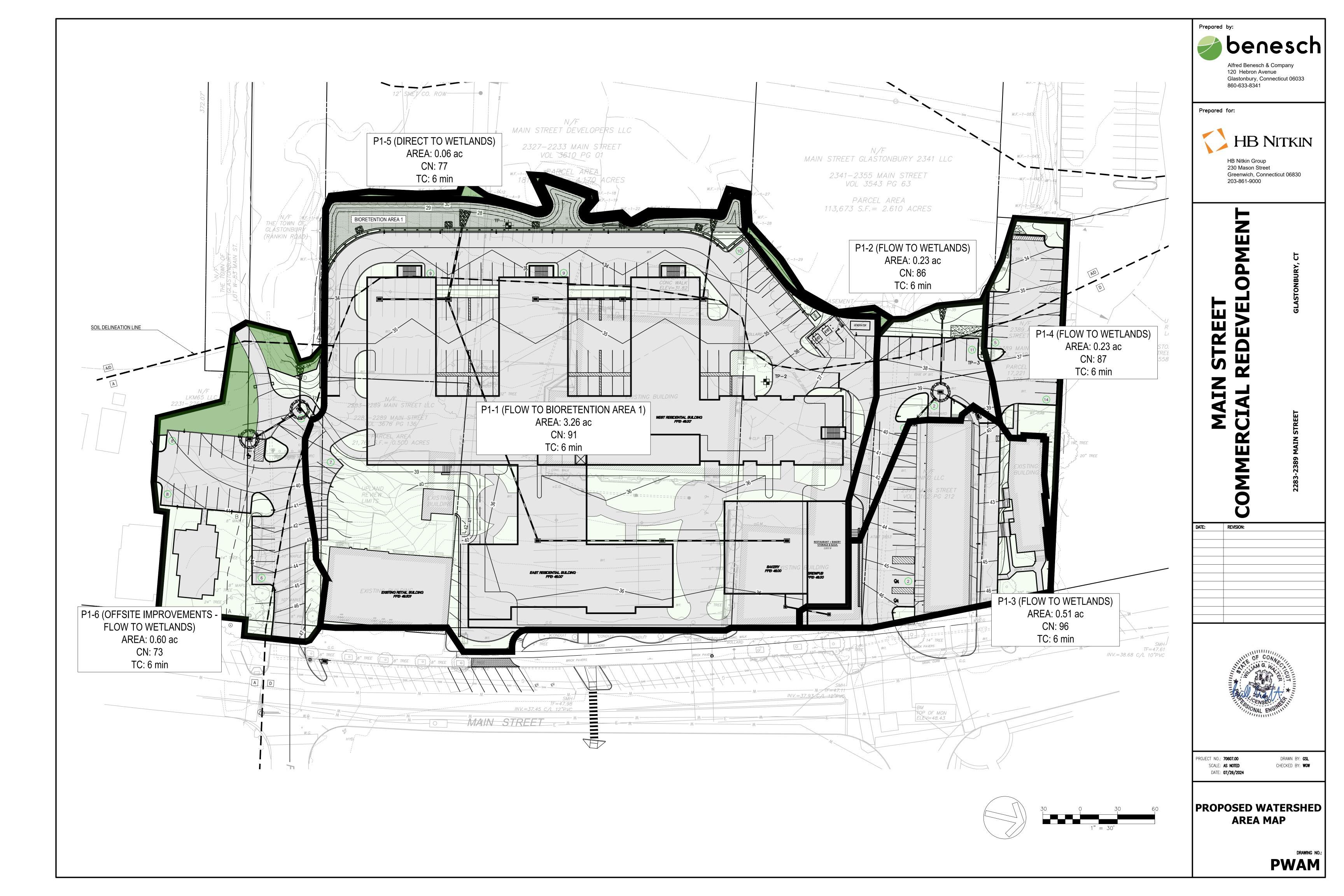
Runoff = 2.78 cfs @ 12.14 hrs, Volume= 0.203 af, Depth= 3.87" Routed to Reach T : Total

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=7.70"

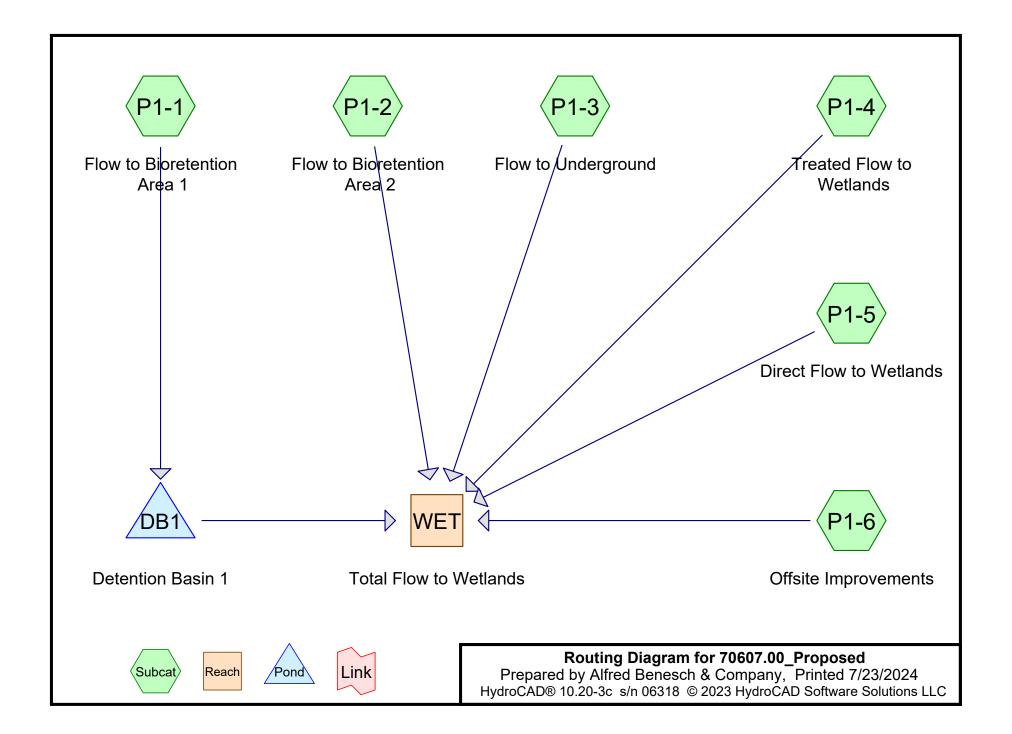
Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Area	(ac) C	N Des	cription							
0.	150 3	89 >75	>75% Grass cover, Good, HSG A							
0.	030 8	80 >75	% Grass c	over, Good	I, HSG D					
0.	130 3		ods, Good,							
0.	010 7		Voods, Good, HSG D							
0.	0.040 76 Gravel roads, HSG A									
0.	<u>270</u>	<u>8 Pav</u>	ed parking	<u>, HSG D</u>						
0.	630 6	67 We	ghted Ave	rage						
0.	360	-	4% Pervic							
0.	0.270 42.86% Impervious Area									
_		<u>.</u>								
	Length	Slope			Description					
Tc (min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)	· · · · · · · · · · · · · · · · · · ·					
			(ft/sec)		Sheet Flow, AB					
<u>(min)</u> 6.1	(feet) 90	(ft/ft) 0.0560	(ft/sec) 0.25		Sheet Flow, AB Grass: Short n= 0.150 P2= 3.10"					
(min)	(feet)	(ft/ft) 0.0560	(ft/sec) 0.25		Sheet Flow, AB Grass: Short n= 0.150 P2= 3.10" Shallow Concentrated Flow, BC					
(min) 6.1 0.3	(feet) 90 48	(ft/ft) 0.0560 0.0210	(ft/sec) 0.25 2.94		Sheet Flow, AB Grass: Short n= 0.150 P2= 3.10" Shallow Concentrated Flow, BC Paved Kv= 20.3 fps					
<u>(min)</u> 6.1	(feet) 90	(ft/ft) 0.0560	(ft/sec) 0.25 2.94		Sheet Flow, AB Grass: Short n= 0.150 P2= 3.10" Shallow Concentrated Flow, BC Paved Kv= 20.3 fps Shallow Concentrated Flow, CD					
(min) 6.1 0.3	(feet) 90 48	(ft/ft) 0.0560 0.0210	(ft/sec) 0.25 2.94		Sheet Flow, AB Grass: Short n= 0.150 P2= 3.10" Shallow Concentrated Flow, BC Paved Kv= 20.3 fps					

Summary for Reach T: Total


Inflow Area =	=	4.900 ac, 72.24% Impervious, Inflow Depth = 6.27" for 100-Year event	
Inflow =	:	31.17 cfs @ 12.15 hrs, Volume= 2.562 af	
Outflow =	:	31.17 cfs $\overline{@}$ 12.15 hrs, Volume= 2.562 af, Atten= 0%, Lag= 0.0 min	

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs


APPENDIX B

Proposed Watershed Data

	Proposed Watershed Cover Characteristics HB Nitkin Mix-Use Development - Glastonbury, CT Project # 70607.00										
Watershed	Watershed Description		Total Area (ac)	CN	Tc (min)						
		Grass A	Grass D	Woods A	Woods D	Gravel A	Gravel D	Impervious			<u> </u>
P1-1	Main Lot	0.22	0.44	-	-	0.02	-	2.57	3.26	91	6.0
P1-2	Flows to Bioretention Area 2	0.04	0.02	-	-	-	-	0.17	0.23	86	6.0
P1-3	Additonal Flow to Bioretention Area 2	-	0.04	-	-	-	0.01	0.46	0.51	96	6.0
P1-4	Treated Flow to Wetlands	0.03	0.04	-	-	-	-	0.16	0.23	87	6.0
P1-5	Direct Flow to Wetlands	-	-	0.06	-	-	-	-	0.06	77	6.0
P1-6	Offsite improvements	0.15	0.03	0.08	0.01	0.01	-	0.32	0.60	73	6.0
Total / Weighted =	/ Weighted = 4.90										

Ground Covers (all nodes)

 HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.440	0.000	0.000	0.570	0.000	1.010	>75% Grass cover, Good	P1-1, P1-2, P1-3, P1-4, P1-6
0.030	0.000	0.000	0.010	0.000	0.040	Gravel roads	P1-1, P1-3, P1-6
0.000	0.000	0.000	3.680	0.000	3.680	Paved parking	P1-1, P1-2, P1-3, P1-4, P1-6
0.080	0.000	0.000	0.070	0.000	0.150	Woods, Good	P1-5, P1-6
0.550	0.000	0.000	4.330	0.000	4.880	TOTAL AREA	

Summary for Subcatchment P1-1: Flow to Bioretention Area 1

Runoff = 8.04 cfs @ 12.13 hrs, Volume= Routed to Pond DB1 : Detention Basin 1

0.586 af, Depth= 2.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-Year Rainfall=3.10"

Area (ac)	CN	Desc	cription							
0.440	80	>759	75% Grass cover, Good, HSG D							
2.570	98	Pave	ed parking	, HSG D						
0.220	39	>75	% Grass c	over, Good	, HSG A					
0.020	76	Grav	/el roads, l	HSG A						
3.250	91	Weig	ghted Avei	age						
0.680		20.9	2% Pervio	us Area						
2.570		79.0	8% Imperv	vious Area						
Tc Len	0	Slope	Velocity	Capacity	Description					
(min) (fe	et)	(ft/ft)	(ft/sec)	(cfs)						
6.0					Direct Entry, Direct to Meet Min.					

Summary for Subcatchment P1-2: Flow to Bioretention Area 2

Runoff = 0.47 cfs @ 12.13 hrs, Volume= 0.034 af, Depth= 1.75" Routed to Reach WET : Total Flow to Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-Year Rainfall=3.10"

Area (ac)	CN	Description						
0.020	80	% Grass cover, Good, HSG D						
0.170	98	Paved parking, HSG D						
0.040	39	>75% Grass cover, Good, HSG A						
0.230	86	Weighted Average						
0.060		26.09% Pervious Area						
0.170		73.91% Impervious Area						

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Тс	Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	-	
6.0					Direct Entry, Direct to	o N

Direct Entry, Direct to Meet Min.

Summary for Subcatchment P1-3: Flow to Underground

0.113 af, Depth= 2.65" 1.45 cfs @ 12.13 hrs, Volume= Runoff = Routed to Reach WET : Total Flow to Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-Year Rainfall=3.10"

Area (ac)	CN	Des	escription							
0.040	80	>75	5% Grass cover, Good, HSG D							
0.460	98	Pave	ed parking	, HSG D						
0.010	91	Grav	vel roads, l	HSG D						
0.510	96	Weig	Weighted Average							
0.050)	9.80	% Perviou	s Area						
0.460)	90.2	20% Imperv	/ious Area						
	ngth feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
6.0					Direct Entry, Direct to Meet Min.					

Summary for Subcatchment P1-4: Treated Flow to Wetlands

0.035 af, Depth= 1.83" 0.49 cfs @ 12.13 hrs, Volume= Runoff = Routed to Reach WET : Total Flow to Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-Year Rainfall=3.10"

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

0.030 39							
0.160 98	3 Paved parking, HSG D						
0.230 87	7 Weighted Average						
0.070	30.43% Pervious Area						
0.160	69.57% Impervious Area						
01100							
Tc Length	Slope Velocity Capacity Description						
(min) (feet)	(ft/ft) (ft/sec) (cfs)						
6.0	Direct Entry, Direct to Meet Min.						
	Summary for Subcatchment P1-5: Direct Flow to Wetlands						
Runoff =	0.08 cfs @ 12.14 hrs, Volume= 0.006 af, Depth= 1.14"						
	0.08 cfs @ 12.14 hrs, Volume= 0.006 af, Depth= 1.14"						
Routed to Read	0.08 cfs @ 12.14 hrs, Volume= 0.006 af, Depth= 1.14"						
Routed to Read	0.08 cfs @ 12.14 hrs, Volume= 0.006 af, Depth= 1.14" ch WET : Total Flow to Wetlands						
Routed to Read	0.08 cfs @ 12.14 hrs, Volume= 0.006 af, Depth= 1.14" ch WET : Total Flow to Wetlands -20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs						
Routed to Read	0.08 cfs @ 12.14 hrs, Volume= 0.006 af, Depth= 1.14" ch WET : Total Flow to Wetlands -20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Year Rainfall=3.10"						
Routed to Read Runoff by SCS TR NOAA 24-hr D 2- Area (ac) CN	0.08 cfs @ 12.14 hrs, Volume= 0.006 af, Depth= 1.14" ch WET : Total Flow to Wetlands -20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Year Rainfall=3.10"						
Routed to Read Runoff by SCS TR NOAA 24-hr D 2-\	0.08 cfs @ 12.14 hrs, Volume= 0.006 af, Depth= 1.14" ch WET : Total Flow to Wetlands -20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs Year Rainfall=3.10"						

Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)

6.0

Direct Entry, Direct to Meet Min

Summary for Subcatchment P1-6: Offsite Improvements

Runoff	=	0.63 cfs @	12.14 hrs,	Volume=	0.046 af,	Depth= 0.92"
Routed	I to Read	ch WET : Tota	al Flow to V	/etlands		

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-Year Rainfall=3.10"

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Area	(ac)	CN	Desc	cription								
0	.150	39	>75%	75% Grass cover, Good, HSG A								
0	.030	80	>75%	75% Grass cover, Good, HSG D								
0	.080	30	Woo	ds, Good,	HSG A							
0	.010	77	Woo	ds, Good,	HSG D							
0	.010	76	Grav	vel roads, l	HSG A							
0	.320	98	Pave	ed parking	, HSG D							
0	.600	73	Weig	ghted Aver	age							
0	.280		46.67	7% Pervio	us Area							
0	.320		53.33	3% Imper	∕ious Area							
_		_										
Tc	0		Slope	Velocity	Capacity	Description						
(min)	(feet		(ft/ft)	(ft/sec)	(cfs)							
5.3	80) 0.	0625	0.25		Sheet Flow, AB						
	-					Grass: Short n= 0.150 P2= 3.10"						
0.3	6	I 0.	0328	3.68		Shallow Concentrated Flow, BC						
	_			0.40		Paved Kv= 20.3 fps						
0.2	7	b 0.	0200	6.42	5.04							
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'						
0.0						n= 0.013 Concrete pipe, bends & connections						
0.2		<u>ст</u>				Direct Entry, TO MEET MIN						

6.0 216 Total

Summary for Reach WET: Total Flow to Wetlands

Inflow Area =	4.880 ac, ⁻	75.41% Impervious,	Inflow Depth = $0.72"$	for 2-Year event
Inflow =	3.11 cfs @	12.13 hrs, Volume	= 0.292 af	
Outflow =	3.11 cfs @	12.13 hrs, Volume	= 0.292 af, Att	en= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Summary for Pond DB1: Detention Basin 1

Inflow Area = 3.250 ac, 79.08% Impervious, Inflow Depth = 2.16" for 2-Year event 8.04 cfs @ 12.13 hrs, Volume= Inflow = 0.586 af Outflow = 1.50 cfs @ 12.57 hrs, Volume= 0.578 af, Atten= 81%, Lag= 26.3 min 0.47 cfs @ 12.57 hrs, Volume= Discarded = 0.519 af 1.02 cfs @ 12.57 hrs, Volume= Primary = 0.060 af Routed to Reach WET : Total Flow to Wetlands

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 30.85' @ 12.57 hrs Surf.Area= 5,899 sf Storage= 11,168 cf

Plug-Flow detention time=261.5 min calculated for 0.578 af (99% of inflow) Center-of-Mass det. time=253.1 min (1,063.8 - 810.7)

Volume	Inver	t Avail.Sto	rage Storage	Description	
#1	28.00)' 15,27	78 cf Open S	torage (Prismat	ic)Listed below (Recalc)
Elevatio	on S	Surf.Area	Inc.Store	Cum.Store	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	
28.0	00	2,276	0	0	
29.0	00	3,270	2,773	2,773	
30.0	00	4,609	3,940	6,713	
31.0	00	6,130	5,370	12,082	
31.5	50	6,655	3,196	15,278	
Device	Routing	Invert	Outlet Device	S	
#1	Primary	30.75'	13.0' long x	2.0' breadth Bro	bad-Crested Rectangular Weir
	ý		Head (feet) 0	.20 0.40 0.60 (0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32
#2	Primary	31.00'	10.0' long x	2.0' breadth Bro	oad-Crested Rectangular Weir
	-				0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50
					61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32
#3	Discardec	28.00'	2.000 in/hr E	xfiltration over	Surface area Conductivity to Groundwater Elevation = 25.75'

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Discarded OutFlow Max=0.47 cfs @ 12.57 hrs HW=30.85' (Free Discharge) **3=Exfiltration** (Controls 0.47 cfs)

Primary OutFlow Max=1.01 cfs @ 12.57 hrs HW=30.85' (Free Discharge) 1=Broad-Crested Rectangular Weir(Weir Controls 1.01 cfs @ 0.79 fps) 2=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Summary for Subcatchment P1-1: Flow to Bioretention Area 1

Runoff = 13.88 cfs @ 12.13 hrs, Volume= Routed to Pond DB1 : Detention Basin 1 1.047 af, Depth= 3.87"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-Year Rainfall=4.88"

Area (ac)	CN	Desc	cription							
0.440	80	>75%	75% Grass cover, Good, HSG D							
2.570	98	Pave	ed parking	, HSG D						
0.220	39	>75%	6 Grass c	over, Good	, HSG A					
0.020	76	Grav	el roads, l	HSG A						
3.250	91	Weig	hted Aver	age						
0.680		20.9	2% Pervio	us Area						
2.570		79.0	8% Imperv	ious Area/						
Tc Len	0	Slope	Velocity	Capacity	Description					
<u>(min)</u> (fe	et)	(ft/ft)	(ft/sec)	(cfs)						
6.0					Direct Entry, Direct to Meet Min.					

Summary for Subcatchment P1-2: Flow to Bioretention Area 2

Runoff = 0.88 cfs @ 12.13 hrs, Volume= 0.064 af, Depth= 3.36" Routed to Reach WET : Total Flow to Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-Year Rainfall=4.88"

Area (ac)	CN	Description						
0.020	80	75% Grass cover, Good, HSG D						
0.170	98	B Paved parking, HSG D						
0.040	39	>75% Grass cover, Good, HSG A						
0.230	86	Weighted Average						
0.060		26.09% Pervious Area						
0.170		73.91% Impervious Area						

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Тс	: Length	Slope	Velocity	Capacity	Description	
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
6.0					Direct Entry, Dire	ect to I

Direct Entry, Direct to Meet Min.

Summary for Subcatchment P1-3: Flow to Underground

Runoff = 2.34 cfs @ 12.13 hrs, Volume= 0.188 af, Depth= 4.41" Routed to Reach WET : Total Flow to Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-Year Rainfall=4.88"

Area ((ac)	CN	Desc	scription					
0.0	040	80	>75%	5% Grass cover, Good, HSG D					
0.4	460	98	Pave	ed parking	, HSG D				
0.	010	91	Grav	Gravel roads, HSG D					
0.	510	96 Weighted Average							
0.0	050		9.80% Pervious Area						
0.4	0.460 90.20% Impervious Area			0% Imper	vious Area				
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
6.0						Direct Entry, Direct to Meet Min.			

Summary for Subcatchment P1-4: Treated Flow to Wetlands

Runoff = 0.91 cfs @ 12.13 hrs, Volume= 0.066 af, Depth= 3.45" Routed to Reach WET : Total Flow to Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-Year Rainfall=4.88"

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Area (ac) CN Description							
	0.040 80 >75% Grass cover, Good, HSG D						
0.030 39 >75% Grass cover, Good, HSG A							
0.160 98 Paved parking, HSG D							
0.230 87 Weighted Average							
0.070 30.43% Pervious Area							
0.160 69.57% Impervious Area							
To Length Clans Valority Consolity Description							
Tc Length Slope Velocity Capacity Description							
(min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct Entry, Direct to Meet Min.							
Summery for Subsetebreant D1 5, Direct Flow to Wetlands							
Summary for Subcatchment P1-5: Direct Flow to Wetlands							
Runoff = 0.18 cfs @ 12.13 hrs, Volume= 0.013 af, Depth= 2.52" Routed to Reach WET : Total Flow to Wetlands							
Rouled to Reach WET. Total Flow to Wellahus							
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs							
NOAA 24-hr D 10-Year Rainfall=4.88"							
Area (ac) CN Description							
0.060 77 Woods, Good, HSG D							
0.060 100.00% Pervious Area							
Tc Length Slope Velocity Capacity Description							
(min) (feet) (ft/ft) (ft/sec) (cfs)							

Summary for Subcatchment P1-6: Offsite Improvements

Runoff	=	1.55 cfs @	12.13 hrs,	Volume=	0.109 af,	Depth= 2.19"
Routed	to Read	ch WET : Tota	al Flow to W	/etlands		

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-Year Rainfall=4.88"

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Area	(ac) (N D	escription						
0.	150	39 >	75% Grass c	5% Grass cover, Good, HSG A					
0.	.030	80 >	75% Grass c	5% Grass cover, Good, HSG D					
0.	080	30 V	oods, Good	HSG A					
0.	010	77 V	oods, Good	HSG D					
0.	.010	76 G	ravel roads,	HSG A					
0.	.320	<u>98 P</u>	aved parking	<u>, HSG D</u>					
0.	600	73 V	eighted Ave	rage					
0.	280	4	6.67% Pervice	ous Area					
0.	320	5	3.33% Imper	vious Area					
_									
	9				Description				
(min)	(feet)		<i>i i i</i>	(cfs)					
5.3	80	0.062	25 0.25		Sheet Flow, AB				
					Grass: Short n= 0.150 P2= 3.10"				
0.3	61	0.03	28 3.68		Shallow Concentrated Flow, BC				
					Paved Kv= 20.3 fps				
0.2	75	0.02	0 6.42	5.04					
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'				
0.0					n= 0.013 Concrete pipe, bends & connections				
0.2		Tata			Direct Entry, TO MEET MIN				

6.0 216 Total

Summary for Reach WET: Total Flow to Wetlands

Inflow Area =	4.880 ac, 75.41% Impervious, Inflow	Depth = 2.04" for 10-Year event
Inflow =	17.36 cfs @ 12.15 hrs, Volume=	0.829 af
Outflow =	17.36 cfs @ 12.15 hrs, Volume=	0.829 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Summary for Pond DB1: Detention Basin 1

Inflow Area = 3.250 ac, 79.08% Impervious, Inflow Depth = 3.87" for 10-Year event 13.88 cfs @ 12.13 hrs, Volume= Inflow = 1.047 af Outflow = 12.42 cfs @ 12.16 hrs, Volume= 1.016 af, Atten= 11%, Lag= 1.9 min 0.53 cfs @ 12.16 hrs, Volume= Discarded = 0.628 af 11.90 cfs @ 12.16 hrs, Volume= Primary = 0.389 af Routed to Reach WET : Total Flow to Wetlands

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 31.19' @ 12.16 hrs Surf.Area= 6,327 sf Storage= 13,251 cf

Plug-Flow detention time= 183.8 min calculated for 1.016 af (97% of inflow) Center-of-Mass det. time= 166.1 min (959.0 - 792.8)

Volume	Inver	t Avail.Sto	rage Storage	Storage Description			
#1	28.00)' 15,27	78 cf Open St	orage (Prismati	c) Listed below (Recalc)		
Elevatio (fee		Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)			
28.0		2,276	0	0			
29.0		3,270	2,773	2,773			
30.0	00	4,609	3,940	6,713			
31.0	00	6,130	5,370	12,082			
31.5	50	6,655	3,196	15,278			
Device	Routing	Invert	Outlet Device:	S			
#1	Primary	30.75'	13.0' long x 2	2.0' breadth Bro	ad-Crested Rectangular Weir		
#2	Primary	31.00'	Head (feet) 0 Coef. (English 10.0' long x 2	.20 0.40 0.60 0 i) 2.54 2.61 2.6 2.0' breadth Bro	0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 1 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32 pad-Crested Rectangular Weir		
#3	Discarded	28.00'	Coef. (English	d (feet) 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50 . (English) 2.54 2.61 2.61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32 0 in/hr Exfiltration over Surface area Conductivity to Groundwater Elevation = 25.75'			

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Discarded OutFlow Max=0.53 cfs @ 12.16 hrs HW=31.19' (Free Discharge) **3=Exfiltration** (Controls 0.53 cfs)

Primary OutFlow Max=11.88 cfs @ 12.16 hrs HW=31.19' (Free Discharge) 1=Broad-Crested Rectangular Weir(Weir Controls 9.82 cfs @ 1.73 fps) 2=Broad-Crested Rectangular Weir(Weir Controls 2.06 cfs @ 1.10 fps)

Summary for Subcatchment P1-1: Flow to Bioretention Area 1

Runoff = 17.49 cfs @ 12.13 hrs, Volume= Routed to Pond DB1 : Detention Basin 1 1.340 af, Depth= 4.95"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-Year Rainfall=5.99"

Area (ac)	CN	Descr	ription					
0.440	80	>75%	5% Grass cover, Good, HSG D					
2.570	98	Paveo	aved parking, HSG D					
0.220	39	>75%	75% Grass cover, Good, HSG A					
0.020	76	Grave	Gravel roads, HSG A					
3.250	91	Weigh	nted Aver	age				
0.680		20.92	% Pervio	us Area				
2.570		79.08	% Imperv	vious Area				
Tc Leng	gth	Slope	Velocity	Capacity	Description			
(min) (fe	et)	(ft/ft)	(ft/sec)	(cfs)				
6.0					Direct Entry, Direct to Meet Min.			

Summary for Subcatchment P1-2: Flow to Bioretention Area 2

Runoff = 1.14 cfs @ 12.13 hrs, Volume= 0.084 af, Depth= 4.40" Routed to Reach WET : Total Flow to Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-Year Rainfall=5.99"

Area (ac)	CN	Description					
0.020	80	75% Grass cover, Good, HSG D					
0.170	98	Paved parking, HSG D					
0.040	39	>75% Grass cover, Good, HSG A					
0.230	86	Weighted Average					
0.060		26.09% Pervious Area					
0.170		73.91% Impervious Area					

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
6.0					Direct Entry, Direct to

Direct Entry, Direct to Meet Min.

Summary for Subcatchment P1-3: Flow to Underground

Runoff = 2.89 cfs @ 12.13 hrs, Volume= 0.234 af, Depth= 5.52" Routed to Reach WET : Total Flow to Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-Year Rainfall=5.99"

Area (ac)	CN	Description						
0.040	80	>75% Grass c	5% Grass cover, Good, HSG D					
0.460	98	Paved parking	aved parking, HSG D					
0.010	91	Gravel roads,	bravel roads, HSG D					
0.510	96	96 Weighted Average						
0.050	9.80% Pervious Area							
0.460		90.20% Imper	vious Area					
	igth eet)	Slope Velocity (ft/ft) (ft/sec)	Capacity (cfs)	Description				
6.0				Direct Entry, Direct to Meet Min.				

Summary for Subcatchment P1-4: Treated Flow to Wetlands

Runoff = 1.16 cfs @ 12.13 hrs, Volume= 0.086 af, Depth= 4.51" Routed to Reach WET : Total Flow to Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-Year Rainfall=5.99"

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Area (ac) CN Description							
0.040 80 >75% Grass cover, Good, HSG D							
0.030 39 >75% Grass cover, Good, HSG A							
0.160 98 Paved parking, HSG D							
0.230 87 Weighted Average							
0.070 30.43% Pervious Area							
0.160 69.57% Impervious Area							
Tc Length Slope Velocity Capacity Description							
(min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct Entry, Direct to Meet Min.							
Summary for Subcatchment P1-5: Direct Flow to Wetlands							
Runoff = 0.24 cfs @ 12.13 hrs, Volume= 0.017 af, Depth= 3.47"							
Routed to Reach WET : Total Flow to Wetlands							
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs							
NOAA 24-hr D 25-Year Rainfall=5.99"							
Area (ac) CN Description							
0.060 77 Woods, Good, HSG D							
0.060 100.00% Pervious Area							
Tc Length Slope Velocity Capacity Description							
(min) (feet) (ft/sec) (cfs)							
6.0 Direct Entry Direct to Meet Min							

6.0

Direct Entry, Direct to Meet Min

Summary for Subcatchment P1-6: Offsite Improvements

Runoff	=	2.18 cfs @	12.13 hrs,	Volume=	0.154 af,	Depth= 3.08"
Routed	to Read	ch WET : Tota	al Flow to W	/etlands		

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-Year Rainfall=5.99"

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Area	(ac) (N D	escription								
0.	150	39 >	75% Grass cover, Good, HSG A								
0.	.030	80 >	75% Grass cover, Good, HSG D								
0.	080	30 V	oods, Good	HSG A							
0.	010	77 V	oods, Good	HSG D							
0.	.010	76 G	ravel roads,	HSG A							
0.	.320	<u>98 P</u>	aved parking	<u>, HSG D</u>							
0.	600	73 V	eighted Ave	rage							
0.	280	4	6.67% Pervice	ous Area							
0.	320	5	3.33% Imper	vious Area							
_											
	9				Description						
(min)	(feet)		<i>i i i</i>	(cfs)							
5.3	80	0.062	25 0.25		Sheet Flow, AB						
					Grass: Short n= 0.150 P2= 3.10"						
0.3	61	0.03	28 3.68		Shallow Concentrated Flow, BC						
					Paved Kv= 20.3 fps						
0.2	75	0.02	0 6.42	5.04							
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'						
0.0					n= 0.013 Concrete pipe, bends & connections						
0.2		Tata			Direct Entry, TO MEET MIN						

6.0 216 Total

Summary for Reach WET: Total Flow to Wetlands

Inflow Area	a =	4.880 ac, 75.41% Impervious, Inflow D	epth = 2.93" for 25-Year event
Inflow	=	23.16 cfs @ 12.14 hrs, Volume=	1.192 af
Outflow	=	23.16 cfs @ 12.14 hrs, Volume=	1.192 af, Atten= 0%, Lag= 0.0 min

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Summary for Pond DB1: Detention Basin 1

Inflow Area = 3.250 ac, 79.08% Impervious, Inflow Depth = 4.95" for 25-Year event 17.49 cfs @ 12.13 hrs, Volume= Inflow = 1.340 af Outflow = 16.36 cfs @ 12.15 hrs, Volume= 1.297 af, Atten= 6%, Lag= 1.4 min 0.54 cfs @ 12.15 hrs, Volume= Discarded = 0.682 af 15.83 cfs @ 12.15 hrs, Volume= Primary = 0.615 af Routed to Reach WET : Total Flow to Wetlands

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 31.26' @ 12.15 hrs Surf.Area= 6,404 sf Storage= 13,719 cf

Plug-Flow detention time= 158.2 min calculated for 1.297 af (97% of inflow) Center-of-Mass det. time= 138.8 min (924.4 - 785.5)

Volume	Inve	rt Avail.Sto	rage Storage	Description	
#1	28.00	D' 15,27	78 cf Open St	orage (Prisma	t ic) Listed below (Recalc)
Elevatio	- n - C	Surf.Area	Inc.Store	Cum.Store	
(fee		(sq-ft)	(cubic-feet)	(cubic-feet)	
28.0	00	2,276	0	0	
29.0	00	3,270	2,773	2,773	
30.0	00	4,609	3,940	6,713	
31.0	00	6,130	5,370	12,082	
31.5	50	6,655	3,196	15,278	
Dovice	Douting	Invort	Outlet Device	2	
Device	Routing	Invert			
#1	Primary	30.75'			oad-Crested Rectangular Weir
			()		0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50
					61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32
#2	Primary	31.00'			oad-Crested Rectangular Weir
					0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50
					61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32
#3	Discardeo	d 28.00'	2.000 in/hr E	cfiltration over	Surface area Conductivity to Groundwater Elevation = 25.75'

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Discarded OutFlow Max=0.54 cfs @ 12.15 hrs HW=31.26' (Free Discharge) **3=Exfiltration** (Controls 0.54 cfs)

Primary OutFlow Max=15.79 cfs @ 12.15 hrs HW=31.26' (Free Discharge) 1=Broad-Crested Rectangular Weir(Weir Controls 12.38 cfs @ 1.87 fps) 2=Broad-Crested Rectangular Weir(Weir Controls 3.41 cfs @ 1.31 fps)

Summary for Subcatchment P1-1: Flow to Bioretention Area 1

Runoff = 23.00 cfs @ 12.13 hrs, Volume= Routed to Pond DB1 : Detention Basin 1 1.795 af, Depth= 6.63"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=7.70"

Area (ac)	CN	Desc	escription								
0.440	80	>75%	75% Grass cover, Good, HSG D								
2.570	98	Pave	Paved parking, HSG D								
0.220	39	>75%	6 Grass c	over, Good	, HSG A						
0.020	76	Grav	el roads, l	HSG A							
3.250	91	Weig	Veighted Average								
0.680		20.9	20.92% Pervious Area								
2.570		79.0	8% Imperv	ious Area/							
Tc Len	0	Slope	Velocity	Capacity	Description						
<u>(min)</u> (fe	et)	(ft/ft)	(ft/sec)	(cfs)							
6.0					Direct Entry, Direct to Meet Min.						

Summary for Subcatchment P1-2: Flow to Bioretention Area 2

Runoff = 1.54 cfs @ 12.13 hrs, Volume= 0.116 af, Depth= 6.04" Routed to Reach WET : Total Flow to Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=7.70"

Area (ac)	CN	Description					
0.020	80	5% Grass cover, Good, HSG D					
0.170	98	ived parking, HSG D					
0.040	39	>75% Grass cover, Good, HSG A					
0.230	86	Veighted Average					
0.060		6.09% Pervious Area					
0.170		73.91% Impervious Area					

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	-
6.0					Direct Entry, Direct to Meet Min.

Summary for Subcatchment P1-3: Flow to Underground

Runoff = 3.73 cfs @ 12.13 hrs, Volume= 0.307 af, Depth= 7.22" Routed to Reach WET : Total Flow to Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=7.70"

Area (a	ac)	CN	Desc	Description									
0.0)40	80	>75%	75% Grass cover, Good, HSG D									
0.4	160	98	Pave	aved parking, HSG D									
0.0)10	91	Grav	iravel roads, HSG D									
0.5	510	96	Weig	/eighted Average									
0.0)50		9.80	9.80% Pervious Area									
0.4	160		90.20	0% Imperv	vious Area								
Tc (min)	Lengt (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description							
6.0						Direct Entry, Direct to Meet Min.							

Summary for Subcatchment P1-4: Treated Flow to Wetlands

Runoff = 1.56 cfs @ 12.13 hrs, Volume= 0.118 af, Depth= 6.16" Routed to Reach WET : Total Flow to Wetlands

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=7.70"

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Area (ac) CN Description							
0.040 80 >75% Grass cover, Good, HSG D							
0.030 39 >75% Grass cover, Good, HSG A							
0.160 98 Paved parking, HSG D							
0.230 87 Weighted Average							
0.070 30.43% Pervious Area							
0.160 69.57% Impervious Area							
Tc Length Slope Velocity Capacity Description							
(min) (feet) (ft/ft) (ft/sec) (cfs)							
6.0 Direct Entry, Direct to Meet Min.							
Summary for Subcatchment P1-5: Direct Flow to Wetlands							
Summary for Subcatchment P1-5: Direct Flow to Wetlands							
Summary for Subcatchment P1-5: Direct Flow to Wetlands Runoff = 0.35 cfs @ 12.13 hrs, Volume= 0.025 af, Depth= 5.00"							
Runoff = 0.35 cfs @ 12.13 hrs, Volume= 0.025 af, Depth= 5.00"							
Runoff = 0.35 cfs @ 12.13 hrs, Volume= 0.025 af, Depth= 5.00" Routed to Reach WET : Total Flow to Wetlands							
Runoff = 0.35 cfs @ 12.13 hrs, Volume= 0.025 af, Depth= 5.00" Routed to Reach WET : Total Flow to Wetlands Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs							
Runoff = 0.35 cfs @ 12.13 hrs, Volume= 0.025 af, Depth= 5.00" Routed to Reach WET : Total Flow to Wetlands							
Runoff = 0.35 cfs @ 12.13 hrs, Volume= 0.025 af, Depth= 5.00" Routed to Reach WET : Total Flow to Wetlands Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=7.70"							
Runoff = 0.35 cfs @ 12.13 hrs, Volume= 0.025 af, Depth= 5.00" Routed to Reach WET : Total Flow to Wetlands Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=7.70" <u>Area (ac) CN Description</u>							
Runoff = 0.35 cfs @ 12.13 hrs, Volume= 0.025 af, Depth= 5.00" Routed to Reach WET : Total Flow to Wetlands Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=7.70"							

Tc Length Slope Velocity Capacity Description

(min) (feet) (ft/ft) (ft/sec) (cfs)

6.0

Direct Entry, Direct to Meet Min

Summary for Subcatchment P1-6: Offsite Improvements

Runoff	=	3.19 cfs @	12.13 hrs,	Volume=	0.227 af,	Depth= 4.55"
Routed	to Rea	ch WET : Tota	al Flow to V	Vetlands		

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-Year Rainfall=7.70"

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC

Area	(ac)	CN	Desc	ription								
0.	.150	39	>75%	6 Grass co	over, Good	, HSG A						
0.	.030	80	>75%	75% Grass cover, Good, HSG D								
0.	.080	30	Woo	/oods, Good, HSG A								
0.	.010	77	Woo	/oods, Good, HSG D								
0.	.010	76	Grav	ravel roads, HSG A								
0.	.320	98	Pave	ed parking	, HSG D							
0.	.600	500 73 Weighted Average										
0.	.280			7% Pervio								
0.	.320		53.3	3% Imperv	∕ious Area							
	Length		Slope	Velocity		Description						
(min)	(feet		(ft/ft)	(ft/sec)	(cfs)							
5.3	80) 0.	0625	0.25		Sheet Flow, AB						
						Grass: Short n= 0.150 P2= 3.10"						
0.3	61	0.	0328	3.68		Shallow Concentrated Flow, BC						
						Paved Kv= 20.3 fps						
0.2	75	50.	0200	6.42	5.04							
						12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'						
						n= 0.013 Concrete pipe, bends & connections						
0.2						Direct Entry, TO MEET MIN						
6.0	216	6 To	otal									

216 Total

Summary for Reach WET: Total Flow to Wetlands

Inflow Are	a =	4.880 ac, 75.41% Impervious, Inflow Depth = 4.37" for 100-Year even	t
Inflow	=	31.24 cfs @ 12.14 hrs, Volume= 1.778 af	
Outflow	=	31.24 cfs @ 12.14 hrs, Volume= 1.778 af, Atten= 0%, Lag= 0.0 m	nin

Routing by Stor-Ind+Trans method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs

Summary for Pond DB1: Detention Basin 1

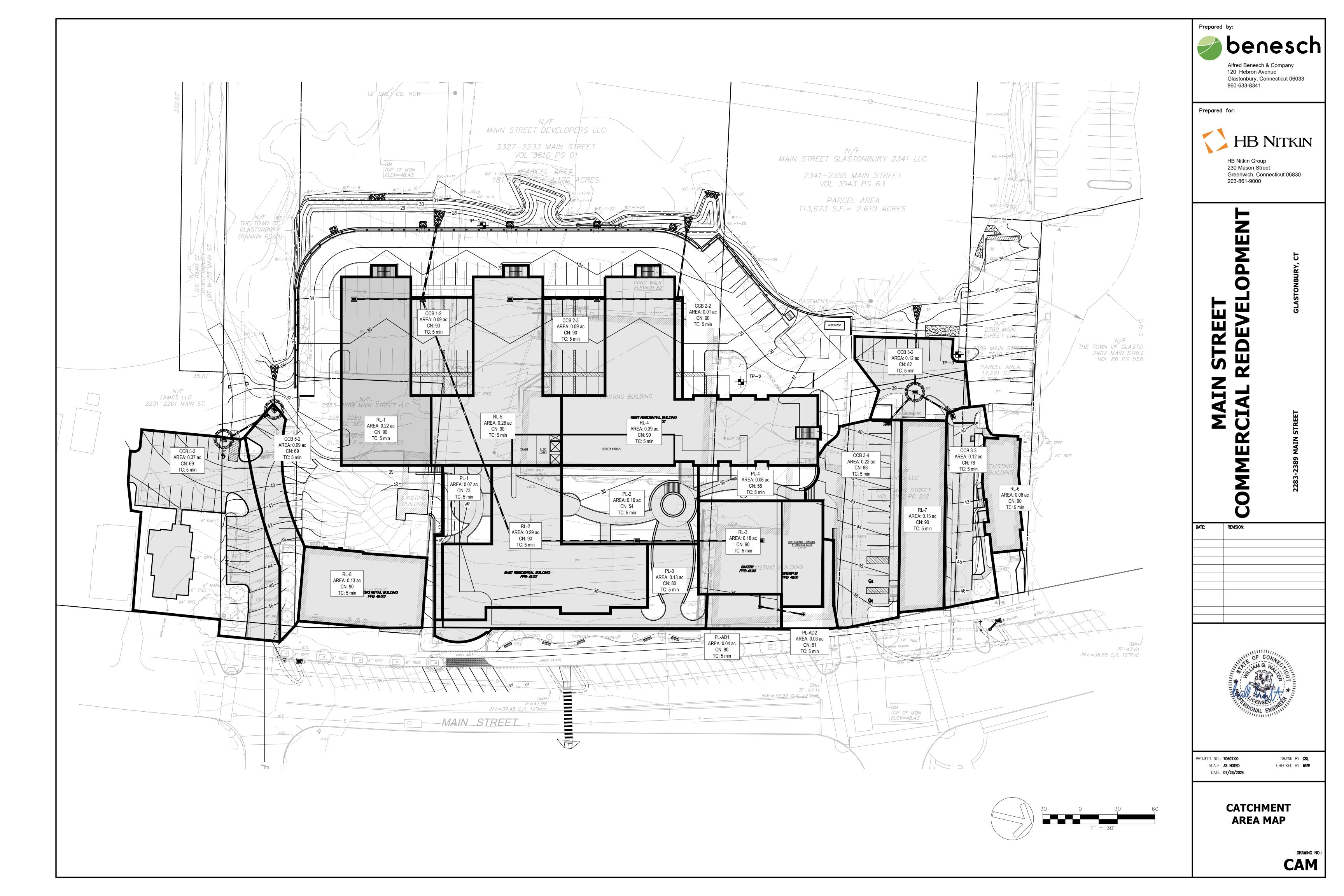
Inflow Area = 3.250 ac, 79.08% Impervious, Inflow Depth = 6.63" for 100-Year event 23.00 cfs @ 12.13 hrs, Volume= Inflow = 1.795 af Outflow = 21.74 cfs @ 12.15 hrs, Volume= 1.737 af, Atten= 5%, Lag= 1.3 min 0.55 cfs @ 12.15 hrs, Volume= Discarded = 0.752 af 21.19 cfs @ 12.15 hrs, Volume= Primary = 0.985 af Routed to Reach WET : Total Flow to Wetlands

Routing by Stor-Ind method, Time Span= 0.00-30.00 hrs, dt= 0.01 hrs / 2 Peak Elev= 31.35' @ 12.15 hrs Surf.Area= 6,498 sf Storage= 14,297 cf

Plug-Flow detention time= 132.4 min calculated for 1.737 af (97% of inflow) Center-of-Mass det. time= 112.4 min (889.7 - 777.3)

Volume	Inver	rt Avail.Sto	rage Storage	Description	
#1	28.00)' 15,27	78 cf Open St	orage (Prisma	tic)Listed below (Recalc)
- 1				0	
		Surf.Area	Inc.Store	Cum.Store	
(feet) (sq-ft)		(sq-ft)	(cubic-feet) (cubic-feet)		
28.00 2,276		2,276	0	0	
29.00 3		3,270	2,773	2,773	
30.00 4.6		4,609	3,940	6,713	
31.00		6,130	5,370	12,082	
31.50		6,655	3,196	15,278	
		,			
Device	Routing	Invert	Outlet Devices	S	
#1	Primary	30.75'	13.0' long x 2	2.0' breadth Br	oad-Crested Rectangular Weir
	,				0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50
			· · ·		61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32
#2	Primary	31.00'	`	/	oad-Crested Rectangular Weir
	, ,				0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.50 3.00 3.50
					61 2.60 2.66 2.70 2.77 2.89 2.88 2.85 3.07 3.20 3.32
#3	Discarded	28.00'			Surface area Conductivity to Groundwater Elevation = 25.75'
#0	Dissurded	20.00	2.000 11/11 2/		Curried and Conductivity to Croundwatch Elevation - 20.70

Prepared by Alfred Benesch & Company HydroCAD® 10.20-3c s/n 06318 © 2023 HydroCAD Software Solutions LLC


Discarded OutFlow Max=0.55 cfs @ 12.15 hrs HW=31.35' (Free Discharge) **3=Exfiltration** (Controls 0.55 cfs)

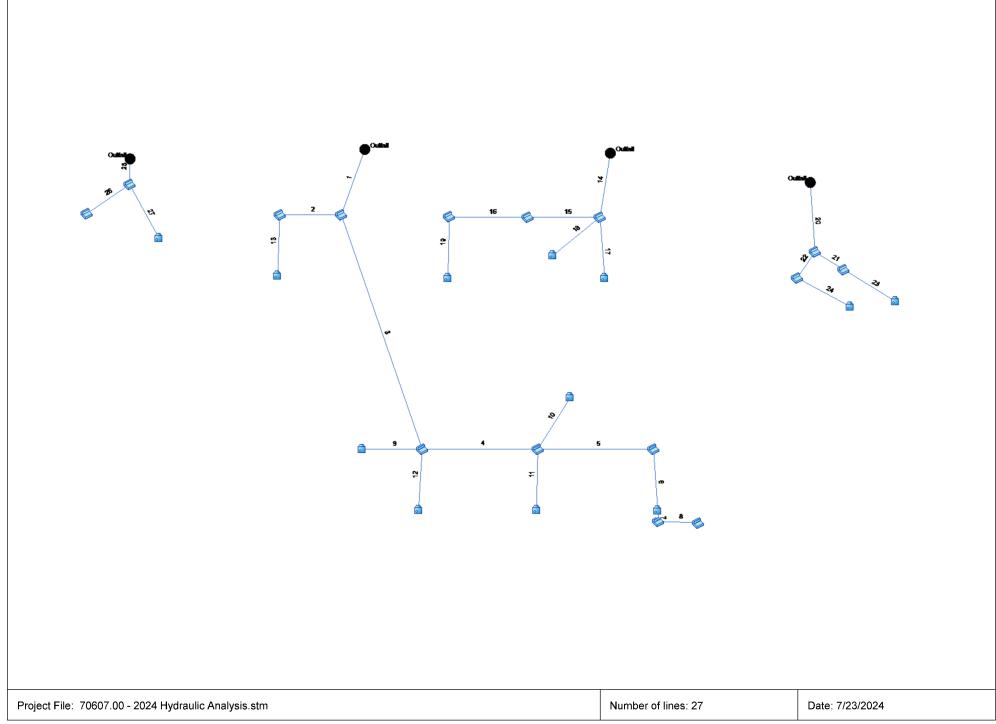
Primary OutFlow Max=21.16 cfs @ 12.15 hrs HW=31.35' (Free Discharge) 1=Broad-Crested Rectangular Weir(Weir Controls 15.79 cfs @ 2.02 fps) 2=Broad-Crested Rectangular Weir(Weir Controls 5.38 cfs @ 1.53 fps)

APPENDIX C

Hydraulic Analysis

C-Values Commercial Redevelopment Glastonbury, CT

Job Number:


70607.00

Drainage Areas

BASIN	TOTAL (AC.)	IMPERVIOUS (AC.)	PERVIOUS (AC.)	C-Value	Tc (Min.)	SYSTEM	BASIN DESCRIPTION
CCB 1-2	0.09	0.09	0.00	0.90	5.00		SOLO
ROOF LEADER 1	0.22	0.22	0.00	0.90	5.00		TO CCB 1-3
ROOF LEADER 2	0.29	0.29	0.00	0.90	5.00		TO CLCB 1-4
PLAZA 1	0.07	0.05	0.02	0.73	5.00		TO CLCB 1-4
PLAZA 2	0.16	0.06	0.10	0.54	5.00	#1	TO CLCB 1-5
PLAZA 3	0.13	0.11	0.02	0.80	5.00		TO CLCB 1-5
ROOF LEADER 3	0.18	0.18	0.00	0.90	5.00		TO CLCB 1-6
PLAZA - AD 1	0.04	0.04	0.00	0.90	5.00		TO CLCB 1-6
PLAZA - AD 2	0.03	0.02	0.01	0.61	5.00		TO CLCB 1-6
CCB 2-2	0.01	0.01	0.00	0.90	5.00		SOLO
ROOF LEADER 4	0.39	0.39	0.00	0.90	5.00		TO CCB 2-2
PLAZA 4	0.06	0.03	0.03	0.56	5.00	#2	TO CCB 2-2
CCB 2-3	0.09	0.09	0.00	0.90	5.00		SOLO
ROOF LEADER 5	0.26	0.26	0.00	0.90	5.00		TO CCB 2-4
CCB 3-2	0.12	0.10	0.01	0.82	5.00		SOLO
CCB3-3	0.12	0.09	0.03	0.76	5.00		SOLO
ROOF LEADER 6	0.06	0.06	0.00	0.90	5.00	#3	TO CCB 3-3
CCB 3-4	0.22	0.21	0.01	0.88	5.00		SOLO
ROOF LEADER 7	0.13	0.13	0.00	0.90	5.00		TO CCB 3-4
CCB 4-2	0.21	0.16	0.05	0.76	5.00	#4	SOLO
CCB 5-2	0.09	0.06	0.03	0.69	5.00		SOLO
CCB 5-3	0.37	0.24	0.13	0.69	5.00	#5	SOLO
ROOF LEADER 8	0.13	0.13	0.00	0.90	5.00		TO CCB 5-2
TOTAL	1.66	1.40	0.26	0.81	5.00		

7/18/2024 RC

70607.00 Hydraulic Analysis

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	(C	Tc		Rain	Total	Сар	Vel	Pipe		Invert El	ev	HGL Ele	€V	Grnd / F	lim Elev	Line ID
.ine	То		Incr	Total	-coeff	Incr	Total	Inlet	Syst	(1)	flow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	57.000	0.09	1.21	0.90	0.08	1.00	5.0	10.7	5.2	5.16	10.11	2.92	18	0.79	28.00	28.45	31.19	31.31	33.00	34.51	CCB1-2
2	1	51.000	0.00	0.22	0.00	0.00	0.20	0.0	5.4	7.2	1.42	3.86	4.06	12	1.00	31.50	32.01	31.92	32.51	34.51	34.51	CCB1-3
3	1	203.000	0.00	0.90	0.00	0.00	0.72	0.0	10.2	5.3	3.83	3.86	4.87	12	1.00	28.95	30.98	31.51	33.51	34.51	35.50	CLCB1-4
4	3	96.000	0.00	0.54	0.00	0.00	0.41	0.0	9.7	5.5	2.22	3.86	2.82	12	1.00	31.03	31.99	34.34	34.66	35.50	35.50	CLCB1-5
5	4	96.000	0.00	0.25	0.00	0.00	0.22	0.0	8.9	5.7	1.23	3.86	1.57	12	1.00	32.04	33.00	34.84	34.94	35.50	35.50	CLCB1-6
6	5	50.000	0.18	0.25	0.90	0.16	0.22	5.0	8.5	5.8	1.26	3.86	3.92	12	1.00	34.75	35.25	35.14	35.72	35.50	40.00	RL-3
7	6	9.000	0.04	0.07	0.90	0.04	0.05	5.0	8.2	5.9	0.32	3.86	2.64	12	1.00	43.58	43.67	43.78	43.90	40.00	48.00	PL-AD1
8	7	33.000	0.03	0.03	0.61	0.02	0.02	5.0	5.0	7.4	0.14	3.86	1.40	12	1.00	43.67	44.00	43.90	44.15	48.00	47.00	PL-AD2
9	3	50.000	0.07	0.07	0.73	0.05	0.05	5.0	5.0	7.4	0.38	3.86	0.48	12	1.00	32.73	33.23	34.34	34.34	35.50	40.00	PL-1
10	4	50.000	0.16	0.16	0.54	0.09	0.09	5.0	5.0	7.4	0.64	3.86	1.05	12	1.00	33.74	34.24	34.84	34.85	35.50	40.00	PL-2
11	4	50.000	0.13	0.13	0.80	0.10	0.10	5.0	5.0	7.4	0.77	3.86	1.26	12	1.00	33.74	34.24	34.84	34.85	35.50	40.00	PL-3
12	3	50.000	0.29	0.29	0.90	0.26	0.26	5.0	5.0	7.4	1.94	3.86	2.47	12	1.00	32.73	33.23	34.34	34.46	35.50	40.00	RL-2
13	2	50.000	0.22	0.22	0.90	0.20	0.20	5.0	5.0	7.4	1.47	3.86	3.67	12	1.00	32.01	32.51	32.51	33.02	34.51	37.00	RL-1
14	End	53.000	0.01	0.81	0.90	0.01	0.71	5.0	7.6	6.2	4.36	4.31	5.56	12	1.25	30.00	30.66	31.19	31.87	33.00	34.10	CCB2-2
15	14	60.000	0.09	0.35	0.90	0.08	0.32	5.0	5.9	6.9	2.19	3.86	2.78	12	1.00	30.71	31.31	32.64	32.83	34.10	34.51	CCB2-3
16	15	65.000	0.00	0.26	0.00	0.00	0.23	0.0	5.4	7.2	1.69	3.86	2.15	12	1.00	31.36	32.01	32.89	33.01	34.51	34.51	CCB2-4
17	14	50.000	0.39	0.39	0.90	0.35	0.35	5.0	5.0	7.4	2.61	3.86	3.32	12	1.00	30.66	31.16	32.64	32.87	34.10	35.00	RL-4
18	14	50.000	0.06	0.06	0.56	0.03	0.03	5.0	5.0	7.4	0.25	3.86	0.32	12	1.00	30.66	31.16	32.64	32.64	34.10	35.00	PL-4
19	16	50.000	0.26	0.26	0.90	0.23	0.23	5.0	5.0	7.4	1.74	3.86	2.68	12	1.00	32.01	32.51	33.12	33.18	34.51	35.00	RL-5
20	End	52.000	0.12	0.65	0.82	0.10	0.55	5.0	7.0	6.4	3.56	6.55	6.88	12	2.88	35.50	37.00	36.03	37.80	36.50	39.00	CCB3-2 DW
21	20	28.000	0.12	0.18	0.76	0.09	0.15	5.0	6.6	6.6	0.95	3.99	2.28	12	1.07	37.00	37.30	37.80	37.71	39.00	39.30	CCB3-3
22	20	26.000	0.22	0.35	0.88	0.19	0.31	5.0	5.8	7.0	2.18	4.14	3.69	12	1.15	37.00	37.30	37.80	37.93	39.00	39.31	CCB3-4
7060	7.00 Hv	/draulic	Analvs	is												Numbe	r of lines: ;	27		Run Da	ate: 7/24/2	2024

Storm Sewer Tabulation

n	Len	Drng A	rea	Rnoff	Area x	(C	Тс				Сар	Vel	Pipe	I	Invert El	ev	HGL E	ev	Grnd / R	lim Elev	Line ID	
То	-	Incr	Total	−coeπ	Incr	Total	Inlet	Syst	-(1)	tiow	full		Size	Slope	Dn	Up	Dn	Up	Dn	Up	-	
	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
21	50.000	0.06	0.06	0.90	0.05	0.05	5.0	5.0	7.4	0.40	3.86	0.52	12	1.00	36.30	36.80	37.71	37.71	39.30	41.00	RL-6	
22	50.000	0.13	0.13	0.90	0.12	0.12	5.0	5.0	7.4	0.87	3.86	1.11	12	1.00	36.31	36.81	37.93	37.96	39.31	41.00	RL-7	
End	21.000	0.09	0.59	0.69	0.06	0.43	5.0	5.8	7.0	3.04	3.26	4.71	12	0.71	34.50	34.65	35.27	35.42	37.00	36.70	CCB5-2 DW	
25	43.000	0.37	0.37	0.69	0.26	0.26	5.0	5.0	7.4	1.90	6.31	3.19	12	2.67	34.70	35.85	35.86	36.44	36.70	38.35	CCB5-3 DW	
25	50.000	0.13	0.13	0.90	0.12	0.12	5.0	5.0	7.4	0.87	3.86	1.27	12	1.00	34.65	35.15	35.86	35.88	36.70	39.00	RL-8	
7.00 Ну	ydraulic	Analysi	is												Numbe	r of lines:	27		Run Da	ate: 7/24/2	024	
															Numbe	r of lines:	27		Run Da	ate: 7/24/2	024	
	To 21 22 End 25 25	Tone (ft) 21 50.000 22 50.000 End 21.000 25 50.000 25 50.000	To Incr 21 50.000 0.06 22 50.000 0.13 End 21.000 0.09 25 43.000 0.37 25 50.000 0.13	To Incr Total 21 50.000 0.06 0.06 22 50.000 0.13 0.13 End 21.000 0.09 0.59 25 43.000 0.37 0.37 25 50.000 0.13 0.13 25 50.000 0.13 0.13 25 50.000 0.13 0.13 25 50.000 0.13 0.13 25 50.000 0.13 0.13 25 50.000 0.13 0.13 25 50.000 0.13 0.13	To Incr Total coeff 21 50.000 0.06 0.06 0.90 22 50.000 0.13 0.13 0.90 21 50.000 0.09 0.59 0.69 25 43.000 0.37 0.37 0.69 25 50.000 0.13 0.13 0.90 25 50.000 0.13 0.13 0.90 25 50.000 0.13 0.13 0.90 25 50.000 0.13 0.13 0.90 9 50.000 0.13 0.13 0.90 9 50.000 0.13 0.13 0.90	To Incr Total coeff Incr 21 50.000 0.06 0.06 0.90 0.05 22 50.000 0.13 0.13 0.90 0.12 End 21.000 0.07 0.59 0.69 0.06 25 43.000 0.37 0.37 0.69 0.12 25 50.000 0.13 0.13 0.90 0.12 25 50.000 0.13 0.13 0.90 0.12 25 50.000 0.13 0.13 0.90 0.12 9 9 0.13 0.13 0.90 0.12 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	Tone Incr Total Incr Total Incr Total 21 50.000 0.06 0.06 0.90 0.05 0.05 22 50.000 0.13 0.13 0.90 0.12 0.12 End 21.000 0.37 0.37 0.69 0.26 0.26 25 50.000 0.13 0.13 0.90 0.12 0.12 25 50.000 0.13 0.13 0.90 0.12 0.12 25 50.000 0.13 0.13 0.90 0.12 0.12 26 50.000 0.13 0.13 0.90 0.12 0.12 27 Soloon 0.13 0.13 0.90 0.12 0.12 29 Soloon Soloon <td>Toine Incr Total Incr Total Incr Total Incr Total Incr Indr Indr</td> <td>To Incr Total oceff Incr Total Inicr Solution 21 50.000 0.13 0.13 0.69 0.26 0.26 5.0 5.0 25 50.000 0.13 0.13 0.90 0.12 0.12 5.0 5.0 26 50.000 0.13 0.13 0.90 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.</td> <td>Top Incr Total coeff Incr Total Inler Syst (in/r) (in/r)</td> <td>Tope Total ocoff Incr Total Incr Total Iner Total Iner Minit Syst (i) flow 21 50.000 0.06 0.06 0.90 0.05 0.05 5.00 5.00 7.40 0.40 22 50.000 0.13 0.13 0.90 0.12 0.12 5.00 5.00 7.40 0.87 End 21.000 0.90 0.59 0.69 0.26 0.43 5.00 5.80 7.40 0.87 25 50.000 0.37 0.37 0.69 0.26 0.26 5.00 5.00 7.40 0.87 25 50.000 0.13 0.13 0.90 0.12 0.12 5.00 5.00 7.40 0.87 26 50.000 0.13 0.13 0.90 0.12 0.12 5.00 5.00 7.40 0.87 27 50.000 0.13 0.13 0.90 0.14</td> <td>Term Total Coeff Incr Total Incr Total Inlet Syst (1) flow (uli 21 50.000 0.06 0.06 0.90 0.05 0.05 5.0 5.0 7.4 0.40 3.86 22 50.000 0.13 0.13 0.90 0.12 0.12 5.0 5.0 7.4 0.40 3.86 22 50.000 0.09 0.59 0.69 0.06 0.43 5.0 5.0 7.4 0.40 3.86 25 43.000 0.37 0.37 0.69 0.26 0.26 5.0 5.0 7.4 1.90 6.31 25 50.000 0.13 0.13 0.90 0.12 0.12 5.0 5.0 7.4 0.87 3.86 25 50.000 0.13 0.13 0.90 0.12 0.12 5.0 5.0 7.4 0.87 3.86 uset uset</td> <td>Image: Constraint of the section of the sec</td> <td>Incr Total Coeff Incr Total Incr Total Incr Total Incr Total Incr Total Incr Incr</td> <td>Char Total cord Total Inter Total Inter Syst Inter Row full Inter Slope 21 60.00 0.06 0.06 0.06 0.05 0.05 5.0 5.0 7.4 0.40 3.86 0.52 1.2 1.00 22 50.000 0.13 0.13 0.90 0.05 0.05 5.0 5.0 7.4 0.40 3.86 0.52 1.2 1.00 22 50.000 0.59 0.69 0.66 0.43 5.0 5.0 7.4 0.87 3.86 1.11 12 1.00 25 50.000 0.13 0.37 0.69 0.26 0.26 5.0 5.0 7.4 1.90 6.31 3.19 12 2.67 25 50.00 0.13 0.13 0.90 0.12 0.12 5.0 5.0 7.4 0.87 3.86 1.27 12 1.00 </td> <td>Term Image Total coeff Image Total Index Syst (1) flow full Size Size</td> <td>Image Image Conf Total Image Total Image System Image <th< td=""><td>ner ier cerf ier cerf ier read ier ier<</td><td>Line Correction Correction Correction Total Inter Syste (no) <th(< td=""><td>r. f. r. f. r. f. r. f. r. f. (ac) r. f. r. f. (ac) f. f. (ac) <th f.="" f.<="" td=""><td>r. f. f. f. f. r. f. r. f. f.</td></th></td></th(<></td></th<></td>	Toine Incr Total Incr Total Incr Total Incr Total Incr Indr Indr	To Incr Total oceff Incr Total Inicr Solution 21 50.000 0.13 0.13 0.69 0.26 0.26 5.0 5.0 25 50.000 0.13 0.13 0.90 0.12 0.12 5.0 5.0 26 50.000 0.13 0.13 0.90 0.12 0.12 0.12 0.12 0.12 0.13 0.13 0.13 0.	Top Incr Total coeff Incr Total Inler Syst (in/r) (in/r)	Tope Total ocoff Incr Total Incr Total Iner Total Iner Minit Syst (i) flow 21 50.000 0.06 0.06 0.90 0.05 0.05 5.00 5.00 7.40 0.40 22 50.000 0.13 0.13 0.90 0.12 0.12 5.00 5.00 7.40 0.87 End 21.000 0.90 0.59 0.69 0.26 0.43 5.00 5.80 7.40 0.87 25 50.000 0.37 0.37 0.69 0.26 0.26 5.00 5.00 7.40 0.87 25 50.000 0.13 0.13 0.90 0.12 0.12 5.00 5.00 7.40 0.87 26 50.000 0.13 0.13 0.90 0.12 0.12 5.00 5.00 7.40 0.87 27 50.000 0.13 0.13 0.90 0.14	Term Total Coeff Incr Total Incr Total Inlet Syst (1) flow (uli 21 50.000 0.06 0.06 0.90 0.05 0.05 5.0 5.0 7.4 0.40 3.86 22 50.000 0.13 0.13 0.90 0.12 0.12 5.0 5.0 7.4 0.40 3.86 22 50.000 0.09 0.59 0.69 0.06 0.43 5.0 5.0 7.4 0.40 3.86 25 43.000 0.37 0.37 0.69 0.26 0.26 5.0 5.0 7.4 1.90 6.31 25 50.000 0.13 0.13 0.90 0.12 0.12 5.0 5.0 7.4 0.87 3.86 25 50.000 0.13 0.13 0.90 0.12 0.12 5.0 5.0 7.4 0.87 3.86 uset uset	Image: Constraint of the section of the sec	Incr Total Coeff Incr Total Incr Total Incr Total Incr Total Incr Total Incr Incr	Char Total cord Total Inter Total Inter Syst Inter Row full Inter Slope 21 60.00 0.06 0.06 0.06 0.05 0.05 5.0 5.0 7.4 0.40 3.86 0.52 1.2 1.00 22 50.000 0.13 0.13 0.90 0.05 0.05 5.0 5.0 7.4 0.40 3.86 0.52 1.2 1.00 22 50.000 0.59 0.69 0.66 0.43 5.0 5.0 7.4 0.87 3.86 1.11 12 1.00 25 50.000 0.13 0.37 0.69 0.26 0.26 5.0 5.0 7.4 1.90 6.31 3.19 12 2.67 25 50.00 0.13 0.13 0.90 0.12 0.12 5.0 5.0 7.4 0.87 3.86 1.27 12 1.00	Term Image Total coeff Image Total Index Syst (1) flow full Size Size	Image Image Conf Total Image Total Image System Image Image <th< td=""><td>ner ier cerf ier cerf ier read ier ier<</td><td>Line Correction Correction Correction Total Inter Syste (no) <th(< td=""><td>r. f. r. f. r. f. r. f. r. f. (ac) r. f. r. f. (ac) f. f. (ac) <th f.="" f.<="" td=""><td>r. f. f. f. f. r. f. r. f. f.</td></th></td></th(<></td></th<>	ner ier cerf ier cerf ier read ier ier<	Line Correction Correction Correction Total Inter Syste (no) (no) <th(< td=""><td>r. f. r. f. r. f. r. f. r. f. (ac) r. f. r. f. (ac) f. f. (ac) <th f.="" f.<="" td=""><td>r. f. f. f. f. r. f. r. f. f.</td></th></td></th(<>	r. f. r. f. r. f. r. f. r. f. (ac) r. f. r. f. (ac) f. f. (ac) <th f.="" f.<="" td=""><td>r. f. f. f. f. r. f. r. f. f.</td></th>	<td>r. f. f. f. f. r. f. r. f. f.</td>	r. f. f. f. f. r. f. r. f.

Hydraulic Grade Line Computations

.ine	Size	Q			D	ownstre	eam				Len				Upst	ream				Chec	k	JL	Mino
(1)	(in) (2)	(cfs) (3)	Invert elev (ft) (4)	HGL elev (ft) (5)	Depth (ft) (6)	Area (sqft) (7)	Vel (ft/s) (8)	Vel head (ft) (9)	EGL elev (ft) (10)	Sf (%) (11)	(ft) (12)	Invert elev (ft) (13)	HGL elev (ft) (14)	Depth (ft) (15)	Area (sqft) (16)	Vel (ft/s) (17)	Vel head (ft) (18)	EGL elev (ft) (19)	Sf (%) (20)	Ave Sf (%) (21)	Enrgy loss (ft) (22)	- coeff (K) (23)	loss (ft) (24)
1	18	5.16	28.00	31.19	1.50	1.77	2.92	0.13	31.32	0.206	57.000	28.45	31.31	1.50	1.77	2.92	0.13	31.44	0.206	0.206	0.117	1.54	0.20
2	12	1.42	31.50	31.92	0.42*	0.31	4.54	0.20	32.12	0.000	51.000	32.01	32.51	0.50**	0.40	3.58	0.20	32.71	0.000	0.000	n/a	1.50	n/a
3	12	3.83	28.95	31.51	1.00	0.79	4.87	0.37	31.88	0.985	203.00	030.98	33.51	1.00	0.79	4.87	0.37	33.88	0.984	0.985	1.999	2.24	0.83
4	12	2.22	31.03	34.34	1.00	0.79	2.82	0.12	34.46	0.331	96.000	31.99	34.66	1.00	0.79	2.82	0.12	34.78	0.331	0.331	0.317	1.50	0.19
5	12	1.23	32.04	34.84	1.00	0.79	1.57	0.04	34.88	0.102	96.000	33.00	34.94	1.00	0.79	1.57	0.04	34.98	0.102	0.102	0.098	1.50	0.06
6	12	1.26	34.75	35.14	0.39*	0.29	4.40	0.18	35.33	0.000	50.000	35.25	35.72	0.47**	0.37	3.44	0.18	35.91	0.000	0.000	n/a	0.15	0.03
7	12	0.32	43.58	43.78	0.20*	0.11	2.98	0.08	43.86	0.000	9.000	43.67	43.90	0.23**	0.14	2.31	0.08	43.99	0.000	0.000	n/a	1.49	0.12
8	12	0.14	43.67	43.90	0.23	0.07	0.97	0.05	43.96	0.000	33.000	44.00	44.15 j	0.15**	0.07	1.83	0.05	44.20	0.000	0.000	n/a	1.00	n/a
9	12	0.38	32.73	34.34	1.00	0.79	0.48	0.00	34.34	0.010	50.000	33.23	34.34	1.00	0.79	0.48	0.00	34.35	0.010	0.010	0.005	1.00	0.00
10	12	0.64	33.74	34.84	1.00	0.79	0.82	0.01	34.85	0.028	50.000	34.24	34.85	0.61	0.50	1.29	0.03	34.87	0.059	0.044	0.022	1.00	0.03
11	12	0.77	33.74	34.84	1.00	0.79	0.98	0.02	34.86	0.040	50.000	34.24	34.85	0.61	0.50	1.54	0.04	34.89	0.084	0.062	0.031	1.00	0.04
12	12	1.94	32.73	34.34	1.00	0.79	2.47	0.09	34.43	0.253	50.000	33.23	34.46	1.00	0.79	2.47	0.09	34.56	0.253	0.253	0.127	1.00	0.09
13	12	1.47	32.01	32.51	0.50	0.40	3.71	0.20	32.72	0.000	50.000	32.51	33.02	0.51**	0.41	3.62	0.20	33.23	0.000	0.000	n/a	1.00	0.20
14	12	4.36	30.00	31.19	1.00	0.79	5.56	0.48	31.67	1.280	53.000	30.66	31.87	1.00	0.79	5.56	0.48	32.35	1.279	1.280	0.678	1.61	0.77
15	12	2.19	30.71	32.64	1.00	0.79	2.78	0.12	32.76	0.321	60.000	31.31	32.83	1.00	0.79	2.78	0.12	32.95	0.321	0.321	0.193	0.50	0.06
16	12	1.69	31.36	32.89	1.00	0.79	2.15	0.07	32.97	0.192	65.000	32.01	33.01	1.00	0.79	2.15	0.07	33.08	0.187	0.189	0.123	1.50	0.11
17	12	2.61	30.66	32.64	1.00	0.79	3.32	0.17	32.81	0.458	50.000	31.16	32.87	1.00	0.79	3.32	0.17	33.04	0.458	0.458	0.229	1.00	0.17
18	12	0.25	30.66	32.64	1.00	0.79	0.32	0.00	32.64	0.004	50.000	31.16	32.64	1.00	0.79	0.32	0.00	32.64	0.004	0.004	0.002	1.00	0.00
19	12	1.74	32.01	33.12	1.00	0.79	2.22	0.08	33.19	0.203	50.000	32.51	33.18	0.67	0.55	3.14	0.15	33.33	0.333	0.268	0.134	1.00	0.15
20	12	3.56	35.50	36.03	0.53*	0.42	8.51	0.43	36.45	0.000	52.000	37.00	37.80	0.80**	0.68	5.25	0.43	38.23	0.000	0.000	n/a	1.52	0.65
21	12	0.95	37.00	37.80	0.80	0.30	1.41	0.15	37.96	0.000	28.000	37.30	37.71	0.41**	0.30	3.15	0.15	37.86	0.000	0.000	n/a	0.50	n/a
706)7.00 Hyc	draulic A	nalysis											 N	umber c	f lines: 2	27		Rur	Date: 7	7/24/202	⊥ 4	

Hydraulic Grade Line Computations

ine	Size	Q			D	ownstre	am				Len				Upst	ream				Chec	k	JL	Minor
(1)	(in) (2)	(cfs) (3)	Invert elev (ft) (4)	HGL elev (ft) (5)	Depth (ft) (6)	Area (sqft) (7)	Vel (ft/s) (8)	Vel head (ft) (9)	EGL elev (ft) (10)	Sf (%) (11)		Invert elev (ft) (13)	HGL elev (ft) (14)	Depth (ft) (15)	Area (sqft) (16)	Vel (ft/s) (17)	Vel head (ft) (18)	EGL elev (ft) (19)	Sf (%) (20)	Ave Sf (%) (21)	Enrgy loss (ft) (22)	(K) (23)	loss (ft) (24)
22	12	2.18	37.00	37.80	0.80	0.52	3.21	0.27	38.08	0.000	26.000	37.30	37.93 j	0.63**	0.52	4.18	0.27	38.20	0.000	0.000	n/a	1.50	n/a
23	12	0.40	36.30	37.71	1.00	0.79	0.51	0.00	37.71	0.011	50.000	36.80	37.71	0.91	0.75	0.53	0.00	37.72	0.009	0.010	0.005	1.00	0.00
24	12	0.87	36.31	37.93	1.00	0.79	1.11	0.02	37.95	0.051	50.000	36.81	37.96	1.00	0.79	1.11	0.02	37.97	0.051	0.051	0.025	1.00	0.02
25	12	3.04	34.50	35.27	0.77*	0.65	4.72	0.35	35.61	0.714	21.000	34.65	35.42	0.77	0.65	4.71	0.35	35.76	0.713	0.713	0.150	1.28	0.44
26	12	1.90	34.70	35.86	1.00	0.48	2.42	0.09	35.95	0.242	43.000	35.85	36.44 j	0.59**	0.48	3.96	0.24	36.68	0.575	0.408	n/a	1.00	n/a
27	12	0.87	34.65	35.86	1.00	0.78	1.11	0.02	35.88	0.001	50.000	35.15	35.88	0.73	0.61	1.42	0.03	35.91	0.000	0.058	0.023	1.00	0.03
	07.00 Hyd			cal depth.	; j-Line co	ontains h	yd. jumr); c=c	ir e = ellip	b = box					lumber c	f lines: 2	27		Rur	n Date: T	7/24/202	4	

General Procedure:

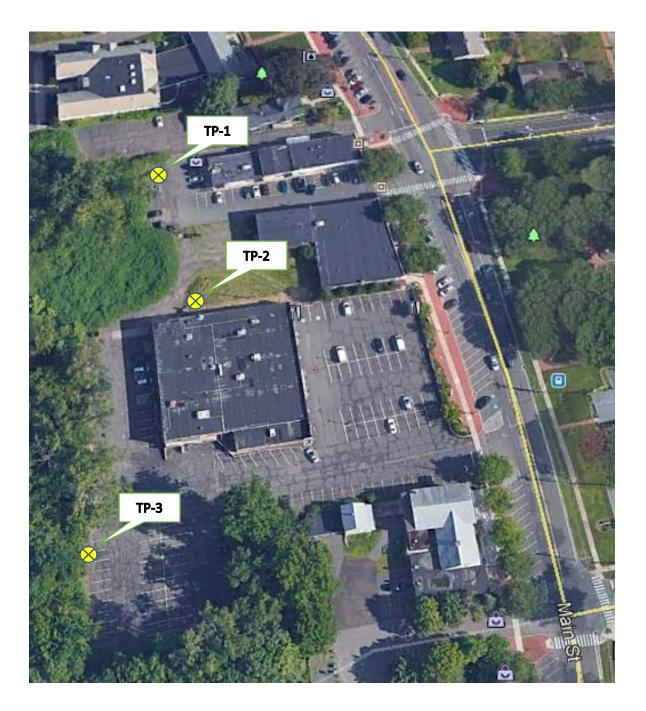
Hydraflow computes the HGL using the Bernoulli energy equation. Manning's equation is used to determine energy losses due to pipe friction. In a standard step, iterative procedure, Hydraflow assumes upstream HGLs until the energy equation balances. If the energy equation cannot balance, supercritical flow exists and critical depth is temporarily assumed at the upstream end. A supercritical flow Profile is then computed using the same procedure in a downstream direction using momentum principles.

- Col. 1 The line number being computed. Calculations begin at Line 1 and proceed upstream.
- Col. 2 The line size. In the case of non-circular pipes, the line rise is printed above the span.
- Col. 3 Total flow rate in the line.
- Col. 4 The elevation of the downstream invert.
- Col. 5 Elevation of the hydraulic grade line at the downstream end. This is computed as the upstream HGL + Minor loss of this line's downstream line.
- Col. 6 The downstream depth of flow inside the pipe (HGL Invert elevation) but not greater than the line size.
- Col. 7 Cross-sectional area of the flow at the downstream end.
- Col. 8 The velocity of the flow at the downstream end, (Col. 3 / Col. 7).
- Col. 9 Velocity head (Velocity squared / 2g).
- Col. 10 The elevation of the energy grade line at the downstream end, HGL + Velocity head, (Col. 5 + Col. 9).
- Col. 11 The friction slope at the downstream end (the S or Slope term in Manning's equation).
- Col. 12 The line length.
- Col. 13 The elevation of the upstream invert.
- Col. 14 Elevation of the hydraulic grade line at the upstream end.
- Col. 15 The upstream depth of flow inside the pipe (HGL Invert elevation) but not greater than the line size.
- Col. 16 Cross-sectional area of the flow at the upstream end.
- Col. 17 The velocity of the flow at the upstream end, (Col. 3 / Col. 16).
- Col. 18 Velocity head (Velocity squared / 2g).
- Col. 19 The elevation of the energy grade line at the upstream end, HGL + Velocity head, (Col. 14 + Col. 18) .
- Col. 20 The friction slope at the upstream end (the S or Slope term in Manning's equation).
- Col. 21 The average of the downstream and upstream friction slopes.
- Col. 22 Energy loss. Average Sf/100 x Line Length (Col. 21/100 x Col. 12). Equals (EGL upstream EGL downstream) +/- tolerance.
- Col. 23 The junction loss coefficient (K).
- Col. 24 Minor loss. (Col. 23 x Col. 18). Is added to upstream HGL and used as the starting HGL for the next upstream line(s).

	Outlet Protection reet - Commercial Redevelopment Project Number: 70607.00			
FE 1-1 L = ((3(Q-5))/Sp^1.5)+10 LENGTH 10.26 (Min Length) W = 3(Sp) OR 3(Sp)+0.4L WIDTH-1 4.50 WIDTH-2 9.30	Table 11-13.1 Min Length = Type B Apron Outlet Velocity Rip Rap Specification	12 = = =	ft Max TW 2.92 (ft/s) Modified	Q= 5.16 SP= 1.5 L= 12
FE 2-1 L = ((3(Q-5))/Sp^1.5)+10 LENGTH 8.08 (Min Length) W = 3(Sp) OR 3(Sp)+0.4L WIDTH-1 3.00 WIDTH-2 7.00	Table 11-13.1 Min Length = Type B Apron Outlet Velocity Rip Rap Specification	10 = = =	ft Max TW 5.56 (ft/s) Modified	Q= 4.36 SP= 1 L= 10
FE 3-1 L = ((3(Q-5))/Sp^1.5)+10 LENGTH 5.68 (Min Length) W = 3(Sp) OR 3(Sp)+0.4L WIDTH-1 3.00 WIDTH-2 7.00	Table 11-13.1 Min Length = Type B Apron Outlet Velocity Rip Rap Specification	10 = = =	ft Max TW 6.88 (ft/s) Modified	Q= 3.56 SP= 1 L= 10
FE 5-1 L = ((3(Q-5))/Sp^1.5)+10 LENGTH 5.68 (Min Length) W = 3(Sp) OR 3(Sp)+0.4L WIDTH-1 3.00 WIDTH-2 7.00	Table 11-13.1 Min Length = Type B Apron Outlet Velocity Rip Rap Specification	10 = = =	ft Max TW 4.71 (ft/s) Modified	Q= 3.56 SP= 1 L= 10
	n for non-circular sections, m (ft) DTH-1 @ Flared End DTH-2 @ Back of Outlet Protection		Rip 0-8 8-10 10-14	ft/s Intermediate

APPENDIX D

Water Quality Computations


				Com	iality Volume Comp mercial Redevelopi Project # 70607.00	ment			
Designation	Description	Total Area (ac)	Total Impervious Area (ac)	Impervious Coverage, I (%)	Volumetric Runoff Coefficient (R) R = 0.05 + 0.009*(I)	WQV (ac-ft, apply 1.3") WQV = (1.3")*(R)*(A)/12	Required WQV (cf)	50% Reduction for Existing >40% DCIA	Provided WQV (cf)
1	Total Site	4.90	3.69	75.30	0.73	0.386	16,827	8,413	10,500
2	Pond 1	3.26	2.57	78.83	0.76	0.268	11,684	5,842	10,500

APPENDIX E

Standpipe Data and Test Pit Evaluation Report

Test Pit Locations 2289 - 2389 Main Street, Glastonbury, CT

	Height Above	3/26,	/2021	4/2/	2021	4/9/	2021	4/19	/2021	4/23	/2021	4/30	/2021
Stand Pipe	Ground (in)	Depth to Water (in) [Top of Pipe]	Depth to Water (in) [Ground]	Depth to Water (in) [Top of Pipe]	Depth to Water (in) [Ground]	Depth to Water (in) [Top of Pipe]	Depth to Water (in) [Ground]	Depth to Water (in) [Top of Pipe]	Depth to Water (in) [Ground]	Depth to Water (in) [Top of Pipe]	Depth to Water (in) [Ground]	Depth to Water (in) [Top of Pipe]	Depth to Water (in) [Ground]
1 (Daybreak)	21	81	60	80	59	89.5	68.5	82	61	83	62	-	-
2 (Adjacent Bldg)	17	87 (Dry)	Dry @ 70"	87 (Dry)	Dry @ 70"	87 (Wet/Mud)	70	87	70	87	70	87	70
3 (SW Corner)	21	40	19	44	23	47	26	45.5	24.5	45.5	24.5	44	25

Environmental Site Investigations

 Building Contaminant Surveys
 Wetlands Consulting

 Remediation Contract Management

May 11, 2021

Will Walter, PE, LEED AP Senior Project Manager Alfred Benesch & Company 120 Hebron Avenue, 2nd Floor Glastonbury, CT 06033

> RE: Test Pit Data Findings Report 2333 Main Street Glastonbury, Connecticut

Dear Mr. Walter:

Martin Brogie, Inc. (MBI) is pleased to submit the following information regarding the soil and groundwater monitoring data acquired from the completion of three test pits and installation and monitoring of groundwater standpipes located in each. The work was completed to evaluate site soil and groundwater conditions to facilitate design of adequate stormwater management facilities.

Site Description

The subject property consists of 4 commercial properties totaling 7.67 acres and located along the west side of Main Street in downtown Glastonbury, Connecticut. The eastern portion of the property contains 5 commercial buildings and associated paved parking and driveway areas as well as lawn and landscaping. The western portion of the property consists of wooded wetlands.

A site location map is provided as Figure 1. An aerial view of the property, including the test pit locations is provided as Figure 2.

28 Arbor Lane Madison, CT 06443 martinbrogieinc@gmail.com 860-208-0360

Test Pit Excavation

Three test pits were excavated on the site on February 18, 2021 by Avery Construction of Somers, Connecticut using a track-mounted excavator and under the direction of Alfred Benesch & Company of Glastonbury, Connecticut. MBI was onsite to evaluate and describe the test pit findings.

Test Pit #1 was located in the northern portion of the site along the western edge of a gravel parking area located to the rear of 2377 Main Street. Test Pit #2 was located in a grassed area north of the northwest corner of the building located at 2333 Main Street. Test Pit #3 was located along the western edge of the paved parking area located in the southwest portion of the developed area of the site. Test pit locations are shown on Figure 2.

The following test pit observations were made by MBI:

TP#1

0-56": fill material consisting of fine to coarse silty sand mixed with approximately 10% glass, metal fragments, brick and concrete 56-81": light brown to brown, horizontally-bedded, fine to medium sand Seepage at 81"

TP#2

0-66": fill material consisting of fine to medium silty sand mixed with approximately 15% glass, metal fragments, brick and concrete Seepage at 66"

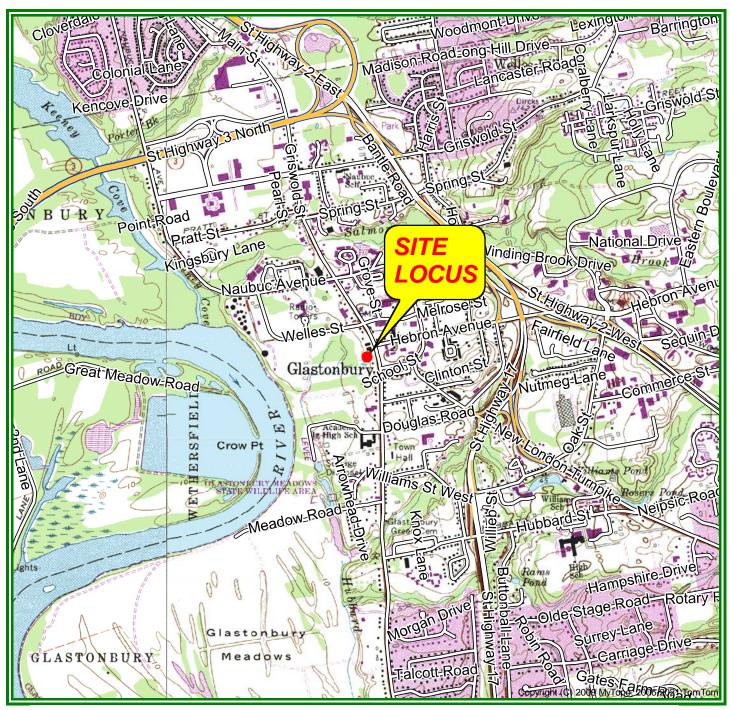
TP#3

0-3": asphalt
3-15": processed gravel
15-39": fine to medium silty sand
39-52": Scarboro Muck
52-60": Olive-grey, fine silty sand
Seepage at 39"

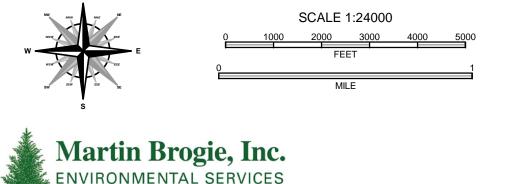
Groundwater Depth Measurements

Depth to groundwater was measured at each test pit standpipe in March and April of 2021 by Benesch personnel. The depths at each location on each data collection date are summarized in the table below.

Test Pit Data Findings Main Street – Glastonbury, Connecticut May 11, 2021


Depth to groundwater from ground surface summary:

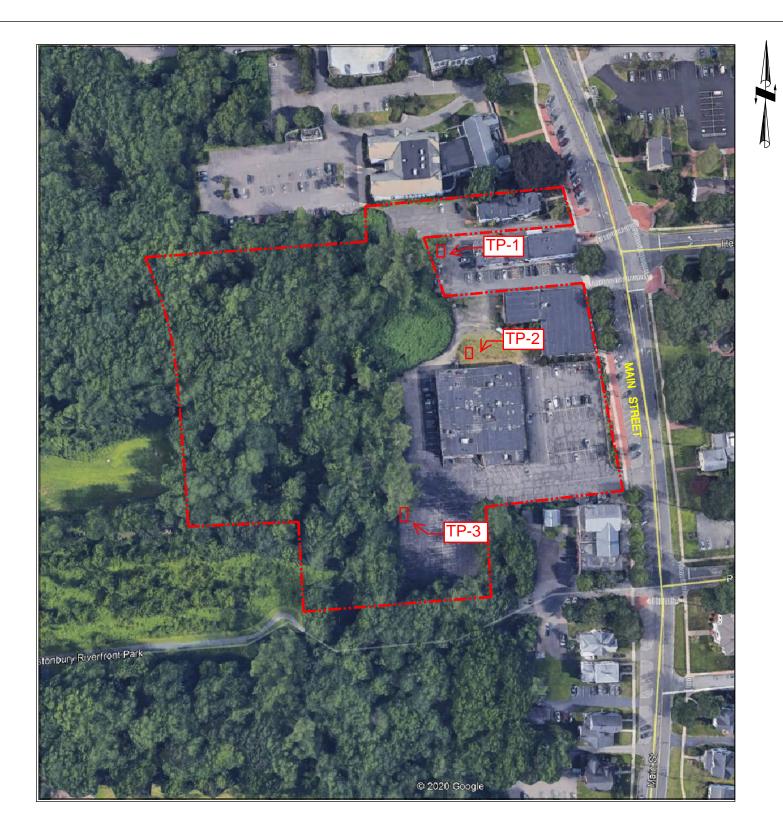
Test Pit ID	March 26	April 2	April 9	April 19	April 23	April 30
#1	60"	59"	68.5"	61"	62"	Pipe broken
#2	Dry/ >70"	Dry/>70"	70"	70"	70"	70"
#3	19"	23"	26"	24.5"	24.5"	25"


Please contact the undersigned at 860-208-0360 is you have any questions or require further information. Thank you for the opportunity to be of service.

Sincerely,

Martin Brogie, LEP Soil Scientist

GLASTONBURY Topographic 1964 41072-F5-TF-024 National Geodetic Vertical Datum 1929



28 Arbor Lane, Madison, Connecticut 06443 ph: (860) 208-0360 email: martinbrogieinc@gmail.com Site Coordinates: 041° 42' 41.91" N, 072° 36' 35.14" W

Project: 2333 Main Street

Site Location: 2333 Main Street Hartford County, Glastonbury, Connecticut

Figure 1 - Site Locus Map

----- APPROXIMATE PROPERTY BOUNDARY

28 Arbor Lane Madison, Connecticut 06443 ph: (860) 208-0360 email: martinbrogieinc@gmail.com

Figure 2 - Aerial Site Plan

2333 Main Street

Glastonbury, Hartford County, Connecticut

Project: 2333 Main Street
Drawn by: KMH
Date: 1/11/21
Scale: NOT TO SCALE

APPENDIX F

NOAA Rainfall Data

Location name: Town of Glastonbury, Connecticut, USA* Latitude: 41.7121°, Longitude: -72.6091° Elevation: m/ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

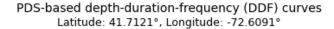
NOAA Atlas 14, Volume 10, Version 3

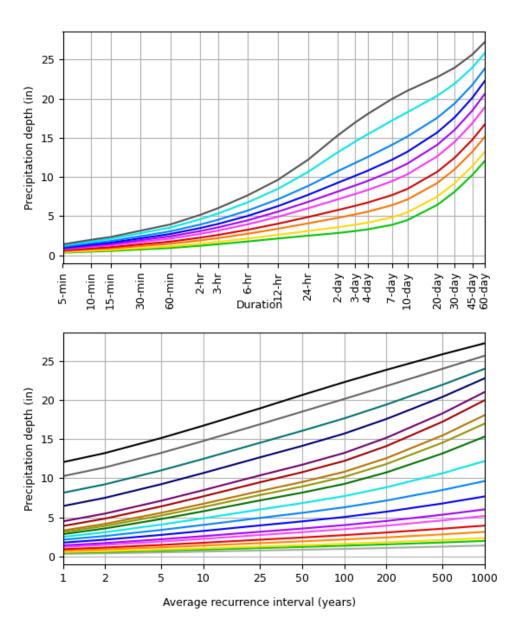
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

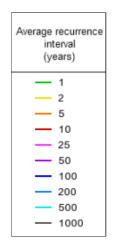
NOAA, National Weather Service, Silver Spring, Maryland

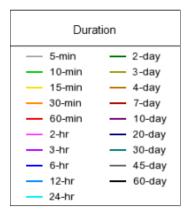
PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

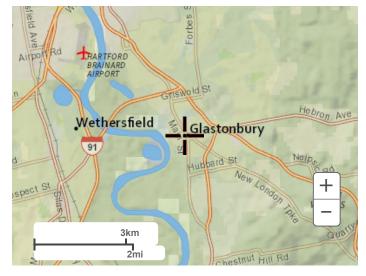

				Average	recurrence	interval (v	ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.331 (0.263-0.414)	0.404 (0.321-0.505)	0.523 (0.414-0.657)	0.621 (0.488-0.784)	0.757 (0.575-1.00)	0.860 (0.637-1.17)	0.967 (0.694-1.36)	1.09 (0.736-1.57)	1.26 (0.818-1.89)	1.40 (0.886-2.15
10-min	0.469 (0.373-0.586)	0.572 (0.454-0.716)	0.741 (0.586-0.929)	0.880 (0.692-1.11)	1.07 (0.814-1.42)	1.22 (0.903-1.65)	1.37 (0.983-1.93)	1.54 (1.04-2.23)	1.78 (1.16-2.68)	1.98 (1.26-3.05)
15-min	0.552 (0.439-0.689)	0.673 (0.535-0.842)	0.871 (0.690-1.09)	1.04 (0.815-1.31)	1.26 (0.958-1.67)	1.43 (1.06-1.94)	1.61 (1.16-2.27)	1.81 (1.23-2.62)	2.10 (1.36-3.16)	2.33 (1.48-3.58)
30-min	0.743 (0.590-0.928)	0.906 (0.719-1.13)	1.17 (0.927-1.47)	1.39 (1.10-1.76)	1.70 (1.29-2.25)	1.93 (1.43-2.61)	2.17 (1.56-3.06)	2.44 (1.65-3.53)	2.82 (1.83-4.24)	3.14 (1.99-4.82)
60-min	0.933 (0.742-1.17)	1.14 (0.904-1.42)	1.47 (1.16-1.85)	1.75 (1.38-2.21)	2.13 (1.62-2.83)	2.42 (1.80-3.28)	2.72 (1.96-3.84)	3.06 (2.07-4.43)	3.55 (2.30-5.33)	3.94 (2.50-6.06)
2-hr	1.22 (0.978-1.52)	1.48 (1.18-1.84)	1.90 (1.52-2.37)	2.25 (1.78-2.83)	2.74 (2.09-3.61)	3.10 (2.32-4.19)	3.48 (2.52-4.91)	3.93 (2.67-5.66)	4.60 (3.00-6.88)	5.17 (3.28-7.88)
3-hr	1.41 (1.14-1.75)	1.71 (1.37-2.12)	2.19 (1.75-2.73)	2.60 (2.06-3.24)	3.15 (2.42-4.14)	3.56 (2.67-4.80)	4.00 (2.92-5.64)	4.53 (3.08-6.49)	5.33 (3.48-7.93)	6.01 (3.82-9.14)
6-hr	1.77 (1.43-2.17)	2.14 (1.73-2.64)	2.75 (2.22-3.40)	3.26 (2.61-4.05)	3.96 (3.06-5.18)	4.48 (3.38-6.01)	5.04 (3.70-7.08)	5.72 (3.91-8.14)	6.77 (4.43-10.0)	7.67 (4.89-11.6)
12-hr	2.14 (1.74-2.62)	2.62 (2.13-3.20)	3.39 (2.74-4.16)	4.03 (3.24-4.97)	4.91 (3.82-6.40)	5.56 (4.23-7.43)	6.28 (4.64-8.77)	7.14 (4.90-10.1)	8.48 (5.57-12.4)	9.64 (6.17-14.4)
24-hr	2.50 (2.05-3.03)	3.10 (2.54-3.76)	4.07 (3.32-4.96)	4.88 (3.95-5.98)	5.99 (4.69-7.77)	6.81 (5.22-9.06)	7.70 (5.74-10.8)	8.84 (6.08-12.4)	10.6 (7.00-15.5)	12.2 (7.82-18.1)
2-day	2.84 (2.35-3.43)	3.58 (2.95-4.32)	4.78 (3.92-5.79)	5.78 (4.71-7.04)	7.15 (5.64-9.25)	8.14 (6.30-10.8)	9.26 (6.99-13.0)	10.7 (7.41-15.0)	13.2 (8.69-19.1)	15.3 (9.86-22.6)
3-day	3.10 (2.56-3.72)	3.90 (3.23-4.69)	5.23 (4.31-6.30)	6.32 (5.17-7.67)	7.83 (6.21-10.1)	8.92 (6.94-11.8)	10.2 (7.71-14.2)	11.8 (8.17-16.4)	14.5 (9.61-21.0)	17.0 (10.9-25.0)
4-day	3.31 (2.75-3.96)	4.17 (3.46-5.00)	5.57 (4.60-6.70)	6.74 (5.53-8.15)	8.34 (6.63-10.7)	9.50 (7.40-12.6)	10.8 (8.22-15.1)	12.6 (8.70-17.4)	15.5 (10.2-22.2)	18.1 (11.7-26.5)
7-day	3.89 (3.25-4.63)	4.84 (4.04-5.77)	6.40 (5.31-7.65)	7.68 (6.34-9.25)	9.46 (7.55-12.1)	10.8 (8.40-14.1)	12.2 (9.28-16.8)	14.1 (9.81-19.5)	17.2 (11.4-24.6)	20.0 (12.9-29.1)
10-day	4.48 (3.76-5.32)	5.48 (4.59-6.51)	7.12 (5.93-8.48)	8.47 (7.02-10.2)	10.3 (8.26-13.1)	11.7 (9.15-15.3)	13.2 (10.0-18.1)	15.2 (10.6-20.8)	18.3 (12.2-26.0)	21.0 (13.6-30.5)
20-day	6.44 (5.44-7.58)	7.50 (6.32-8.84)	9.23 (7.75-10.9)	10.7 (8.89-12.7)	12.6 (10.1-15.8)	14.1 (11.0-18.1)	15.7 (11.8-21.0)	17.6 (12.3-23.9)	20.4 (13.6-28.8)	22.8 (14.8-32.8)
30-day	8.13 (6.89-9.54)	9.22 (7.80-10.8)	11.0 (9.27-13.0)	12.5 (10.4-14.8)	14.5 (11.6-18.0)	16.0 (12.5-20.3)	17.6 (13.2-23.2)	19.4 (13.7-26.3)	21.9 (14.7-30.8)	24.0 (15.6-34.4)
45-day	10.3 (8.73-12.0)	11.4 (9.68-13.3)	13.2 (11.2-15.5)	14.8 (12.4-17.4)	16.9 (13.6-20.7)	18.5 (14.5-23.2)	20.1 (15.0-26.1)	21.8 (15.4-29.3)	24.0 (16.2-33.5)	25.6 (16.7-36.7)
60-day	12.0 (10.3-14.0)	13.2 (11.3-15.4)	15.1 (12.8-17.7)	16.7 (14.1-19.7)	18.9 (15.2-23.1)	20.6 (16.1-25.7)	22.3 (16.6-28.6)	23.8 (16.9-32.0)	25.8 (17.5-36.0)	27.2 (17.8-38.8)

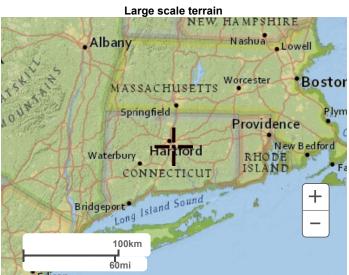

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

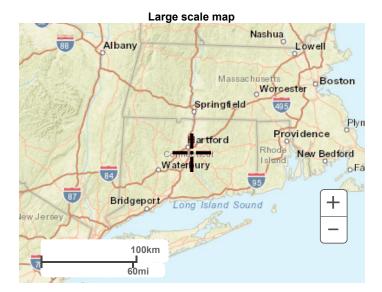

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.


Back to Top

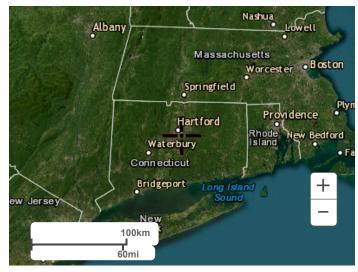
PF graphical


NOAA Atlas 14, Volume 10, Version 3


Created (GMT): Thu Jul 18 16:26:23 2024


Back to Top

Maps & aerials


Small scale terrain

Large scale aerial

Back to Top Could not retrieve elevation data due to Cross-Origin permissions.

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: HDSC.Questions@noaa.gov

Disclaimer

Location name: Town of Glastonbury, Connecticut, USA* Latitude: 41.7121°, Longitude: -72.6091° Elevation: m/ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

NOAA Atlas 14, Volume 10, Version 3

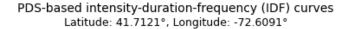
Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

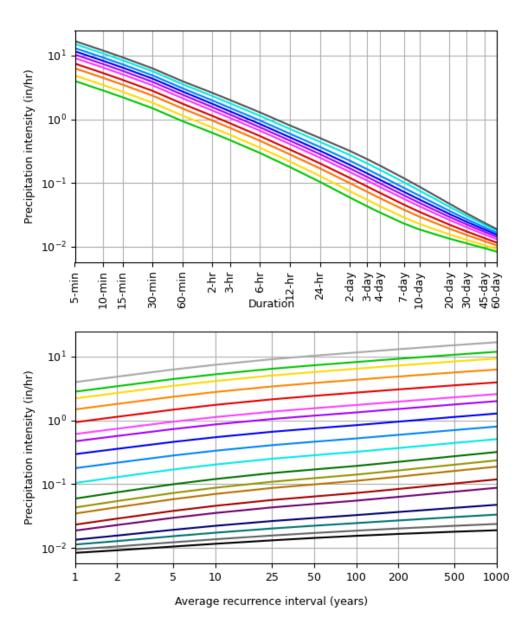
NOAA, National Weather Service, Silver Spring, Maryland

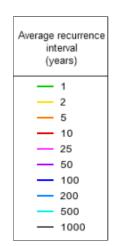
PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

				Avera	ge recurren	ce interval (years)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	3.97 (3.16-4.97)	4.85 (3.85-6.06)	6.28 (4.97-7.88)	7.45 (5.86-9.41)	9.08 (6.90-12.0)	10.3 (7.64-14.0)	11.6 (8.33-16.4)	13.0 (8.83-18.9)	15.1 (9.82-22.7)	16.8 (10.6-25.8)
10-min	2.81 (2.24-3.52)	3.43 (2.72-4.30)	4.45 (3.52-5.57)	5.28 (4.15-6.67)	6.44 (4.88-8.53)	7.31 (5.42-9.91)	8.22 (5.90-11.6)	9.24 (6.26-13.4)	10.7 (6.95-16.1)	11.9 (7.54-18.3)
15-min	2.21 (1.76-2.76)	2.69 (2.14-3.37)	3.48 (2.76-4.38)	4.14 (3.26-5.23)	5.05 (3.83-6.69)	5.73 (4.25-7.78)	6.45 (4.63-9.10)	7.25 (4.91-10.5)	8.40 (5.45-12.6)	9.34 (5.91-14.3)
30-min	1.49 (1.18-1.86)	1.81 (1.44-2.27)	2.35 (1.85-2.95)	2.79 (2.19-3.52)	3.40 (2.58-4.50)	3.85 (2.86-5.23)	4.33 (3.11-6.12)	4.87 (3.30-7.05)	5.64 (3.67-8.48)	6.28 (3.97-9.64)
60-min	0.933 (0.742-1.17)	1.14 (0.904-1.42)	1.47 (1.16-1.85)	1.75 (1.38-2.21)	2.13 (1.62-2.83)	2.42 (1.80-3.28)	2.72 (1.96-3.84)	3.06 (2.07-4.43)	3.55 (2.30-5.33)	3.94 (2.50-6.06)
2-hr	0.610 (0.489-0.758)	0.740 (0.591-0.920)	0.951 (0.757-1.19)	1.13 (0.891-1.41)	1.37 (1.04-1.81)	1.55 (1.16-2.09)	1.74 (1.26-2.46)	1.97 (1.34-2.83)	2.30 (1.50-3.44)	2.58 (1.64-3.94)
3-hr	0.470 (0.377-0.581)	0.569 (0.456-0.704)	0.730 (0.584-0.907)	0.864 (0.686-1.08)	1.05 (0.804-1.38)	1.18 (0.890-1.60)	1.33 (0.971-1.88)	1.51 (1.03-2.16)	1.78 (1.16-2.64)	2.00 (1.27-3.04)
6-hr	0.295 (0.238-0.362)	0.357 (0.288-0.440)	0.459 (0.369-0.567)	0.544 (0.435-0.676)	0.661 (0.510-0.865)	0.747 (0.565-1.00)	0.841 (0.617-1.18)	0.955 (0.652-1.36)	1.13 (0.739-1.67)	1.28 (0.816-1.93
12-hr	0.177 (0.144-0.217)	0.217 (0.176-0.265)	0.281 (0.227-0.344)	0.334 (0.269-0.412)	0.407 (0.316-0.530)	0.461 (0.351-0.616)	0.520 (0.384-0.727)	0.593 (0.406-0.838)	0.704 (0.462-1.03)	0.799 (0.511-1.20
24-hr	0.104 (0.085-0.126)	0.129 (0.105-0.156)	0.169 (0.138-0.206)	0.203 (0.164-0.249)	0.249 (0.195-0.323)	0.283 (0.217-0.377)	0.321 (0.239-0.448)	0.368 (0.253-0.517)	0.442 (0.291-0.645)	0.507 (0.325-0.755
2-day	0.059 (0.048-0.071)	0.074 (0.061-0.089)	0.099 (0.081-0.120)	0.120 (0.098-0.146)	0.148 (0.117-0.192)	0.169 (0.131-0.225)	0.192 (0.145-0.270)	0.223 (0.154-0.312)	0.274 (0.180-0.397)	0.318 (0.205-0.471
3-day	0.043 (0.035-0.051)	0.054 (0.044-0.065)	0.072 (0.059-0.087)	0.087 (0.071-0.106)	0.108 (0.086-0.140)	0.123 (0.096-0.164)	0.141 (0.107-0.197)	0.164 (0.113-0.228)	0.201 (0.133-0.291)	0.235 (0.152-0.346
4-day	0.034 (0.028-0.041)	0.043 (0.036-0.052)	0.058 (0.047-0.069)	0.070 (0.057-0.084)	0.086 (0.069-0.111)	0.098 (0.077-0.131)	0.112 (0.085-0.157)	0.130 (0.090-0.181)	0.161 (0.106-0.231)	0.188 (0.121-0.275
7-day	0.023 (0.019-0.027)	0.028 (0.024-0.034)	0.038 (0.031-0.045)	0.045 (0.037-0.055)	0.056 (0.044-0.071)	0.064 (0.050-0.084)	0.072 (0.055-0.100)	0.083 (0.058-0.115)	0.102 (0.068-0.146)	0.118 (0.076-0.173
10-day	0.018 (0.015-0.022)	0.022 (0.019-0.027)	0.029 (0.024-0.035)	0.035 (0.029-0.042)	0.043 (0.034-0.054)	0.048 (0.038-0.063)	0.055 (0.041-0.075)	0.063 (0.044-0.086)	0.076 (0.050-0.108)	0.087 (0.056-0.127
20-day	0.013 (0.011-0.015)	0.015 (0.013-0.018)	0.019 (0.016-0.022)	0.022 (0.018-0.026)	0.026 (0.021-0.032)	0.029 (0.022-0.037)	0.032 (0.024-0.043)	0.036 (0.025-0.049)	0.042 (0.028-0.059)	0.047 (0.030-0.068
30-day	0.011 (0.009-0.013)	0.012 (0.010-0.015)	0.015 (0.012-0.018)	0.017 (0.014-0.020)	0.020 (0.016-0.024)	0.022 (0.017-0.028)	0.024 (0.018-0.032)	0.026 (0.019-0.036)	0.030 (0.020-0.042)	0.033 (0.021-0.047
45-day	0.009 (0.008-0.011)	0.010 (0.008-0.012)	0.012 (0.010-0.014)	0.013 (0.011-0.016)	0.015 (0.012-0.019)	0.017 (0.013-0.021)	0.018 (0.013-0.024)	0.020 (0.014-0.027)	0.022 (0.014-0.031)	0.023 (0.015-0.033
60-dav	0.008	0.009	0.010	0.011	0.013	0.014	0.015	0.016 (0.011-0.022)	0.017	0.018


¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

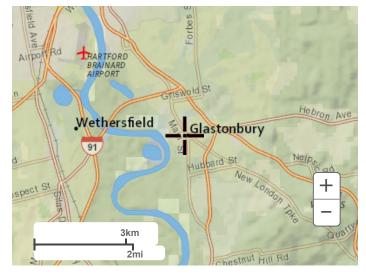

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

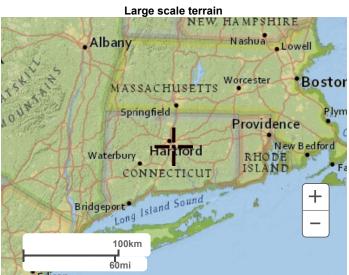

Please refer to NOAA Atlas 14 document for more information.

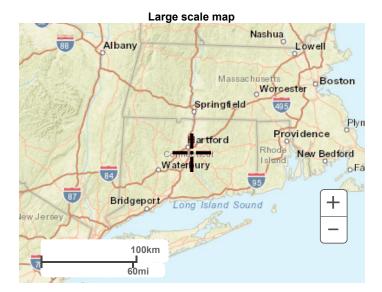
Back to Top

PF graphical

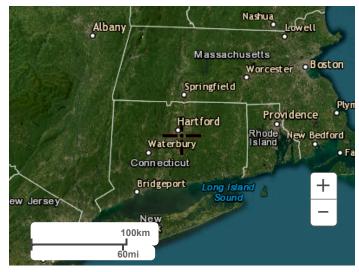
Duration	
5-min	- 2-day
10-min	— 3-day
- 15-min	— 4-day
30-min	— 7-day
- 60-min	— 10-day
— 2-hr	— 20-day
— 3-hr	— 30-day
— 6-hr	— 45-day
- 12-hr	- 60-day
- 24-hr	


NOAA Atlas 14, Volume 10, Version 3


Created (GMT): Thu Jul 18 16:27:26 2024


Back to Top

Maps & aerials


Small scale terrain

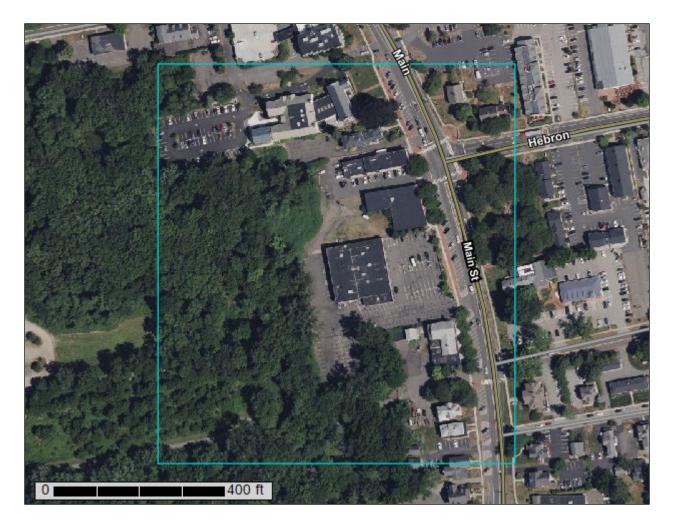
Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

APPENDIX G


NRCS Soil Survey

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for State of Connecticut, Western Part

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	
Soil Map	
Legend	
Map Unit Legend	11
Map Unit Descriptions	11
State of Connecticut, Western Part	
12—Raypol silt loam, 0 to 3 percent slopes	13
15—Scarboro muck, 0 to 3 percent slopes	14
29A—Agawam fine sandy loam, 0 to 3 percent slopes	16
36B—Windsor loamy sand, 3 to 8 percent slopes	18
236B—Windsor-Urban land complex, 0 to 8 percent slopes	19
307—Urban land	
701A—Ninigret fine sandy loam, 0 to 3 percent slopes	22
Soil Information for All Uses	24
Soil Properties and Qualities	
Soil Qualities and Features	24
Hydrologic Soil Group	24
References	29

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

	MAP LEGEND			MAP INFORMATION	
Area of In	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:12,000.	
Soils	Soil Map Unit Polygons	00 12	Very Stony Spot Wet Spot	Warning: Soil Map may not be valid at this scale.	
\sim	Soil Map Unit Lines Soil Map Unit Points	۷ ۵	Other Special Line Features	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of	
ల	Point Features Blowout	Water Fea		contrasting soils that could have been shown at a more detailed scale.	
X	Borrow Pit Clay Spot	Transport +++	ation Rails	Please rely on the bar scale on each map sheet for map measurements.	
×	Closed Depression Gravel Pit Gravelly Spot	~	Interstate Highways US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)	
:. © A.	Landfill Lava Flow	~	Major Roads Local Roads	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts	
ん 上 の	Marsh or swamp Mine or Quarry	Backgrou	Background Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.	
0	Miscellaneous Water Perennial Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.	
× +	Rock Outcrop Saline Spot			Soil Survey Area: State of Connecticut, Western Part Survey Area Data: Version 1, Sep 15, 2023	
:. =	Sandy Spot Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.	
♦ ≥	Sinkhole Slide or Slip			Date(s) aerial images were photographed: Jun 14, 2022—Oct 6, 2022	
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.	

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
12	Raypol silt loam, 0 to 3 percent slopes	0.7	4.0%	
15	Scarboro muck, 0 to 3 percent slopes	4.0	22.3%	
29A	Agawam fine sandy loam, 0 to 3 percent slopes	0.2	1.2%	
36B	Windsor loamy sand, 3 to 8 percent slopes	0.6	3.2%	
236B	Windsor-Urban land complex, 0 to 8 percent slopes	0.8	4.4%	
307	Urban land	8.2	45.7%	
701A	Ninigret fine sandy loam, 0 to 3 percent slopes	3.5	19.3%	
Totals for Area of Interest		17.9	100.0%	

Map Unit Legend

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor

components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

State of Connecticut, Western Part

12—Raypol silt loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 9ljx Elevation: 0 to 1,350 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Raypol and similar soils: 80 percent Minor components: 20 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Raypol

Setting

Landform: Drainageways Down-slope shape: Concave Across-slope shape: Concave Parent material: Coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from granite and/or schist and/or gneiss

Typical profile

Ap - 0 to 8 inches: silt loam

Bg1 - 8 to 12 inches: very fine sandy loam

Bg2 - 12 to 20 inches: silt loam

Bw1 - 20 to 26 inches: silt loam

Bw2 - 26 to 29 inches: very fine sandy loam

- 2C1 29 to 52 inches: stratified very gravelly coarse sand to loamy fine sand
- 2C2 52 to 65 inches: stratified very gravelly coarse sand to loamy fine sand

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 28 to 32 inches to abrupt textural change Drainage class: Poorly drained

Runoff class: Negligible

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to moderately high (0.14 to 1.42 in/hr)

Depth to water table: About 0 to 4 inches

Frequency of flooding: None

Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) *Available water supply, 0 to 60 inches:* Low (about 5.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4w Hydrologic Soil Group: B/D Ecological site: F144AY028MA - Wet Outwash Hydric soil rating: Yes

Minor Components

Raynham

Percent of map unit: 5 percent Landform: Depressions Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Ecological site: F145XY004CT - Wet Lake Plain Hydric soil rating: Yes

Scarboro

Percent of map unit: 5 percent Landform: Depressions Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Ecological site: F144AY031MA - Very Wet Outwash Hydric soil rating: Yes

Tisbury

Percent of map unit: 5 percent Landform: Outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Ecological site: F144AY026CT - Moist Silty Outwash Hydric soil rating: No

Enfield

Percent of map unit: 5 percent Landform: Outwash plains Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Linear Ecological site: F145XY009CT - Well Drained Outwash Hydric soil rating: No

15—Scarboro muck, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2svkt Elevation: 0 to 1,350 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Scarboro and similar soils: 80 percent

Minor components: 20 percent

Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Scarboro

Setting

Landform: Outwash terraces, outwash deltas, depressions, drainageways Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope, tread, dip Down-slope shape: Concave Across-slope shape: Concave, linear Parent material: Sandy glaciofluvial deposits derived from schist and/or gneiss and/or granite

Typical profile

Oa - 0 to 8 inches: muck *A - 8 to 14 inches:* mucky fine sandy loam *Cg1 - 14 to 22 inches:* sand *Cg2 - 22 to 65 inches:* gravelly sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (1.42 to 14.17 in/hr)
Depth to water table: About 0 to 2 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Moderate (about 6.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 5w Hydrologic Soil Group: A/D Ecological site: F144AY031MA - Very Wet Outwash Hydric soil rating: Yes

Minor Components

Timakwa

Percent of map unit: 10 percent Landform: Swamps Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Base slope, tread, dip Down-slope shape: Concave, linear Across-slope shape: Concave, linear Hydric soil rating: Yes

Walpole

Percent of map unit: 8 percent Landform: Outwash terraces, depressions, outwash plains, depressions, deltas Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread, dip, talf Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Deerfield

Percent of map unit: 2 percent Landform: Outwash plains, terraces Landform position (three-dimensional): Tread, dip Down-slope shape: Linear Across-slope shape: Concave Hydric soil rating: No

29A—Agawam fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tyqw Elevation: 0 to 1,040 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 250 days Farmland classification: All areas are prime farmland

Map Unit Composition

Agawam and similar soils: 85 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Agawam

Setting

Landform: Outwash terraces, outwash plains, kame terraces, kames, moraines Landform position (two-dimensional): Backslope, shoulder, footslope, summit Landform position (three-dimensional): Side slope, crest, tread, riser, rise, dip Down-slope shape: Convex

Across-slope shape: Convex

Parent material: Coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from gneiss, granite, schist, and/or phyllite

Typical profile

- Ap 0 to 11 inches: fine sandy loam
- Bw1 11 to 16 inches: fine sandy loam
- Bw2 16 to 26 inches: fine sandy loam
- 2C1 26 to 39 inches: loamy fine sand
- 2C2 39 to 55 inches: loamy fine sand
- 2C3 55 to 65 inches: loamy sand

Properties and qualities

Slope: 0 to 3 percent
 Depth to restrictive feature: 15 to 35 inches to strongly contrasting textural stratification
 Drainage class: Well drained
 Runoff class: Very low

Custom Soil Resource Report

Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None

Frequency of ponding: None

Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)

Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: B Ecological site: F145XY008MA - Dry Outwash Hydric soil rating: No

Minor Components

Ninigret

Percent of map unit: 5 percent Landform: Terraces Down-slope shape: Linear Across-slope shape: Concave Hydric soil rating: No

Windsor

Percent of map unit: 4 percent Landform: Outwash plains, outwash terraces, deltas, dunes Landform position (three-dimensional): Tread, riser Down-slope shape: Linear, convex Across-slope shape: Linear, convex Hydric soil rating: No

Walpole

Percent of map unit: 3 percent Landform: Outwash plains, depressions, outwash terraces, depressions, deltas Landform position (two-dimensional): Toeslope Landform position (three-dimensional): Tread, dip, talf Down-slope shape: Concave Across-slope shape: Concave Hydric soil rating: Yes

Hinckley

Percent of map unit: 3 percent Landform: Outwash plains, eskers, kames, deltas Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest, head slope, rise Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

36B—Windsor loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2svkf Elevation: 0 to 1,210 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 250 days Farmland classification: Farmland of statewide importance

Map Unit Composition

Windsor and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Windsor

Setting

Landform: Outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Loose sandy glaciofluvial deposits derived from granite and/or schist and/or gneiss

Typical profile

Oe - 0 to 1 inches: moderately decomposed plant material *A - 1 to 3 inches:* loamy sand *Bw - 3 to 25 inches:* loamy sand *C - 25 to 65 inches:* sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.5 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Ecological site: F145XY008MA - Dry Outwash Hydric soil rating: No

Minor Components

Hinckley

Percent of map unit: 10 percent Landform: Eskers Landform position (three-dimensional): Side slope Down-slope shape: Convex Across-slope shape: Convex Ecological site: F145XY008MA - Dry Outwash Hydric soil rating: No

Deerfield, loamy sand

Percent of map unit: 5 percent Landform: Terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Ecological site: F144AY027MA - Moist Sandy Outwash Hydric soil rating: No

236B—Windsor-Urban land complex, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: 2w2wq Elevation: 0 to 920 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 240 days Farmland classification: Not prime farmland

Map Unit Composition

Windsor and similar soils: 45 percent *Urban land:* 35 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Windsor

Setting

Landform: Outwash plains, outwash terraces, deltas, dunes Landform position (three-dimensional): Tread, riser Down-slope shape: Linear, convex Across-slope shape: Linear, convex Parent material: Loose sandy glaciofluvial deposits derived from granite and/or loose sandy glaciofluvial deposits derived from schist and/or loose sandy glaciofluvial deposits derived from gneiss

Typical profile

A - 0 to 3 inches: loamy sand Bw - 3 to 25 inches: loamy sand

C - 25 to 65 inches: sand

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to very high (1.42 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.9 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 4.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2s Hydrologic Soil Group: A Ecological site: F144AY022MA - Dry Outwash Hydric soil rating: No

Description of Urban Land

Typical profile

M - 0 to 10 inches: cemented material

Properties and qualities

Slope: 0 to 8 percent
Depth to restrictive feature: 0 inches to manufactured layer
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low (0.00 to 0.00 in/hr)
Available water supply, 0 to 60 inches: Very low (about 0.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: D Hydric soil rating: Unranked

Minor Components

Udorthents

Percent of map unit: 10 percent Landform: Outwash plains, outwash terraces, deltas, dunes Landform position (three-dimensional): Tread, riser Down-slope shape: Linear, convex Across-slope shape: Linear, convex Hydric soil rating: No

Deerfield

Percent of map unit: 5 percent Landform: Outwash plains, terraces, deltas Landform position (two-dimensional): Footslope Landform position (three-dimensional): Tread, talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: No

Hinckley

Percent of map unit: 5 percent Landform: Outwash plains, eskers, kames, deltas Landform position (two-dimensional): Summit, shoulder, backslope Landform position (three-dimensional): Nose slope, side slope, crest, head slope, rise Down-slope shape: Convex Across-slope shape: Linear, convex Hydric soil rating: No

307—Urban land

Map Unit Setting

National map unit symbol: 9lmh Elevation: 0 to 2,000 feet Mean annual precipitation: 43 to 56 inches Mean annual air temperature: 45 to 55 degrees F Frost-free period: 120 to 185 days Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 80 percent *Minor components:* 20 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Urban Land

Typical profile H - 0 to 6 inches: material

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: D Hydric soil rating: Unranked

Minor Components

Unnamed, undisturbed soils

Percent of map unit: 10 percent Hydric soil rating: No

Udorthents, wet substratum

Percent of map unit: 10 percent Down-slope shape: Convex Across-slope shape: Linear Hydric soil rating: No

701A—Ninigret fine sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2y07d Elevation: 0 to 1,260 feet Mean annual precipitation: 36 to 71 inches Mean annual air temperature: 39 to 55 degrees F Frost-free period: 140 to 185 days Farmland classification: All areas are prime farmland

Map Unit Composition

Ninigret and similar soils: 85 percent *Minor components:* 15 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Ninigret

Setting

Landform: Outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Concave Parent material: Coarse-loamy eolian deposits over sandy and gravelly glaciofluvial deposits derived from gneiss and/or granite and/or schist and/or phyllite

Typical profile

Ap - 0 to 8 inches: fine sandy loam Bw1 - 8 to 16 inches: fine sandy loam Bw2 - 16 to 26 inches: fine sandy loam 2C - 26 to 65 inches: loamy sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 18 to 38 inches to strongly contrasting textural stratification
Drainage class: Moderately well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.14 to 14.17 in/hr)
Depth to water table: About 16 to 30 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Available water supply, 0 to 60 inches: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 2w Hydrologic Soil Group: B/D *Ecological site:* F144AY026CT - Moist Silty Outwash *Hydric soil rating:* No

Minor Components

Merrimac

Percent of map unit: 5 percent Landform: Outwash terraces Landform position (three-dimensional): Riser, tread Down-slope shape: Convex Across-slope shape: Convex Ecological site: F145XY008MA - Dry Outwash Hydric soil rating: No

Agawam

Percent of map unit: 5 percent Landform: Outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Convex Across-slope shape: Convex Ecological site: F145XY008MA - Dry Outwash Hydric soil rating: No

Tisbury

Percent of map unit: 3 percent Landform: Outwash terraces Landform position (three-dimensional): Tread Down-slope shape: Concave Across-slope shape: Concave Ecological site: F144AY026CT - Moist Silty Outwash Hydric soil rating: No

Raypol

Percent of map unit: 2 percent Landform: Drainageways Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Ecological site: F144AY028MA - Wet Outwash Hydric soil rating: Yes

Soil Information for All Uses

Soil Properties and Qualities

The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality.

Soil Qualities and Features

Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil.

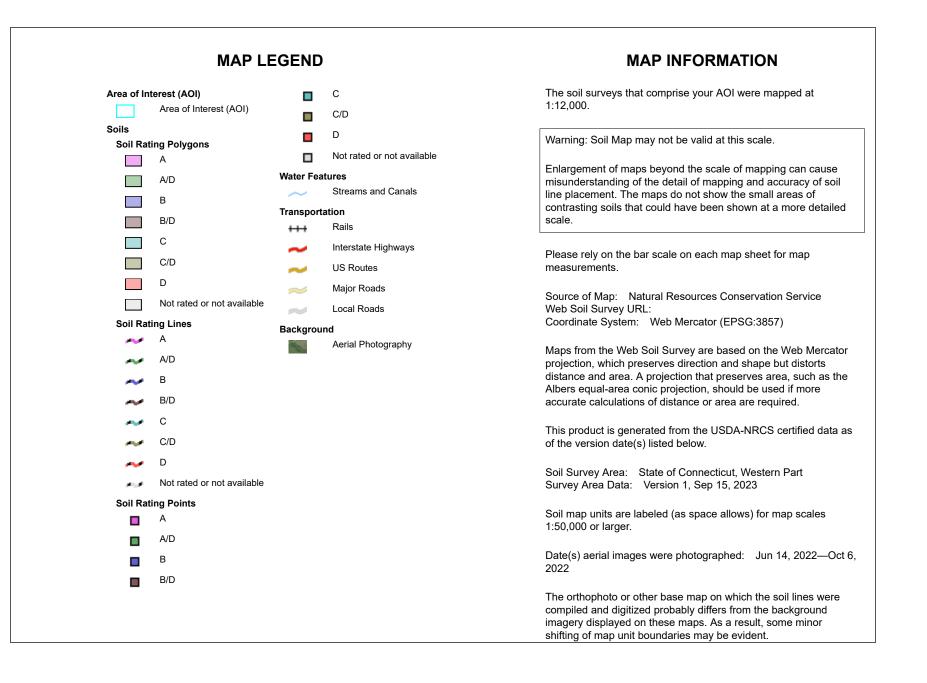
Hydrologic Soil Group

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Custom Soil Resource Report Map—Hydrologic Soil Group

Table—Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI			
12	Raypol silt loam, 0 to 3 percent slopes	B/D	0.7	4.0%			
15	Scarboro muck, 0 to 3 percent slopes	A/D	4.0	22.3%			
29A	Agawam fine sandy loam, 0 to 3 percent slopes	В	0.2	1.2%			
36B	Windsor loamy sand, 3 to 8 percent slopes	A	0.6	3.2%			
236B	Windsor-Urban land complex, 0 to 8 percent slopes	A	0.8	4.4%			
307	Urban land	D	8.2	45.7%			
701A	Ninigret fine sandy loam, 0 to 3 percent slopes	B/D	3.5	19.3%			
Totals for Area of Interest			17.9	100.0%			

Rating Options—Hydrologic Soil Group

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

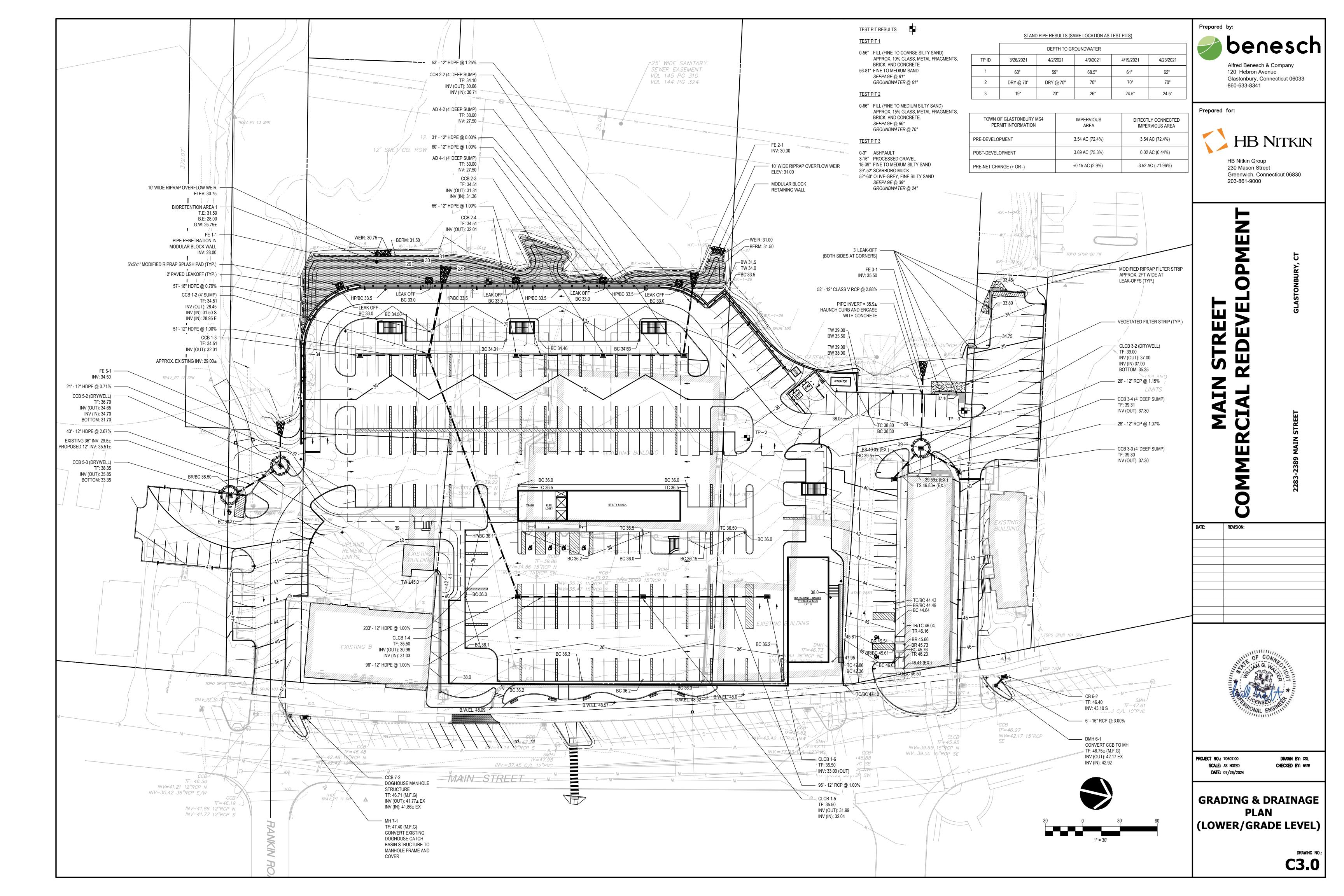
Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/soils/scientists/?cid=nrcs142p2_054242


United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX H

Grading & Drainage Plan

