Stormwater Management Report

Proposed Housing Development 55 Nye Road

Glastonbury, CT

PREPARED FOR Town of Glastonbury 2283-2389 Main Street Glastonbury, CT 06033

October 2023 Revised November 2023

benesch

TABLE OF CONTENTS

SECTION 1	INTRODUCTION	01
SECTION 2	HYDROLOGY	
	Methodology	
	Existing Conditions	
	Proposed Conditions	03
	Peak Flow Comparison	04
SECTION 3	HYDRAULICS	
	Methodology	
	Proposed Conditions	05
SECTION 4	STORMWATER QUALITY	
	Short Term Erosion Control	
	Long Term Stormwater Quality	07
	Maintenance and Operation	09
	_	

APPENDICES

Appendix A	Existing Watershed Data
Appendix B	Proposed Watershed Data
Appendix C	Hydraulic Computations
Appendix D	Water Quality Volume Computations
Appendix E	NRCS Soil Map
Appendix F	NOAA Rainfall Data

SECTION 1 - INTRODUCTION

The property is situated at 55 Nye Road in Glastonbury, Connecticut. Originally combined with 53 Nye Road as a commercial property it was recently subdivided from 53 Nye Road. Approximately 11.3 acres, it is currently occupied by a medical office building in the Planned Employment PE zoning district. The project proposes a zone change to Residence A with a Planned Area Development PAD overlay and proposed housing units of varying one, two and three bedroom mixes within multiple buildings and one community building. New private roads and parking will be installed to access the units and provide ample parking for the prospective tenants. The site is bordered to the north by Old Trail Road, to the east by wetlands, residents to the west, and Nye Road to the south.

The project was designed using the Connecticut Department of Transportation Drainage Manual, the Connecticut Department of Energy and Environmental Protection (CTDEEP) 2002 Connecticut Guidelines for Soil Erosion and Sediment Control, and the 2023 CT DEEP Water Quality Manual.

SECTION 2 – HYDROLOGY

Flow from the site drain to several locations but ultimately all runoff discharges into Salmon Brook. The northeastern portion of the property flows overland to the wetlands located in the eastern portion of the property. The central portion of the property drains to the southwest and is intercepted into a traditional stormwater system and then piped via an 18" RCP to the south and discharges at grade and flows overland to Salmon Brook. The western portion of the property flows overland and enters into the Nye Road ROW and enters into the storm drainage system located within that ROW and ultimately ends up in Salmon Brook. The project site is comprised of hydrologic soil groups "A, B, & D" per NRCS Soil Mapping.

Methodology

The analysis to determine peak flows generated from the sub-watershed encompassing the site was prepared using TR-55 procedures for calculating peak rates of runoff resulting from precipitation events and procedures for developing runoff hydrographs. HydroCAD software was utilized to perform hydrologic computations. NOAA Rainfall Frequency Estimates for precipitation frequency, based on data from the weather station in Glastonbury, were utilized to generate the flows. Per the recently issued CT DEEP Stormwater Quality Manual, a NOAA Type D rainfall distribution was used. The peak flows from the existing and proposed conditions were then used in the hydraulic model (Section 3) to determine if the proposed drainage network can accommodate the flows from the site for a 10-year storm. Furthermore, the existing site is comprised of about 22% imperviousness. Therefore, the proposed stormwater design accounts for retaining a volume of stormwater equal to 100% of the proposed water quality volume.

Existing Conditions

Topography slopes from the northern portion of the site at elevation 90 to the south and east portion of the site at elevation 50 and the wetlands. The site was modelled as HSG "A, B & D." Drainage from the site flows to three (2) existing subwatersheds:

- Subwatershed E1: This consists of the central portion of the property which drains to the southwest and is intercepted into a traditional stormwater system and then piped via an 18" RCP to the south and discharges at grade and flows overland to Salmon Brook and a small portion of the site that flows overland into Nye Road.
- Subwatershed E2: This consists of a portion of the site which sheet flows southeast towards the wetlands.

Existing Watershed Data (Existing Conditions Cover Characteristics and Existing Watershed Area Map) have been included as Appendix A.

Proposed Conditions

The topography and sub-watersheds mimic those under existing conditions in that the analysis points remain the same (for each subwatershed). The proposed system was analyzed with permeable pavers, and an aboveground stormwater pond incorporated to attenuate peak flows and provide stormwater runoff volume retention. Proposed drainage from the site is split into the following subwatersheds:

- Subwatershed P1-1: This consists of the central portion of the site which is collected and piped into the existing stormwater system that was located on site and discharges via the existing 18" RCP on grade to the south and ultimately flows overland to Salmon Brook.
- Subwatershed P2-1: This consists of the northeast portion of the site and is collected via a stormwater system and routed through a hydrodynamic separator and then into the proposed stormwater pond. The recharge pond has an outlet control structure and a high level overflow (weir) both of which discharge offsite to the southeast. The pond has been sized to accommodate some runoff from offsite sources.
- Subwatershed P2-2: This consists of the easterly portion of the site which bypasses the proposed pond and flows overland directly into the wetlands located on the eastern portion of the site.

The stormwater pond has been designed to attenuate peak flows produced from the 2, 10, 25, and 100-year design storm events. Furthermore, the permeable pavers and pond volume below the lowest outlet have been size to provide stormwater storage volume equal to 100% of the proposed water quality volume. Although the soils are modelled as HSG "A. B & D," we have assumed a small infiltration rate of 0.52"/hour in the permeable pavers and 5" / hour in the stormwater pond.

Proposed Watershed Data (Proposed Conditions Cover Characteristics and Proposed Watershed Area Map) have been included as Appendix B. Water quality volume computations have been included as Appendix D.

Peak Flow Comparison

Peak flows at the off-site analysis points are as follows:

	Drainage Summary Glastonbury Housing Authority Nye Road, Glastonbury CT Project # 70896.00 Peak Flow Comparison							
Watershed	Storm Event	Existing Peak Flow (cfs)	Proposed Peak Flow (cfs)					
	2-year	4.45	4.24					
	10-year	9.82	9.14					
T (NTE KOAD)	25-year	13.39	12.39					
	100-year	19.01	17.46					
	2-year	0.13	0.13					
2 (OFFSITE	10-year	2.14	1.90					
SOUTHEAST)	25-year	4.44	4.10					
	100-year	8.73	7.04					
	2-year	4.45	4.27					
	10-year	11.35	10.00					
IUTAL SITE	25-year	17.03	14.65					
	100-year	26.58	23.27					

It can be seen that peak flows will be reduced under proposed conditions for all design storms.

SECTION 3 – HYDRAULICS

The intent of the hydraulic analysis is to ensure that new on-site drainage facilities could accommodate and safely convey the 10-year, 24-hour design storm while maintaining the hydraulic grade line a minimum of 1 foot below grate or rim elevations.

Methodology

The storm drain system was analyzed using the Rational Method for estimating runoff for a 10-year design storm. The software "Hydraflow Stormsewers" was used to model pipe flow through the pipe network. Outlet protection was designed per the CT DOT Drainage manual.

Proposed Conditions

The site has been designed with a series of drainage facilities, including catch basins, manholes, area drains and piping designed to remove stormwater from paved and pervious surfaces, and convey it to wetlands discharge areas.

The drainage systems have been designed to safely convey storm flows from the 10-Year Design Storm, with all pipes designed with sufficient capacity and the hydraulic grade lines through the entire systems sufficiently below grade. A portion of the existing downstream network from Watershed 1 was analyzed to ensure it's capacity is sufficient for the proposed flow.

Detailed calculations (Catchment Map and computations) for the on-site stormwater system hydraulics are included in Appendix C.

SECTION 4 – STORMWATER QUALITY

The project has been designed to address both short-term and long-term stormwater quality. Short term (during construction) treatment has been provided in the form of erosion control measures and long-term (post construction) treatment has been provided through the use of stormwater quality Best Management Practices (BMPs). Erosion control has been designed per the 2002 Connecticut Erosion Control Guidelines. Long-term stormwater quality has been designed to meet the stormwater quality standards set forth in the Town of Glastonbury Stormwater Management Plan and the 2004 CT DEP Stormwater Quality Manual.

Short Term Erosion Control

The proposed erosion and sedimentation controls consider the specific characteristics of the site and the anticipated construction activities, and have been designed in accordance with the 2002 Guidelines.

Construction Entrances

Construction entrances will be utilized to remove sediment from construction vehicle tires and prevent it from being tracked onto adjoining paved roadway areas.

Erosion Control Barriers

Prior to any construction activity, hay bales, silt fence, or combination hay bale/silt fence barriers will be placed at the downgradient limits of construction, adjacent Beaver Pond. These barriers will be inspected once every seven calendar days and within 24 hours after every rainfall generating a discharge and replaced as necessary. Collected silt will be removed when one-half the barrier height is reached.

Temporary Seeding

Temporary Seeding will be utilized on portions where the phasing and sequencing require an initial disturbance followed by an extended period of inactivity that is greater than 30 days but less than 1 year. Temporary seeding will be conducted within 7 days after the suspension of grading work in disturbed areas where the suspension of work is expected to be more than 30 days but less than 1 year.

Soil Stabilization- Mulches

Structural (non-living) soil stabilization will be utilized to protect the soil surface on a temporary basis without the intention of promoting plant growth. When grading of the disturbed area will be suspended for a period of 30 or more consecutive days, but less than 5 months, disturbed areas will be stabilized within 7 days of the suspension of grading through the use of mulch, non-bituminous tackifiers, erosion control netting, or other approved materials appropriate for use as a temporary soil protector. For surfaces that are not to be reworked within 5 months but will be reworked within 1 year, use temporary seeding, seeding-type mulch (hay, straw, or cellulose fiber) or when slopes are less than 3:1, wood chips, bark chips or shredded bark.

Temporary Filter Inserts

Temporary Filter Inserts will be placed in each existing catch basin and yard drains prior to the start of construction, and in each new catch basin or yard drain during construction. These devices will be removed upon final site stabilization. Filter inserts will be inspected once every seven (7) calendar days and within 24 hours after every rainfall generating a discharge. Replacement of the inserts will be as often as necessary to maintain function of the drainage structure and prevent excessive ponding due to clogged fabric. Ripped or otherwise damaged inserts will be replaced immediately.

Stockpile Management

The topsoil stockpiles which will be idle for at least 30 days will be stabilized with temporary seed and mulch no later than 7 days from the last use. Small stockpiles may be covered with impervious tarps or erosion control matting in lieu of seeding and mulching.

A geotextile silt fence or hay bale barrier will be installed around the stockpile area approximately 10 feet from the proposed toe of the slope.

Long Term Stormwater Quality

The project was designed with guidance and direction from the Town of Glastonbury Stormwater Management Plan, the Glastonbury Plan of Conservation and Development (POCD), and the CT DEEP 2023 Connecticut Stormwater Quality Manual (2004 Manual).

The Glastonbury Stormwater Management Plan (Glastonbury Plan) was developed to protect water quality and reduce the discharge of pollutants from the municipality's storm sewer system to the maximum extent practical and addresses the requirements established by the DEEP MS4 Permit. Since the site is currently developed with less than 40% impervious, the proposed project has been designed to retain 100% of the water quality volume on-site through the incorporation of permeable pavers and an above ground pond with infiltration capabilities. The intent of the Glastonbury Plan is also to prevent or reduce thermal impacts to streams.

The POCD goals for stormwater treatment include the following:

- Utilize stormwater renovation through best management practices that include the use of bioretention areas.
- Utilize stormwater temperature mitigation techniques.

The design intent of the Connecticut Stormwater Quality Manual is to provide a "stormwater treatment train," where stormwater quality is achieved through a series of treatment measures. Harmful pollutants, such as sediment, pathogens, organic material, hydrocarbons, metals, synthetic organic chemicals and deicing compounds, are carried by the low-flow storms. Many of these pollutants are associated with vehicular exhaust, engine leaks and deicing, therefore key areas of on-site treatment include parking lots and access drives. Additionally, rooftops are a concern as a result of atmospheric ambient accumulation. Since pollutants typically attach themselves to solid particles, treatment practices are designed to remove suspended solids.

The treatment train for this site includes:

- Parking lot sweeping
- Hydrodynamic Separators
- Recharge Pond

Test pits will be performed in the general location of the recharge pond and permeable paver areas. At the time of the test pits, percolation testing will be performed to confirm infiltration rates we have utilized within our report.

It is expected that, after storm events, the recharge areas will be wet for up to 24 hours. They will be planted with native grasses specifically chosen to be resistant to sustained inundation and salt tolerant. Runoff to the recharge, that is not percolated, will eventually drain to the wetlands. The

In addition to the above best management practices, the site will incorporate permeable pavers as the surface for parking within the site development.

The aggregate volume provided by the recharge areas is greater than the required water quality volume. Computations can be viewed in Appendix D.

Maintenance and Operation

Operation and maintenance shall be the responsibility of the owner.

During Construction

- Dust Control: Moisten disturbed soil areas with water periodically, or use a non-asphaltic soil tacifier to minimize dust.
- Temporary Soil Protection: Inspect seeded areas weekly and within 24 hours after a storm generating a discharge.
- Catch Basin Filter Inserts: Inspect the fabric at least once a week and within 24 hours after the end of a storm generating a discharge. Check the fabric for structural soundness (i.e. tears), proper anchoring/alignment within the grate and ability to drain runoff (i.e. percent of clogging by sediment). Remove the sediment every week, or sooner if ponding is excessive. Each time the sediment is removed, replace the section of fabric removed with a new section. Do not remove the sediment and reuse the same section of fabric.
- Hay Bale/ Silt Fence Barrier: Inspect the barrier at least once a week and within 24 hours after the end of a storm generating a discharge. For dewatering operations, inspect frequently before, during and after pumping operations. Remove the sediment deposits when the depth reaches one half the barrier heights. Repair or replace a barrier within 24 hours of observed failure. Maintain the barrier until the contributing disturbed area is stabilized.
- Construction Entrance/Exit Pad: Maintain the pad in a condition that will prevent tracking and washing of sediment onto paved surfaces. Place additional clean gravel on top of gravel that has become silted, or remove the silted gravel and replace the gravel to the depth removed with clean gravel, as conditions warrant. Remove immediately all sediment spilled, dropped, washed or tracked onto paved surfaces. Roads adjacent to the construction site shall be cleaned at the end of each day by hand sweeping or sweeper truck.
- Dewatering Settling Basin (if used): Inspect the basin at least every two hours during periods of use. Remove accumulated sediments when the volume equals one half the provided storage volume.
- Existing Catch Basins and Sumps: Inspect the filter baskets as specified above. After final removal of the filter baskets at the end of construction, clean the sump of all silt and debris.
- New Catch Basins and Sumps: As new catch basins are constructed, a sediment trap shall be installed in the unit and a sediment barrier installed around the grate. Inspect the trap and barrier weekly and within 24 hours after a storm generating a discharge. After stabilization of the drainage area entering the catch basin, remove the trap and barrier and clean the basin sump of all silt and debris.
- Temporary Stockpiles: Inspect temporary stockpiles at the end of each workday to ensure that tarps are in place and secured. Temporary stockpiles that are expected to be inactive for more than 30 days should be temporarily seeded (see above).

After Construction

• Recharge Pond: Inspect several times during the first few months to ensure that grass cover is established. Inspect semi-annually and after major rain events for the first year. Inspect

annually after the first year. Trash should be removed as accumulated. Sediment build-up should be removed when its depth is greater than four (4) inches. Grass should be reseeded if the side or bottom slopes exhibit erosion. Grass should be mowed once per month and should be cut to leave at least two (2) inches of height. Mowing should not occur when the ground is soft, to avoid ruts.

- Parking Lot and Site Cleanup: Inspect on a regular basis not to exceed weekly for litter and debris.
- Parking Lot and Driveway Sweeping: At least twice a year, with the first occurring as soon as possible after snowmelt and the second not less than 90 days following the first.
- Catch Basins and Sumps: Maintenance includes removal of trash from the grate and the sump, as well as sediment from the sump. They shall be inspected semi-annually and cleaned when the sump is one half full of sediment. One of the inspections shall be after the snow and ice removal season is over, and prior to the spring rainfall events. If the sumps is filled more than half-filled with sediment at the semi-annual inspections, they shall be inspected quarterly.
- Permeable Pavers: Shall be inspected regularly and cleared of tracked mud or sediment and leaves, to ensure the cracks between the pavers do not become clogged and therefore become impermeable.
- Landscaped Areas: Inspect semi-annually for erosion or dying vegetation. Repair and stabilize any bare or eroded areas and replace vegetation as soon as possible.

APPENDIX A

EXISTING WATERSHED DATA

Proposed Housing – Glastonbury Housing Authority | Stormwater Management Plan

Watershed Cover Characteristics Glastonbury Housing Authority Nye Road, Glastonbury CT Project # 70896.00

Exisiting:

Watershed	Description Total Area (ac) Woods A Grass A Woods B		Grass B	Woods D	Grass D	Impervious	Pavers	CN	Tc (min)			
E1	NYE ROAD 3.832 0.289		0.289	0.000	0.883	0.172	0.186	0.471	1.832	0.000	78	10.6
E2	OFFSITE SOUTHEAST	4.921	2.891	0.268	0.495	0.000	1.159	0.018	0.090	0.000	52	15.9
TOTAL	Total Site	8.754	3.180	0.268	1.378	0.172	1.345	0.489	1.922	0.000	-	-

Summary for Subcatchment E1: NYE ROAD

Runoff = 4.45 cfs @ 12.19 hrs, Volume= Routed to Link ET : EXISTING TOTAL 0.380 af, Depth> 1.19"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-year Rainfall=3.09"

Area	(ac) (CN Des	cription		
0	.289	30 Woo	ods, Good,	HSG A	
0	.883	55 Woo	ods, Good,	HSG B	
0	.186	77 Woo	ods, Good,	HSG D	
0	.172	61 >75	% Grass c	over, Good	, HSG B
0	.471	80 >75	% Grass c	over, Good	, HSG D
1	.832	98 Pav	ed parking	, HSG D	
3	.833	78 Wei	ghted Avei	rage	
2	.001	52.2	20% Pervic	us Area	
1	.832	47.8	30% Imper	vious Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.7	100	0.2000	0.19		Sheet Flow, A to B
					Woods: Light underbrush n= 0.400 P2= 3.09"
0.6	240	0.2000	7.20		Shallow Concentrated Flow, B to C
					Unpaved Kv= 16.1 fps
1.3	400	0.0100	5.26	6.46	Pipe Channel, RCP_Round 15"
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
					n= 0.013 Concrete pipe, bends & connections
10.6	740	Total			

Hydrograph Runoff 4.45 cfs NOAA 24-hr D 2-year Rainfall=3.09" Runoff Area=3.833 ac Runoff Volume=0.380 af 3 Flow (cfs) Runoff Depth>1.19" Flow Length=740' 2 Tc=10.6 min **CN=78** 0-2 3 11 12 13 14 15 16 17 18 19 1 4 5 6 7 8 ģ 10 20 21 22 23 Ó 24 Time (hours)

Subcatchment E1: NYE ROAD

Summary for Subcatchment E2: OFFSITE SE

Runoff 0.13 cfs @ 12.99 hrs, Volume= Routed to Link ET : EXISTING TOTAL

0.060 af, Depth> 0.15"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-year Rainfall=3.09"

	Area (ac) C	N De	escription		
	2.9	911 :	36 W	oods, Fair, H	ISG A	
	0.4	495 6	60 W	oods, Fair, F	ISG B	
	1.1	159	79 W	oods, Fair, F	ISG D	
	0.2	268 (68 <5	50% Grass c	over, Poor,	HSG A
	0.0	D18 8	39 <5	50% Grass c	over, Poor,	HSG D
_	0.0	090	98 Pa	aved parking	, HSG D	
	4.9	941 :	52 W	eighted Ave	rage	
	4.8	351	98	8.18% Pervic	ous Area	
	0.0	090	1.8	82% Impervi	ous Area	
	Тс	Length	Slop	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	15.1	100	0.050	0 0.11		Sheet Flow, A to B
						Woods: Light underbrush n= 0.400 P2= 3.09"
	0.8	250	0.100	0 5.09		Shallow Concentrated Flow, B to C
_						Unpaved Kv= 16.1 fps
	15.9	350	Total			

350 Total

Subcatchment E2: OFFSITE SE

Summary for Link ET: EXISTING TOTAL

Inflow A	Area =	8.774 ac, 2	1.91% Impervious	Inflow Depth >	0.60"	for 2-year event
Inflow	=	4.45 cfs @	12.19 hrs, Volum	e= 0.440	af	
Primary	/ =	4.45 cfs @	12.19 hrs, Volum	e= 0.440	af, At	ten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link ET: EXISTING TOTAL

Summary for Subcatchment E1: NYE ROAD

Runoff = 9.82 cfs @ 12.18 hrs, Volume= Routed to Link ET : EXISTING TOTAL 0.826 af, Depth> 2.59"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-year Rainfall=4.86"

Area	(ac) (N Des	cription		
0.	289	30 Woo	ods, Good,	HSG A	
0.	883	55 Woo	ods, Good,	HSG B	
0.	186	77 Woo	ods, Good,	HSG D	
0.	172	61 >75	% Grass c	over, Good	, HSG B
0.	471	80 >75	% Grass c	over, Good	, HSG D
1.	832	98 Pav	ed parking	, HSG D	
3.	833	78 Wei	ghted Aver	rage	
2.	001	52.2	20% Pervio	us Area	
1.	832	47.8	30% Imperv	vious Area	
_		-			
TC	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cts)	
8.7	100	0.2000	0.19		Sheet Flow, A to B
					Woods: Light underbrush n= 0.400 P2= 3.09"
0.6	240	0.2000	7.20		Shallow Concentrated Flow, B to C
	400	0 0 4 0 0		0.40	Unpaved Kv= 16.1 fps
1.3	400	0.0100	5.26	6.46	Pipe Channel, RCP_Round 15"
					15.0" Round Area= 1.2 st Perim= 3.9' r= 0.31
					n= 0.013 Concrete pipe, bends & connections
10.6	740	Lotal			

Subcatchment E1: NYE ROAD

Summary for Subcatchment E2: OFFSITE SE

Runoff 2.14 cfs @ 12.29 hrs, Volume= = Routed to Link ET : EXISTING TOTAL

0.303 af, Depth> 0.74"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-year Rainfall=4.86"

	Area (ac) C	CN	Desc	ription		
	2.9	911	36	Woo	ds, Fair, H	ISG A	
	0.4	495	60	Woo	ds, Fair, H	ISG B	
	1.1	159	79	Woo	ds, Fair, H	ISG D	
	0.2	268	68	<50%	6 Grass co	over, Poor,	HSG A
	0.0	018	89	<50%	6 Grass co	over, Poor,	HSG D
	0.0	090	98	Pave	d parking	, HSG D	
	4.9	941	52	Weig	hted Aver	age	
	4.8	351		98.18	3% Pervio	us Area	
	0.0	090		1.829	% Impervi	ous Area	
	Тс	Length	SI	ope	Velocity	Capacity	Description
	(min)	(feet)	(1	ft/ft)	(ft/sec)	(cfs)	
	15.1	100	0.0	500	0.11		Sheet Flow, A to B
							Woods: Light underbrush n= 0.400 P2= 3.09"
	0.8	250	0.1	000	5.09		Shallow Concentrated Flow, B to C
_							Unpaved Kv= 16.1 fps
	15.9	350	Tot	al			

350 Total

Subcatchment E2: OFFSITE SE

Summary for Link ET: EXISTING TOTAL

Inflow /	Area =	8.774 ac, 2	21.91% Impervious,	Inflow Depth > 1	.54" for 10-year event
Inflow	=	11.35 cfs @	12.19 hrs, Volume	= 1.129 af	
Primary	y =	11.35 cfs @	12.19 hrs, Volume	e= 1.129 af	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link ET: EXISTING TOTAL

Summary for Subcatchment E1: NYE ROAD

Runoff = 13.39 cfs @ 12.18 hrs, Volume= Routed to Link ET : EXISTING TOTAL 1.132 af, Depth> 3.54"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-year Rainfall=5.97"

Area	(ac) (N Des	cription		
0.	289	30 Woo	ods, Good,	HSG A	
0.	883	55 Woo	ods, Good,	HSG B	
0.	186	77 Woo	ods, Good,	HSG D	
0.	172	61 >75	% Grass c	over, Good	, HSG B
0.	471	80 >75	% Grass c	over, Good	, HSG D
1.	832	98 Pav	ed parking	, HSG D	
3.	833	78 Wei	ghted Aver	rage	
2.	001	52.2	20% Pervio	us Area	
1.	832	47.8	30% Imperv	vious Area	
_		-			
TC	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cts)	
8.7	100	0.2000	0.19		Sheet Flow, A to B
					Woods: Light underbrush n= 0.400 P2= 3.09"
0.6	240	0.2000	7.20		Shallow Concentrated Flow, B to C
	400	0 0 4 0 0		0.40	Unpaved Kv= 16.1 fps
1.3	400	0.0100	5.26	6.46	Pipe Channel, RCP_Round 15"
					15.0" Round Area= 1.2 st Perim= 3.9' r= 0.31
					n= 0.013 Concrete pipe, bends & connections
10.6	740	Lotal			

Subcatchment E1: NYE ROAD

Summary for Subcatchment E2: OFFSITE SE

Runoff 4.44 cfs @ 12.27 hrs, Volume= = Routed to Link ET : EXISTING TOTAL

0.521 af, Depth> 1.27"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-year Rainfall=5.97"

	Area (ac) C	N De	escription		
	2.9	911 :	36 W	oods, Fair, H	ISG A	
	0.4	495 6	60 W	oods, Fair, F	ISG B	
	1.1	159	79 W	oods, Fair, F	ISG D	
	0.2	268 (68 <5	50% Grass c	over, Poor,	HSG A
	0.0	D18 8	39 <5	50% Grass c	over, Poor,	HSG D
_	0.0	090	98 Pa	aved parking	, HSG D	
	4.9	941 :	52 W	eighted Ave	rage	
	4.8	351	98	8.18% Pervic	ous Area	
	0.0	090	1.8	82% Impervi	ous Area	
	Тс	Length	Slop	e Velocity	Capacity	Description
_	(min)	(feet)	(ft/f	t) (ft/sec)	(cfs)	
	15.1	100	0.050	0 0.11		Sheet Flow, A to B
						Woods: Light underbrush n= 0.400 P2= 3.09"
	0.8	250	0.100	0 5.09		Shallow Concentrated Flow, B to C
_						Unpaved Kv= 16.1 fps
	15.9	350	Total			

350 Total

Subcatchment E2: OFFSITE SE

Summary for Link ET: EXISTING TOTAL

Inflow A	Area =	8.774 ac, 2	21.91% Impe	ervious,	Inflow Depth >	· 2.2	26" for 25-	year event
Inflow	=	17.03 cfs @	12.19 hrs,	Volume	= 1.65	3 af		
Primary	y =	17.03 cfs @	12.19 hrs,	Volume	= 1.65	3 af,	Atten= 0%,	Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link ET: EXISTING TOTAL

Summary for Subcatchment E1: NYE ROAD

Runoff = 19.01 cfs @ 12.18 hrs, Volume= Routed to Link ET : EXISTING TOTAL 1.624 af, Depth> 5.08"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-year Rainfall=7.68"

Area	(ac) C	N Des	cription		
0.	289	30 Woo	ods, Good,	HSG A	
0.	883	55 Woo	ods, Good,	HSG B	
0.	186	77 Woo	ods, Good,	HSG D	
0.	172	61 >75	% Grass c	over, Good	, HSG B
0.	471	80 >75	% Grass c	over, Good	, HSG D
1.	832	98 Pav	ed parking	, HSG D	
3.	833	78 Wei	ghted Aver	age	
2.	001	52.2	0% Pervio	us Area	
1.	832	47.8	80% Imperv	vious Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.7	100	0.2000	0.19		Sheet Flow, A to B
					Woods: Light underbrush n= 0.400 P2= 3.09"
0.6	240	0.2000	7.20		Shallow Concentrated Flow, B to C
					Unpaved Kv= 16.1 fps
1.3	400	0.0100	5.26	6.46	Pipe Channel, RCP_Round 15"
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
					n= 0.013 Concrete pipe, bends & connections
10.6	740	Total			

Subcatchment E1: NYE ROAD

Summary for Subcatchment E2: OFFSITE SE

Runoff 8.73 cfs @ 12.26 hrs, Volume= = Routed to Link ET : EXISTING TOTAL

0.925 af, Depth> 2.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-year Rainfall=7.68"

	Area ((ac) C	CN D	escription		
	2.9	911 :	36 W	/oods, Fair, ∣	HSG A	
	0.4	495	60 W	/oods, Fair, I	HSG B	
	1.1	159	79 W	/oods, Fair, I	HSG D	
	0.2	268	68 <	50% Grass o	cover, Poor,	HSG A
	0.0	018	89 <	50% Grass o	cover, Poor,	HSG D
	0.0	090	98 P	aved parking	g, HSG D	
	4.9	941	52 W	/eighted Ave	erage	
	4.8	851	98	8.18% Pervi	ous Area	
	0.0	090	1.	.82% Imperv	vious Area	
	Тс	Length	Slop	be Velocity	Capacity	Description
_	(min)	(feet)	(ft/1	ft) (ft/sec)	(cfs)	
	15.1	100	0.050	0.11		Sheet Flow, A to B
						Woods: Light underbrush n= 0.400 P2= 3.09"
	0.8	250	0.100	0 5.09		Shallow Concentrated Flow, B to C
						Unpaved Kv= 16.1 fps
	15.9	350	Total			

350 Total

Subcatchment E2: OFFSITE SE

Summary for Link ET: EXISTING TOTAL

Inflow A	Area =	8.774 ac, 2	1.91% Impervious,	Inflow Depth >	3.49" fo	or 100-year event
Inflow	=	26.58 cfs @	12.19 hrs, Volume	e= 2.549 a	af	
Primary	y =	26.58 cfs @	12.19 hrs, Volume	e= 2.549 a	af, Atten	= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link ET: EXISTING TOTAL

APPENDIX B

PROPOSED WATERSHED DATA

Proposed Housing – Glastonbury Housing Authority | Stormwater Management Plan

Watershed Cover Characteristics Glastonbury Housing Authority Nye Road, Glastonbury CT Project # 70896.00

Proposed:

Watershed	Description	Total Area (ac)	Woods A	Grass A	Woods B	Grass B	Woods D	Grass D	Impervious	Pavers	CN	Tc (min)
P1-1	NYE ROAD	3.455	0.153	0.088	0.101	0.854	0.000	0.701	1.558		79	10.6
PP1	P1 POROUS PAVERS	0.324								0.324	98	5
P2-1	POND	3.013	0.301	1.164	0.000	0.056	0.000	0.308	1.185		66	15.4
P2-2	BYPASS	1.619	0.383	0.351	0.000	0.156	0.705	0.000	0.025		56	15.9
PP2	P2 POROUS PAVERS	0.438								0.438	98	5
TOTAL	Total Site	8.849	0.836	1.602	0.101	1.066	0.705	1.008	2.768	0.762		

Summary for Subcatchment P1: NYE ROAD

Runoff = 4.24 cfs @ 12.19 hrs, Volume= Routed to Link T-P1 : TOTAL NYE ROAD 0.360 af, Depth> 1.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-year Rainfall=3.09"

Area ((ac) C	N Des	cription					
0.	153 3	30 Woo	ods, Good,	HSG A				
0.0	088 3	39 >75	% Grass c	over, Good	, HSG A			
0.1	101	55 Woo	ods, Good,	HSG B				
0.8	854 (61 >75	% Grass c	over, Good	, HSG B			
0.701 80 >75% Grass cover, Good, HSG D								
1.	558 9	98 Pav	ed parking	, HSG D				
3.4	455	79 Wei	ghted Aver	rage				
1.8	897	54.9	01% Pervio	us Area				
1.	558	45.0)9% Imperv	vious Area				
Tc	Length	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
8.7	100	0.2000	0.19		Sheet Flow, A to B			
					Woods: Light underbrush n= 0.400 P2= 3.09"			
0.4	180	0.2000	7.20		Shallow Concentrated Flow, B to C			
					Unpaved Kv= 16.1 fps			
0.3	60	0.0200	2.87		Shallow Concentrated Flow, C to D			
					Paved Kv= 20.3 fps			
1.2	460	0.0160	6.22	4.88	Pipe Channel, 12"			
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'			
					n= 0.012 Concrete pipe, finished			
10.6	800	Total						

Subcatchment P1: NYE ROAD

Summary for Subcatchment P2-1: TO POND

Runoff = 1.21 cfs @ 12.27 hrs, Volume= 0.147 af, Depth> 0.58" Routed to Pond 2P : POND

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-year Rainfall=3.09"

Area	(ac) C	N Des	cription		
0.	301	30 Woo	ods, Good,	HSG A	
1.	164	39 >75	% Grass c	over, Good	, HSG A
0.	056	61 >75	% Grass c	over, Good	, HSG B
0.	308	30 >75	% Grass c	over, Good	, HSG D
1.	185	98 Pav	ed parking	, HSG D	
3.	014	66 Wei	ghted Aver	age	
1.	829	60.6	8% Pervio	us Area	
1.	185	39.3	2% Imperv	vious Area	
			-		
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.7	100	0.2000	0.19		Sheet Flow, A to B
					Woods: Light underbrush n= 0.400 P2= 3.09"
0.7	100	0.0200	2.28		Shallow Concentrated Flow, B to C
					Unpaved Kv= 16.1 fps
0.5	85	0.0200	2.87		Shallow Concentrated Flow, C to D
					Paved Kv= 20.3 fps
5.5	230	0.0200	0.69	0.55	Pipe Channel, RCP_Round 12"
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.120
15.4	515	Total			

Subcatchment P2-1: TO POND

Summary for Subcatchment P2-2: BYPASS

Runoff = 0.11 cfs @ 12.43 hrs, Volume= Routed to Link T-P2 : TOTAL OFFSITE SE

0.033 af, Depth> 0.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-year Rainfall=3.09"

Area ((ac) (CN	Desc	cription		
0.3	383	30	Woo	ds, Good,	HSG A	
0.3	351	39	>75%	% Grass co	over, Good	, HSG A
0.1	156	61	>75%	% Grass co	over, Good	, HSG B
0.7	705	77	Woo	ds, Good,	HSG D	
0.0	025	98	Pave	ed parking	, HSG D	
1.6	620	56	Weig	ghted Aver	age	
1.5	595		98.4	6% Pervio	us Area	
0.0	025		1.54	% Impervi	ous Area	
Tc	Length	1 8	Slope	Velocity	Capacity	Description
(min)	(feet)		(ft/ft)	(ft/sec)	(cfs)	
13.2	100	0.0	0700	0.13		Sheet Flow, A to B
						Woods: Light underbrush n= 0.400 P2= 3.09"
2.7	370	0.0	0200	2.28		Shallow Concentrated Flow, B to C
						Unpaved Kv= 16.1 fps

15.9 470 Total

Subcatchment P2-2: BYPASS

Summary for Subcatchment PP1: P1 PERMEABLE PAVERS

Runoff = 0.98 cfs @ 12.12 hrs, Volume= Routed to Pond 1PP : P1 PERMEABLE PAVERS 0.077 af, Depth> 2.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-year Rainfall=3.09"

Area (ac) CN	Dese	cription								
0.3	324 98	B Pave	ed parking	, HSG D							
0.3	324	100.	00% Impe	rvious Area	a						
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Descripti	on					
5.0					Direct Er	ntry, US	ER				
		S	Subcatch	nment PP	1: P1 PE	RMEA	BLE P	AVEF	RS		
				Hydro	ograph						
ſ											Runoff
1 - - - - - - - - - - - - 	NOA 2-ye Run Run Tc= CN=	A 24 ar Ra off Ar off Vo off De 5.0 mi 98	-hr D infall=: rea=0.3 olume= opth>2 in	3.09" 24 ac 0.077 a .86"	0.98 cfs						
0	1 2 3	4 5	6 7 8	9 10 11 Tim	12 13 14 e (hours)	15 16	17 18 1	19 20 2	1 22 2	3 24	

Summary for Subcatchment PP2: P2 PERMEABLE PAVERS

Runoff = 1.33 cfs @ 12.12 hrs, Volume= Routed to Pond 2PP : P2 PERMEABLE PAVERS 0.104 af, Depth> 2.86"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 2-year Rainfall=3.09"

Area	i (ac) CN	Description						
().438 98	Paved parkin	q, HSG D					
().438	100.00% Imp	ervious Area	a				
		•						
Тс	Length S	Slope Velocity	/ Capacity	Description				
(min)	(feet)	(ft/ft) (ft/sec) (cfs)					
5.0				Direct Entry	, USER			
		Subcato	hment PP	2: P2 PERM		PAVERS	5	
			Hydro	ograph				
				1.33 cfs				□ Runoπ
		A 24-hr D						
	2-102	r Rainfall=	3 00"					
	Z-yea							
1-]∠†-Runo	TT Area=0.	438 ac				i= = -i= = -i= = - I I I I	
	Runo	ff Volume	=0.104 a	f				
cfs)	Runo	ff Depth>2	2.86"					
Mo		0 min						
Ē	10-5.							
	CN=9	8						
			and					
0-								
0	0 1 2 3	4 5 6 7	8 9 10 11 Tim	12 13 14 15 e (bours)	16 17 18	19 20 21	22 23 24	
				s (115015)				

Summary for Pond 1PP: P1 PERMEABLE PAVERS

Inflow Area	=	0.324 ac,10	0.00% Impe	ervious,	Inflow	Depth >	2.86"	for	2-yea	r event	
Inflow	=	0.98 cfs @	12.12 hrs,	Volume	=	0.077	af				
Outflow	=	0.17 cfs @	12.55 hrs,	Volume	=	0.077	af, At	ten= 8	3%, I	Lag= 25	.8 min
Discarded	=	0.17 cfs @	12.55 hrs,	Volume	=	0.077	af				

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 50.13' @ 12.55 hrs Surf.Area= 0.324 ac Storage= 0.017 af

Plug-Flow detention time= 23.6 min calculated for 0.077 af (100% of inflow) Center-of-Mass det. time= 23.1 min (780.7 - 757.6)

Volume		Invert A	vail.Stora	ge Storage Des	cription	
#1	:	50.00'	0.087	af Custom Sta	ge Data (Prisma	tic)Listed below
Elevatio (fee	on et)	Surf.Area (acres)	Voids (%)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	
50.0 50.6	00 67	0.324 0.324	0.0 40.0	0.000 0.087	0.000 0.087	
Device	Rout	ing	Invert	Outlet Devices		
#1	Disca	arded	50.00'	0.520 in/hr Exfile Conductivity to G	ration over Hor roundwater Elev	izontal area ation = 20.00'

Discarded OutFlow Max=0.17 cfs @ 12.55 hrs HW=50.13' (Free Discharge) **1=Exfiltration** (Controls 0.17 cfs)

NOAA 24-hr D 2-year Rainfall=3.09" Printed 11/1/2023 LLC Page 10

Pond 1PP: P1 PERMEABLE PAVERS

Summary for Pond 2P: POND

Inflow Area	a =	3.014 ac, 3	9.32% Impe	ervious, Infl	low Depth >	0.58"	for 2-yea	ar event	
Inflow	=	1.21 cfs @	12.27 hrs,	Volume=	0.147	af	-		
Outflow	=	0.10 cfs @	16.48 hrs,	Volume=	0.061	af, Att	en= 91%,	Lag= 252.5	min
Discarded	=	0.00 cfs @	0.00 hrs,	Volume=	0.000	af		•	
Primary	=	0.10 cfs @	16.48 hrs,	Volume=	0.061	af			
Routed	to Link ⁻	T-P2 : TOTAL	OFFSITE	SE					

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 54.45' @ 16.48 hrs Surf.Area= 3,795 sf Storage= 3,916 cf

Plug-Flow detention time= 383.4 min calculated for 0.061 af (41% of inflow) Center-of-Mass det. time= 217.4 min (1,133.1 - 915.7)

Volume	Invert	Avail.Stor	age Storage D	Description		
#1	53.00'	21,11	8 cf Custom S	Stage Data (Coni	ic) Listed below (Reca	alc)
Elevatio	on Su	ırf.Area	Inc.Store	Cum.Store	Wet.Area	
(fee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
53.0	00	1,657	0	0	1,657	
54.0	00	3,118	2,349	2,349	3,128	
55.0	00	4,698	3,881	6,230	4,723	
56.0	00	6,376	5,516	11,746	6,422	
57.0	00	8,155	7,247	18,993	8,226	
57.2	25	8,847	2,125	21,118	8,923	
Device	Routing	Invert	Outlet Devices			
#1	Discarded	53.00'	5.000 in/hr Ext	filtration over We	etted area	
#2	Device 1	50.00'	Conductivity to	Groundwater Ele	vation = 20.00'	
112	Device 1	00.00	L= 50.0' RCP,	mitered to confo	rm to fill, Ke= 0.700	
			Inlet / Outlet Inv	vert= 50.00' / 49.5	50' S= 0.0100 '/' Co	= 0.900
			n= 0.120, Flow	/ Area= 1.23 sf		
#3	Primary	54.30'	12.0" Vert. Ori	fice/Grate C= 0	.600 Limited to weir	flow at low heads
#4	Device 2	56.25'	12.0' long + 0. Head (feet) 0.2 2.50 3.00 3.50 Coef. (English) 2.68 2.72 2.73	.2 '/' SideZ x 4.0 20 0.40 0.60 0.8 0 4.00 4.50 5.00 2.38 2.54 2.69 3 2.76 2.79 2.88	' breadth Broad-Cre 30 1.00 1.20 1.40 1 3 5.50 2.68 2.67 2.67 2.6 3 3.07 3.32	ested Rectangular Weir .60 1.80 2.00

Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=53.00' (Free Discharge)

1=Exfiltration (Passes 0.00 cfs of 0.19 cfs potential flow)

2=Culvert (Controls 0.00 cfs)
4=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Primary OutFlow Max=0.10 cfs @ 16.48 hrs HW=54.45' (Free Discharge) →3=Orifice/Grate (Orifice Controls 0.10 cfs @ 1.34 fps)

Summary for Pond 2PP: P2 PERMEABLE PAVERS

Inflow Area =	0.438 ac,10	0.00% Impervious, I	nflow Depth > 2.86"	for 2-year event
Inflow =	1.33 cfs @	12.12 hrs, Volume=	0.104 af	
Outflow =	0.23 cfs @	12.55 hrs, Volume=	0.104 af, Att	en= 83%, Lag= 25.8 min
Discarded =	0.23 cfs @	12.55 hrs, Volume=	0.104 af	-

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 50.13' @ 12.55 hrs Surf.Area= 0.438 ac Storage= 0.023 af

Plug-Flow detention time= 23.6 min calculated for 0.104 af (100% of inflow) Center-of-Mass det. time= 23.1 min (780.7 - 757.6)

Volume		Invert A	/ail.Stora	ge Storage Desc	ription	
#1		50.00'	0.117	af Custom Stag	je Data (Prisma	tic)Listed below (Recalc)
Elevatio (fee	on et)	Surf.Area (acres)	Voids (%)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	
50.0 50.6	00 67	0.438 0.438	0.0 40.0	0.000 0.117	0.000 0.117	
Device	Rou	ıting	Invert	Outlet Devices		
#1	Disc	carded	50.00'	0.520 in/hr Exfilt Conductivity to Gr	ration over Hori oundwater Eleva	zontal area ation = 20.00'

Discarded OutFlow Max=0.23 cfs @ 12.55 hrs HW=50.13' (Free Discharge) **1=Exfiltration** (Controls 0.23 cfs)

Pond 2PP: P2 PERMEABLE PAVERS

Summary for Link T: TOTAL SITE

Inflow /	Area	=	8.851 ac,	39.88% Impe	rvious,	Inflow Dep	th > 0.0	61" for	2-year event
Inflow		=	4.27 cfs @	12.19 hrs, \	Volume	= 0	.454 af		
Primar	у	=	4.27 cfs @	12.19 hrs, \	Volume	= 0	.454 af,	Atten= 0	%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link T: TOTAL SITE

Summary for Link T-P1: TOTAL NYE ROAD

Inflow Area = 3.779 ac, 49.80% Impervious, Inflow Depth > 1.14" for 2-year event Inflow = 4.24 cfs @ 12.19 hrs, Volume= 0.360 af Primary = 4.24 cfs @ 12.19 hrs, Volume= 0.360 af, Atten= 0%, Lag= 0.0 min Routed to Link T : TOTAL SITE

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link T-P1: TOTAL NYE ROAD

Summary for Link T-P2: TOTAL OFFSITE SE

Inflow Area	a =	5.072 ac,	32.49% Impe	ervious,	Inflow Dep	oth > 0	.22" for	2-yea	ar event
Inflow	=	0.13 cfs @	16.31 hrs,	Volume	= C).093 af	-	-	
Primary	=	0.13 cfs @	16.31 hrs,	Volume	= C).093 af	, Atten=	0%, L	.ag= 0.0 min
Routed	to Link -	T : TOTAL S	SITE						

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link T-P2: TOTAL OFFSITE SE

Summary for Subcatchment P1: NYE ROAD

Runoff = 9.14 cfs @ 12.18 hrs, Volume= Routed to Link T-P1 : TOTAL NYE ROAD 0.770 af, Depth> 2.67"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-year Rainfall=4.86"

Area ((ac) C	N Des	cription							
0.	153 3	30 Woo	ods, Good,	HSG A						
0.0	088 3	39 >75	% Grass c	over, Good	, HSG A					
0.1	101	55 Woo	ods, Good,	HSG B						
0.8	854 (61 >75	% Grass c	over, Good	, HSG B					
0.	701 80 >75% Grass cover, Good, HSG D									
1.	558 9	98 Pav	ed parking	, HSG D						
3.4	455	79 Wei	ghted Aver	rage						
1.8	1.897 54.91% Pervious Area									
1.	558	45.0)9% Imperv	vious Area						
Tc	Length	Slope	Velocity	Capacity	Description					
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)						
8.7	100	0.2000	0.19		Sheet Flow, A to B					
					Woods: Light underbrush n= 0.400 P2= 3.09"					
0.4	180	0.2000	7.20		Shallow Concentrated Flow, B to C					
					Unpaved Kv= 16.1 fps					
0.3	60	0.0200	2.87		Shallow Concentrated Flow, C to D					
					Paved Kv= 20.3 fps					
1.2	460	0.0160	6.22	4.88	Pipe Channel, 12"					
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'					
					n= 0.012 Concrete pipe, finished					
10.6	800	Total								

Subcatchment P1: NYE ROAD

Summary for Subcatchment P2-1: TO POND

Runoff = 4.01 cfs @ 12.25 hrs, Volume= 0.408 af, Depth> 1.62" Routed to Pond 2P : POND

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-year Rainfall=4.86"

Area	(ac) C	N Des	cription								
0.3	301 🗧	30 Woo	ods, Good,	HSG A							
1.	164 🗧	39 >75	% Grass c	over, Good	, HSG A						
0.	056	61 >75	% Grass c	over, Good	, HSG B						
0.3	308 8	30 >75	% Grass c	over, Good	, HSG D						
1.	185 9	98 Pav	ed parking	, HSG D							
3.	014 (6 Wei	ghted Aver	age							
1.5	1.829 60.68% Pervious Area										
1.	1.185 39.32% Impervious Area										
Tc	Length	Slope	Velocity	Capacity	Description						
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
8.7	100	0.2000	0.19		Sheet Flow, A to B						
					Woods: Light underbrush n= 0.400 P2= 3.09"						
0.7	100	0.0200	2.28		Shallow Concentrated Flow, B to C						
					Unpaved Kv= 16.1 fps						
0.5	85	0.0200	2.87		Shallow Concentrated Flow, C to D						
					Paved Kv= 20.3 fps						
5.5	230	0.0200	0.69	0.55	Pipe Channel, RCP_Round 12"						
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'						
					n= 0.120						
15.4	515	Total									

Subcatchment P2-1: TO POND

Summary for Subcatchment P2-2: BYPASS

Runoff = 1.08 cfs @ 12.28 hrs, Volume= 0.7 Routed to Link T-P2 : TOTAL OFFSITE SE

0.130 af, Depth> 0.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-year Rainfall=4.86"

Area (ad	c) C	N Des	cription					
0.38	33 3	0 Woo	ds, Good,	HSG A				
0.35	51 3	9 >75	% Grass c	over, Good	, HSG A			
0.15	666	1 >75	5% Grass cover, Good, HSG B					
0.70)5 7	7 Woo	ds, Good,	HSG D				
0.02	25 9	8 Pav	ed parking	, HSG D				
1.62	20 5	6 Wei	ghted Aver	age				
1.59	95	98.4	6% Pervio	us Area				
0.02	25	1.54	% Impervi	ous Area				
Tc L	ength	Slope	Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
13.2	100	0.0700	0.13		Sheet Flow, A to B			
					Woods: Light underbrush n= 0.400 P2= 3.09"			
2.7	370	0.0200	2.28		Shallow Concentrated Flow, B to C			
					Unpaved Kv= 16.1 fps			

15.9 470 Total

Subcatchment P2-2: BYPASS

Summary for Subcatchment PP2: P2 PERMEABLE PAVERS

Runoff = 2.10 cfs @ 12.12 hrs, Volume= 0.1 Routed to Pond 2PP : P2 PERMEABLE PAVERS

0.169 af, Depth> 4.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 10-year Rainfall=4.86"

Area (ac) CN Description	
0.438 98 Paved parking, HSG D	
0.438 100.00% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
5.0 Direct Entry, USER	
Subcatchment PP2: P2 PERMEABLE PAVERS	
Hydrograph	
	Runoff
10-year Rainfall=4.86	
Runoff Volume=0.169 at	
E Runoff Depth>4.62"	
ê ₁ Tc≑5.0 min	
CN=98	
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours)	

Summary for Pond 1PP: P1 PERMEABLE PAVERS

Inflow Area	=	0.324 ac,10	0.00% Imper	rvious, Inflow	Depth >	4.62"	for 10-ye	ear event
Inflow	=	1.56 cfs @	12.12 hrs, \	/olume=	0.125	af		
Outflow	=	0.17 cfs @	12.88 hrs, \	/olume=	0.125	af, Atte	en= 89%,	Lag= 45.5 min
Discarded	=	0.17 cfs @	12.88 hrs, \	/olume=	0.125	af		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 50.27' @ 12.88 hrs Surf.Area= 0.324 ac Storage= 0.036 af

Plug-Flow detention time= 56.1 min calculated for 0.125 af (100% of inflow) Center-of-Mass det. time= 55.5 min (803.8 - 748.3)

Volume	Inve	rt Av	/ail.Stora	ge Storage Des	cription	
#1	50.00	כ'	0.087	af Custom Sta	ge Data (Prisma	t ic) Listed below
Elevatio	on Sur et) (a	f.Area acres)	Voids (%)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	
50.0 50.6	00 67	0.324 0.324	0.0 40.0	0.000 0.087	0.000 0.087	
Device	Routing		Invert	Outlet Devices		
#1	#1 Discarded 50.00' 0.520 in Conduct		0.520 in/hr Exfile Conductivity to G	tration over Hor Froundwater Elev	izontal area ation = 20.00'	

Discarded OutFlow Max=0.17 cfs @ 12.88 hrs HW=50.27' (Free Discharge) **1=Exfiltration** (Controls 0.17 cfs)

Pond 1PP: P1 PERMEABLE PAVERS

Summary for Pond 2P: POND

Inflow Area	a =	3.014 ac, 3	9.32% Impe	ervious, Infl	ow Depth >	1.62"	for 10-y	ear event	
Inflow	=	4.01 cfs @	12.25 hrs,	Volume=	0.408	af	•		
Outflow	=	1.39 cfs @	12.68 hrs,	Volume=	0.317	af, Atte	en= 65%,	Lag= 26.0 r	nin
Discarded	=	0.00 cfs @	0.00 hrs,	Volume=	0.000	af		-	
Primary	=	1.39 cfs @	12.68 hrs,	Volume=	0.317	af			
Routed	to Link ⁻	T-P2 : TOTAL		SE					

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 54.93' @ 12.68 hrs Surf.Area= 4,570 sf Storage= 5,887 cf

Plug-Flow detention time= 156.5 min calculated for 0.317 af (78% of inflow) Center-of-Mass det. time= 64.9 min (943.4 - 878.5)

Volume	Invert	Avail.Stor	age Storage D	escription		
#1	53.00'	21,11	8 cf Custom S	Stage Data (Coni	i c) Listed below (Reca	lc)
Elevatio	on Su	rf.Area	Inc.Store	Cum.Store	Wet.Area	
(tee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
53.0	00	1,657	0	0	1,657	
54.0	00	3,118	2,349	2,349	3,128	
55.0	00	4,698	3,881	6,230	4,723	
56.0	00	6,376	5,516	11,746	6,422	
57.0	00	8,155	7,247	18,993	8,226	
57.2	25	8,847	2,125	21,118	8,923	
Device	Routing	Invert	Outlet Devices			
#1	Discarded	53.00'	5.000 in/hr Exf	iltration over We	etted area	
#2	Device 1	50.00'	15.0" Round C	Groundwater Ele Culvert	$vation = 20.00^{\circ}$	
			L= 50.0' RCP, Inlet / Outlet Inv n= 0.120 , Flow	mitered to confo /ert= 50.00' / 49.5 / Area= 1.23 sf	rm to fill, Ke= 0.700 50' S= 0.0100 '/' Cc	= 0.900
#3	Primary	54.30'	12.0" Vert. Ori	fice/Grate C= 0.	.600 Limited to weir	flow at low heads
#4	Device 2	56.25'	12.0' long + 0. Head (feet) 0.2 2.50 3.00 3.50 Coef. (English) 2.68 2.72 2.73	2 '/' SideZ x 4.0 20 0.40 0.60 0.8 0 4.00 4.50 5.00 2.38 2.54 2.69 3 2.76 2.79 2.88	breadth Broad-Cres 0 1.00 1.20 1.40 1. 5.50 2.68 2.67 2.67 2.65 3.07 3.32	sted Rectangular Weir 60 1.80 2.00 5 2.66 2.66

Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=53.00' (Free Discharge)

1=Exfiltration (Passes 0.00 cfs of 0.19 cfs potential flow)

2=Culvert (Controls 0.00 cfs)
4=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Primary OutFlow Max=1.39 cfs @ 12.68 hrs HW=54.93' (Free Discharge) →3=Orifice/Grate (Orifice Controls 1.39 cfs @ 2.69 fps)

Pond 2P: POND

Summary for Pond 2PP: P2 PERMEABLE PAVERS

Inflow Area	ı =	0.438 ac,10	0.00% Impe	ervious,	Inflow	Depth >	4.62	" for	10-y	ear event	
Inflow	=	2.10 cfs @	12.12 hrs,	Volume	=	0.169	af				
Outflow	=	0.23 cfs @	12.88 hrs,	Volume	=	0.168	af, A	tten= 8	39%,	Lag= 45.5 min	۱
Discarded	=	0.23 cfs @	12.88 hrs,	Volume	=	0.168	af				

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 50.27' @ 12.88 hrs Surf.Area= 0.438 ac Storage= 0.048 af

Plug-Flow detention time= 56.1 min calculated for 0.168 af (100% of inflow) Center-of-Mass det. time= 55.5 min (803.8 - 748.3)

Volume		Invert Av	vail.Stora	ge Storage Desc	ription	
#1		50.00'	0.117	af Custom Stag	je Data (Prisma	tic)Listed below (Recalc)
Elevatio (fee	on et)	Surf.Area (acres)	Voids (%)	Inc.Store (acre-feet)	Cum.Store (acre-feet)	
50.0 50.6	00 67	0.438 0.438	0.0 40.0	0.000 0.117	0.000 0.117	
Device	Rou	ting	Invert	Outlet Devices		
#1	#1 Discarded 50.00		50.00'	0.520 in/hr Exfilt Conductivity to G	ration over Hor roundwater Elev	izontal area ation = 20.00'

Discarded OutFlow Max=0.23 cfs @ 12.88 hrs HW=50.27' (Free Discharge) **1=Exfiltration** (Controls 0.23 cfs)

Pond 2PP: P2 PERMEABLE PAVERS

Summary for Link T: TOTAL SITE

Inflow A	\rea =	8.851 ac, 3	39.88% Impervious,	Inflow Depth >	1.65" for	10-year event
Inflow	=	10.00 cfs @	12.19 hrs, Volume	= 1.217 a	af	
Primary	/ =	10.00 cfs @	12.19 hrs, Volume	= 1.217 a	af, Atten= 0	%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link T: TOTAL SITE

Summary for Link T-P1: TOTAL NYE ROAD

 Inflow Area =
 3.779 ac, 49.80% Impervious, Inflow Depth > 2.44" for 10-year event

 Inflow =
 9.14 cfs @
 12.18 hrs, Volume=
 0.770 af

 Primary =
 9.14 cfs @
 12.18 hrs, Volume=
 0.770 af, Atten= 0%, Lag= 0.0 min

 Routed to Link T : TOTAL SITE
 0.770 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link T-P1: TOTAL NYE ROAD

Summary for Link T-P2: TOTAL OFFSITE SE

 Inflow Area =
 5.072 ac, 32.49% Impervious, Inflow Depth > 1.06" for 10-year event

 Inflow =
 1.90 cfs @
 12.59 hrs, Volume=
 0.447 af

 Primary =
 1.90 cfs @
 12.59 hrs, Volume=
 0.447 af, Atten= 0%, Lag= 0.0 min

 Routed to Link T : TOTAL SITE
 0.447 af, Atten= 0%, Lag= 0.0 min
 0.447 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link T-P2: TOTAL OFFSITE SE

Summary for Subcatchment P1: NYE ROAD

Runoff = 12.39 cfs @ 12.18 hrs, Volume= Routed to Link T-P1 : TOTAL NYE ROAD 1.049 af, Depth> 3.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-year Rainfall=5.97"

Area	(ac) C	CN De	scription					
0.	153	30 Wo	Woods, Good, HSG A					
0.088 39		39 >75	>75% Grass cover, Good, HSG A					
0.	0.101 55		Woods, Good, HSG B					
0.8	854	61 >75	5% Grass c	over, Good	, HSG B			
0.	701	80 >75	5% Grass c	over, Good	, HSG D			
1.	558	98 Pa	/ed parking	, HSG D				
3.4	455	79 We	ighted Ave	rage				
1.897 54.91% Pervious Area								
1.	1.558 45.09% Impervious Area							
Тс	Length	Slope	e Velocity	Capacity	Description			
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)				
8.7	100	0.2000	0.19		Sheet Flow, A to B			
					Woods: Light underbrush n= 0.400 P2= 3.09"			
0.4	180	0.2000	7.20		Shallow Concentrated Flow, B to C			
					Unpaved Kv= 16.1 fps			
0.3	60	0.0200	2.87		Shallow Concentrated Flow, C to D			
					Paved Kv= 20.3 fps			
1.2	460	0.0160	6.22	4.88	Pipe Channel, 12"			
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'			
					n= 0.012 Concrete pipe, finished			
10.6	800	Total						

Subcatchment P1: NYE ROAD

Summary for Subcatchment P2-1: TO POND

Runoff = 6.10 cfs @ 12.24 hrs, Volume= 0.604 af, Depth> 2.41" Routed to Pond 2P : POND

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-year Rainfall=5.97"

Area	(ac) C	N Des	cription				
0.	301	30 Woo	ods, Good,	HSG A			
1.	164	39 >75	% Grass c	over, Good	, HSG A		
0.	056	61 >75	% Grass c	over, Good	, HSG B		
0.	308	30 >75	% Grass c	over, Good	, HSG D		
1.	185	98 Pav	ed parking	, HSG D			
3.014 66 Weighted Average							
1.829 60.68% Pervious Area							
1.185 39.32% Impervious Area							
			-				
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
8.7	100	0.2000	0.19		Sheet Flow, A to B		
					Woods: Light underbrush n= 0.400 P2= 3.09"		
0.7	100	0.0200	2.28		Shallow Concentrated Flow, B to C		
					Unpaved Kv= 16.1 fps		
0.5	85	0.0200	2.87		Shallow Concentrated Flow, C to D		
					Paved Kv= 20.3 fps		
5.5	230	0.0200	0.69	0.55	Pipe Channel, RCP_Round 12"		
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'		
					n= 0.120		
15.4	515	Total					

Hydrograph Runoff 6.10 cfs NOAA 24-hr D 6-25-year Rainfall=5.97" 5 Runoff Area=3.014 ac Runoff Volume=0.604 af 4 Flow (cfs) Runoff Depth>2.41" Flow Length=515' 3-Tc=15.4 min **CN=66** 2-1 0-2 3 11 12 13 14 15 16 17 18 19 20 21 22 23 1 4 5 6 7 8 9 10 Ó 24 Time (hours)

Subcatchment P2-1: TO POND
Summary for Subcatchment P2-2: BYPASS

Runoff = 1.94 cfs @ 12.26 hrs, Volume= 0.212 af, Depth> 1.57" Routed to Link T-P2 : TOTAL OFFSITE SE

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-year Rainfall=5.97"

_	Area ((ac)	CN	Desc	ription								
	0.3	383	30	Woo	ds, Good,	HSG A							
	0.3	351	39	>75%	% Grass cover, Good, HSG A								
	0.	156	61	>75%	5% Grass cover, Good, HSG B								
	0.	705	77	Woo	ds, Good,	HSG D							
	0.0	025	98	Pave	d parking	, HSG D							
	1.620 56 Weighted Average												
	1.	595		98.4	, 6% Pervio	us Area							
	0.0	025		1.549	% Impervi	ous Area							
					•								
	Tc	Lengtl	n	Slope	Velocity	Capacity	Description						
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)							
	13.2	100) 0	.0700	0.13		Sheet Flow, A to B						
							Woods: Light underbrush n= 0.400 P2= 3.09"						
	2.7	370) ()	.0200	2.28		Shallow Concentrated Flow, B to C						
							Unpaved Kv= 16.1 fps						

15.9 470 Total

Subcatchment P2-2: BYPASS

Summary for Subcatchment PP1: P1 PERMEABLE PAVERS

Runoff 0.155 af, Depth> 5.73" = 1.91 cfs @ 12.12 hrs, Volume= Routed to Pond 1PP : P1 PERMEABLE PAVERS

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-year Rainfall=5.97"

Area (ad	c) CN Description
0.32	24 98 Paved parking, HSG D
0.32	100.00% Impervious Area
Tc L (min)	ength Slope Velocity Capacity Description (feet) (ft/ft) (ft/sec) (cfs)
5.0	Direct Entry, USER
	Subcatchment PP1: P1 PERMEABLE PAVERS
	Hydrograph
2-	NOAA 24-hr D 25-year Rainfall=5.97"
(cfs)	Runoff Area=0.324 ac Runoff Volume=0.155 af Runoff Depth>5.73"
MOL 1-*	Tc=5.0 min CN=98
0	
0	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours)

Summary for Subcatchment PP2: P2 PERMEABLE PAVERS

Runoff = 2.59 cfs @ 12.12 hrs, Volume= 0.209 a Routed to Pond 2PP : P2 PERMEABLE PAVERS

0.209 af, Depth> 5.73"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 25-year Rainfall=5.97"

Area (ac) CN Description	
0.438 98 Paved parking, HSG D	
0.438 100.00% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
5.0 Direct Entry, USER	
Subcatchment PP2: P2 PERMEABLE PAVERS	
Hydrograph	
NOAA 24-hr D 25-year Rainfall=5.97" Runoff Area=0.438 ac Runoff Volume=0.209 af Runoff Depth>5.73" Tc=5.0 min CN=98	loff
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 Time (hours)	

Summary for Pond 1PP: P1 PERMEABLE PAVERS

Inflow Area	=	0.324 ac,10	0.00% Impe	ervious,	Inflow	Depth >	5.73"	for 25-y	ear event	
Inflow	=	1.91 cfs @	12.12 hrs,	Volume	=	0.155	af			
Outflow	=	0.17 cfs @	13.07 hrs,	Volume	=	0.155	af, At	tten= 91%,	Lag= 57.3	min
Discarded	=	0.17 cfs @	13.07 hrs,	Volume	=	0.155	af			

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 50.38' @ 13.07 hrs Surf.Area= 0.324 ac Storage= 0.050 af

Plug-Flow detention time= 82.5 min calculated for 0.154 af (100% of inflow) Center-of-Mass det. time= 82.0 min (826.8 - 744.8)

Volume	Invert	Avail.Sto	orage Storage D	escription				
#1	50.00'	0.0	87 af Custom S	Stage Data (Prisn	natic)Listed below			
Elevatio	on Surf.A et) (ac	Area Voids res) (%	s Inc.Store	Cum.Store (acre-feet)				
50.0 50.6	00 0. 67 0.	324 0.0 324 40.0	0.000 0 0.087	0.000				
Device	Routing	Inver	rt Outlet Devices	S				
#1 Discarded		50.00	0.520 in/hr Ex Conductivity to	0.520 in/hr Exfiltration over Horizontal area Conductivity to Groundwater Elevation = 20.00'				

Discarded OutFlow Max=0.17 cfs @ 13.07 hrs HW=50.38' (Free Discharge) **1=Exfiltration** (Controls 0.17 cfs)

NOAA 24-hr D 25-year Rainfall=5.97" Printed 11/1/2023 hs LLC Page 42

Pond 1PP: P1 PERMEABLE PAVERS

Summary for Pond 2P: POND

Inflow Area	a =	3.014 ac, 3	9.32% Impe	ervious, Ir	nflow Depth >	2.41"	for 25-ye	ear event	
Inflow	=	6.10 cfs @	12.24 hrs,	Volume=	0.604	af	-		
Outflow	=	2.76 cfs @	12.53 hrs,	Volume=	0.511	af, Atte	en= 55%,	Lag= 17.2	min
Discarded	=	0.00 cfs @	0.00 hrs,	Volume=	0.000	af		•	
Primary	=	2.76 cfs @	12.53 hrs,	Volume=	0.511	af			
Routed	to Link ⁻	T-P2 : TOTAL		SE					

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 55.33' @ 12.53 hrs Surf.Area= 5,226 sf Storage= 7,875 cf

Plug-Flow detention time= 118.1 min calculated for 0.511 af (85% of inflow) Center-of-Mass det. time= 48.2 min (913.9 - 865.7)

Volume	Invert	Avail.Stor	age Storage D	Description		
#1	53.00'	21,11	8 cf Custom	Stage Data (Coni	c) Listed below (Reca	ılc)
Elevatio	on Su	Irf.Area	Inc.Store	Cum.Store	Wet.Area	
(tee	et)	(sq-ft)	(cubic-feet)	(cubic-feet)	(sq-ft)	
53.0	00	1,657	0	0	1,657	
54.0	00	3,118	2,349	2,349	3,128	
55.0	00	4,698	3,881	6,230	4,723	
56.0	00	6,376	5,516	11,746	6,422	
57.0	00	8,155	7,247	18,993	8,226	
57.2	25	8,847	2,125	21,118	8,923	
Device	Routing	Invert	Outlet Devices			
#1	Discarded	53.00'	5.000 in/hr Ex	filtration over We	etted area	
			Conductivity to	Groundwater Elev	vation = 20.00'	
#2	Device 1	50.00'	15.0" Round	Culvert		
			L= 50.0' RCP	, mitered to confor	rm to fill, $Ke= 0.700$	
			Inlet / Outlet In	vert= 50.00' / 49.5	50' S= 0.0100 '/' Co	= 0.900
			n= 0.120, Flow	v Area= 1.23 sf		
#3	Primary	54.30'	12.0" Vert. Ori	fice/Grate C= 0.	600 Limited to weir	flow at low heads
#4 Device 2 56.25' 12.0' long + 0.2 '/' SideZ x 4.0' breadth Broa Head (feet) 0.20 0.40 0.60 0.80 1.00 1.20 2.50 3.00 3.50 4.00 4.50 5.00 5.50 Coef. (English) 2.38 2.54 2.69 2.68 2.67 2.1 2.68 2.72 2.73 2.76 2.79 2.88 3.07 3.32		breadth Broad-Cre 0 1.00 1.20 1.40 1 5.50 2.68 2.67 2.67 2.6 3.07 3.32	sted Rectangular Weir .60 1.80 2.00 5 2.66 2.66			

Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=53.00' (Free Discharge)

1=Exfiltration (Passes 0.00 cfs of 0.19 cfs potential flow)

2=Culvert (Controls 0.00 cfs)
4=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Primary OutFlow Max=2.76 cfs @ 12.53 hrs HW=55.33' (Free Discharge) →3=Orifice/Grate (Orifice Controls 2.76 cfs @ 3.51 fps)

Pond 2P: POND

Summary for Pond 2PP: P2 PERMEABLE PAVERS

Inflow Area	=	0.438 ac,10	0.00% Impervi	ious, Inflow l	Depth >	5.73"	for 25-ye	ear event
Inflow	=	2.59 cfs @	12.12 hrs, Vo	olume=	0.209 a	af		
Outflow	=	0.23 cfs @	13.07 hrs, Vo	olume=	0.209 a	af, Atter	n= 91%,	Lag= 57.3 min
Discarded	=	0.23 cfs @	13.07 hrs, Vo	olume=	0.209 a	af		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 50.38' @ 13.07 hrs Surf.Area= 0.438 ac Storage= 0.067 af

Plug-Flow detention time= 82.5 min calculated for 0.209 af (100% of inflow) Center-of-Mass det. time= 82.0 min (826.8 - 744.8)

Volume		Invert Av	vail.Stora	ge Storage Desc	Storage Description					
#1		50.00'	0.117	af Custom Stag	Custom Stage Data (Prismatic)Listed below (Recalc)					
Elevatio (fee	on et)	Surf.Area (acres)	Voids (%)	Inc.Store (acre-feet)	Cum.Store (acre-feet)					
50.0 50.6	00 67	0.438 0.438	0.0 40.0	0.000 0.117	0.000 0.117					
Device	Rou	ting	Invert	Outlet Devices						
#1 Discarded		arded	50.00'	0.520 in/hr Exfilt Conductivity to G	520 in/hr Exfiltration over Horizontal area onductivity to Groundwater Elevation = 20.00'					

Discarded OutFlow Max=0.23 cfs @ 13.07 hrs HW=50.38' (Free Discharge) **1=Exfiltration** (Controls 0.23 cfs)

Pond 2PP: P2 PERMEABLE PAVERS

Summary for Link T: TOTAL SITE

Inflow A	Area =	:	8.851 ac, 3	39.88% Impe	ervious,	Inflow Dept	h > 2.4	40" for	25-year even	t
Inflow	=		14.65 cfs @	12.19 hrs,	Volume	= 1.	772 af			
Primar	y =		14.65 cfs @	12.19 hrs,	Volume	= 1.	772 af,	Atten= 0	%, Lag= 0.0	min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link T: TOTAL SITE

Summary for Link T-P1: TOTAL NYE ROAD

 Inflow Area =
 3.779 ac, 49.80% Impervious, Inflow Depth >
 3.33" for 25-year event

 Inflow =
 12.39 cfs @
 12.18 hrs, Volume=
 1.049 af

 Primary =
 12.39 cfs @
 12.18 hrs, Volume=
 1.049 af, Atten= 0%, Lag= 0.0 min

 Routed to Link T : TOTAL SITE
 Total Site
 1.049 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link T-P1: TOTAL NYE ROAD

Summary for Link T-P2: TOTAL OFFSITE SE

Inflow Are	a =	5.072 ac, 3	32.49% Impe	ervious,	Inflow Depth	ו > 1.7	71" for 25-	year event
Inflow	=	4.10 cfs @	12.36 hrs,	Volume	= 0.7	723 af		-
Primary	=	4.10 cfs @	12.36 hrs,	Volume	= 0.7	723 af,	Atten= 0%,	Lag= 0.0 min
Routed	l to Link	T : TOTAL S	ITE					

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link T-P2: TOTAL OFFSITE SE

Summary for Subcatchment P1: NYE ROAD

Runoff = 17.46 cfs @ 12.18 hrs, Volume= Routed to Link T-P1 : TOTAL NYE ROAD 1.497 af, Depth> 5.20"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-year Rainfall=7.68"

Area	(ac) C	N Des	cription						
0.	153	30 Woo	ods, Good,	HSG A					
0.	088	39 >75	% Grass co	over, Good	, HSG A				
0.	101	55 Woo	ods, Good,	HSG B					
0.	854	61 >75	>75% Grass cover, Good, HSG B						
0.	701	80 >75	75% Grass cover, Good, HSG D						
1.	558	<u>98 Pav</u>	ed parking	, HSG D					
3.	455	79 Wei	ghted Aver	age					
1.	897	54.9	1% Pervio	us Area					
1.	558	45.0	9% Imper	∕ious Area					
Tc	Length	Slope	Velocity	Capacity	Description				
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)					
8.7	100	0.2000	0.19		Sheet Flow, A to B				
					Woods: Light underbrush n= 0.400 P2= 3.09"				
0.4	180	0.2000	7.20		Shallow Concentrated Flow, B to C				
					Unpaved Kv= 16.1 fps				
0.3	60	0.0200	2.87		Shallow Concentrated Flow, C to D				
					Paved Kv= 20.3 fps				
1.2	460	0.0160	6.22	4.88	Pipe Channel, 12"				
					12.0" Round Area= 0.8 st Perim= 3.1' r= 0.25'				
					n= 0.012 Concrete pipe, finished				
10.6	800	Total							

Subcatchment P1: NYE ROAD

Summary for Subcatchment P2-1: TO POND

Runoff = 9.58 cfs @ 12.24 hrs, Volume= 0.937 af, Depth> 3.73" Routed to Pond 2P : POND

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-year Rainfall=7.68"

Area	(ac) C	N Des	cription		
0.	301	30 Woo	ods, Good,	HSG A	
1.	164	39 >75	% Grass c	over, Good	, HSG A
0.	056	61 >75	% Grass c	over, Good	, HSG B
0.	308	30 >75	% Grass c	over, Good	, HSG D
1.	185	98 Pav	ed parking	, HSG D	
3.	014	66 Wei	ghted Aver	age	
1.	829	60.6	8% Pervio	us Area	
1.	185	39.3	2% Imperv	vious Area	
			-		
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.7	100	0.2000	0.19		Sheet Flow, A to B
					Woods: Light underbrush n= 0.400 P2= 3.09"
0.7	100	0.0200	2.28		Shallow Concentrated Flow, B to C
					Unpaved Kv= 16.1 fps
0.5	85	0.0200	2.87		Shallow Concentrated Flow, C to D
					Paved Kv= 20.3 fps
5.5	230	0.0200	0.69	0.55	Pipe Channel, RCP_Round 12"
					12.0" Round Area= 0.8 sf Perim= 3.1' r= 0.25'
					n= 0.120
15.4	515	Total			

Summary for Subcatchment P2-2: BYPASS

Runoff = 3.50 cfs @ 12.25 hrs, Volume= Routed to Link T-P2 : TOTAL OFFSITE SE

0.359 af, Depth> 2.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-year Rainfall=7.68"

Area (ac) C	N De	scription		
0.3	383	30 Wo	ods, Good,	HSG A	
0.3	351	39 >7	5% Grass c	over, Good	, HSG A
0.1	156	61 >7	5% Grass c	over, Good	, HSG B
0.7	705	77 Wo	ods, Good,	HSG D	
0.0)25	98 Pa	ved parking	, HSG D	
1.6	520	56 We	eighted Ave	rage	
1.5	595	98	46% Pervic	ous Area	
0.0)25	1.5	4% Impervi	ious Area	
			-		
Тс	Length	Slope	e Velocity	Capacity	Description
(min)	(feet)	(ft/ft) (ft/sec)	(cfs)	
13.2	100	0.070	0.13		Sheet Flow, A to B
					Woods: Light underbrush n= 0.400 P2= 3.09"
2.7	370	0.020) 2.28		Shallow Concentrated Flow, B to C
					Unpaved Kv= 16.1 fps

15.9 470 Total

Subcatchment P2-2: BYPASS

Summary for Subcatchment PP1: P1 PERMEABLE PAVERS

Runoff 2.47 cfs @ 12.12 hrs, Volume= = Routed to Pond 1PP : P1 PERMEABLE PAVERS

0.201 af, Depth> 7.43"

Page 55

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-year Rainfall=7.68"

Area (a	ac) CN De	scription							
0.3	24 98 Pa	ved parking	, HSG D						
0.3	24 10).00% Impe	ervious Area	a					
Tc (min)	Length Slope (feet) (ft/ft	e Velocity (ft/sec)	Capacity (cfs)	Descriptior	ı				
5.0				Direct Ent	ry, USEI	R			
		Subcatch	nment PP	1: P1 PEF	MEAB	LE PAV	ERS		
			Hydro	graph					_
Flow (cfs)	NOAA 24 100-year Runoff A Runoff V Runoff D Tc=5.0 m	I-hr D Rainfal rea=0.3 olume= epth>7 in	ll=7.68" 24 ac 0.201 a .43"	2.47 cfs					Runoff
	CN=98								9
0	1 2 3 4	5 0 7 0	Tim	e (hours)	J IU I/	10 19 2	U ZI ZZ	23 24	

Summary for Subcatchment PP2: P2 PERMEABLE PAVERS

Runoff = 3.33 cfs @ 12.12 hrs, Volume= 0 Routed to Pond 2PP : P2 PERMEABLE PAVERS

0.271 af, Depth> 7.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs NOAA 24-hr D 100-year Rainfall=7.68"

Area (ac) CN Description	
0.438 98 Paved parking, HSG D	
0.438 100.00% Impervious Area	
Tc Length Slope Velocity Capacity Description (min) (feet) (ft/ft) (ft/sec) (cfs)	
5.0 Direct Entry, USER	
Subcatchment PP2: P2 PERMEABLE PAVERS	
Hydrograph	_
	Runoff
100-year Rainfall=7.68	
Runoff Area=0.438 ac	
Runoff Volume=0.271 af	
g 2- Runoff Depth>7.43 "	
⁸ Tc=50 min	
	D
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24	≁ 4
Time (hours)	

Summary for Pond 1PP: P1 PERMEABLE PAVERS

Inflow Area	=	0.324 ac,10	0.00% Impervior	us, Inflow D	Depth > 7	7.43" for	100-year eve	nt
Inflow	=	2.47 cfs @	12.12 hrs, Volu	ıme=	0.201 at	f		
Outflow	=	0.17 cfs @	13.37 hrs, Volu	ime=	0.201 at	f, Atten= 9	93%, Lag= 75	5.2 min
Discarded	=	0.17 cfs @	13.37 hrs, Volu	ime=	0.201 af	f		

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 50.56' @ 13.37 hrs Surf.Area= 0.324 ac Storage= 0.073 af

Plug-Flow detention time= 130.4 min calculated for 0.201 af (100% of inflow) Center-of-Mass det. time= 129.9 min (871.0 - 741.1)

Volume		Invert A	vail.Stora	ge Storage Des	cription			
#1	5	50.00'	0.087	af Custom Sta	ge Data (Prisma	itic)Listed below		
Elevatio	on et)	Surf.Area (acres)	Voids (%)	Inc.Store (acre-feet)	Cum.Store (acre-feet)			
50.0 50.6	00 67	0.324 0.324	0.0 40.0	0.000 0.087	0.000 0.087			
Device	Routi	ng	Invert	Outlet Devices				
#1	#1 Discarded 50.00'		50.00'	0.520 in/hr Exfiltration over Horizontal area Conductivity to Groundwater Elevation = 20.00'				

Discarded OutFlow Max=0.17 cfs @ 13.37 hrs HW=50.56' (Free Discharge) **1=Exfiltration** (Controls 0.17 cfs)

Pond 1PP: P1 PERMEABLE PAVERS

Summary for Pond 2P: POND

Inflow Area	a =	3.014 ac, 3	39.32% Imp	ervious,	Inflow Depth :	> 3.7	3" for	100-	year eve	nt
Inflow	=	9.58 cfs @	12.24 hrs,	Volume	= 0.93	7 af			-	
Outflow	=	4.21 cfs @	12.52 hrs,	Volume	= 0.84	1 af, .	Atten=	56%,	Lag= 17	.2 min
Discarded	=	0.00 cfs @	0.00 hrs,	Volume	= 0.00	0 af			·	
Primary	=	4.21 cfs @	12.52 hrs,	Volume	= 0.84	1 af				
Routed	to Link ⁻	T-P2 : TOTA	L OFFSITE	SE						

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 56.04' @ 12.52 hrs Surf.Area= 6,443 sf Storage= 12,002 cf

Plug-Flow detention time= 92.3 min calculated for 0.841 af (90% of inflow) Center-of-Mass det. time= 41.4 min (893.2 - 851.8)

Volume	Invert	Avail.Stor	age Storage	Description		
#1	53.00'	21,11	8 cf Custom	Stage Data (Coni	c) Listed below (Recalc)	
Elevatio (fee	on Su et)	ırf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)	Wet.Area (sq-ft)	
53.0 54.0 55.0 56.0 57.0 57.2	20 20 20 20 20 20 25	1,657 3,118 4,698 6,376 8,155 8,847	0 2,349 3,881 5,516 7,247 2,125	0 2,349 6,230 11,746 18,993 21,118	1,657 3,128 4,723 6,422 8,226 8,923	
Device	Routing	Invert	Outlet Devices	8	· · · · · · · · · · · · · · · · · · ·	
#1	Discarded	53.00'	5.000 in/hr Ex Conductivity to	filtration over We	e tted area /ation = 20.00'	
#2	Device 1	50.00'	15.0" Round L= 50.0' RCF Inlet / Outlet In n= 0.120 Flow	Culvert P, mitered to confor overt= 50.00' / 49.5 w Area= 1 23 sf	m to fill, Ke= 0.700 0' S= 0.0100 '/' Cc= 0.9	00
#3 #4	Primary Device 2	54.30' 56.25'	12.0" Vert. Or 12.0' long + (Head (feet) 0. 2.50 3.00 3.5 Coef. (English 2.68 2.72 2.7	ifice/Grate C= 0. 0.2 '/' SideZ x 4.0' 20 0.40 0.60 0.8 0 4.00 4.50 5.00) 2.38 2.54 2.69 3 2.76 2.79 2.88	600 Limited to weir flow a breadth Broad-Crested 0 1.00 1.20 1.40 1.60 1 5.50 2.68 2.67 2.67 2.65 2.6 3.07 3.32	at low heads Rectangular Weir .80 2.00 6 2.66

Discarded OutFlow Max=0.00 cfs @ 0.00 hrs HW=53.00' (Free Discharge)

1=Exfiltration (Passes 0.00 cfs of 0.19 cfs potential flow)

2=Culvert (Controls 0.00 cfs)
4=Broad-Crested Rectangular Weir(Controls 0.00 cfs)

Primary OutFlow Max=4.21 cfs @ 12.52 hrs HW=56.04' (Free Discharge) →3=Orifice/Grate (Orifice Controls 4.21 cfs @ 5.36 fps)

Pond 2P: POND

Summary for Pond 2PP: P2 PERMEABLE PAVERS

Inflow Area	ı =	0.438 ac,10	0.00% Impe	ervious, Ir	nflow Depth >	7.4	3" for	100-y	/ear event	
Inflow	=	3.33 cfs @	12.12 hrs,	Volume=	0.27	1 af				
Outflow	=	0.23 cfs @	13.37 hrs, 1	Volume=	0.27	1 af, .	Atten= 9	93%,	Lag= 75.2 m	in
Discarded	=	0.23 cfs @	13.37 hrs,	Volume=	0.27	1 af			-	

Routing by Stor-Ind method, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs Peak Elev= 50.56' @ 13.37 hrs Surf.Area= 0.438 ac Storage= 0.098 af

Plug-Flow detention time= 130.4 min calculated for 0.271 af (100% of inflow) Center-of-Mass det. time= 129.9 min (871.0 - 741.1)

Volume		Invert Av	/ail.Stora	ge Storage Desc	ription		
#1		50.00'	0.117	af Custom Stag	je Data (Prisma	atic)Listed below (Recalc)	
Elevatio (fee	on et)	Surf.Area (acres)	Voids (%)	Inc.Store (acre-feet)	Cum.Store (acre-feet)		
50.0 50.6	00 67	0.438 0.438	0.0 40.0	0.000 0.117	0.000 0.117		
Device	Rou	ıting	Invert	Outlet Devices			
#1 Discarded		50.00').520 in/hr Exfiltration over Horizontal area Conductivity to Groundwater Elevation = 20.00'				

Discarded OutFlow Max=0.23 cfs @ 13.37 hrs HW=50.56' (Free Discharge) **1=Exfiltration** (Controls 0.23 cfs)

Pond 2PP: P2 PERMEABLE PAVERS

Summary for Link T: TOTAL SITE

Inflow A	\rea =	8.851 ac, 3	39.88% Impervious,	Inflow Depth > 3	.66" for 100-year event
Inflow	=	23.27 cfs @	12.19 hrs, Volume	= 2.696 af	
Primary	/ =	23.27 cfs @	12.19 hrs, Volume	= 2.696 af	, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link T: TOTAL SITE

Summary for Link T-P1: TOTAL NYE ROAD

 Inflow Area =
 3.779 ac, 49.80% Impervious, Inflow Depth > 4.75" for 100-year event

 Inflow =
 17.46 cfs @
 12.18 hrs, Volume=
 1.497 af

 Primary =
 17.46 cfs @
 12.18 hrs, Volume=
 1.497 af, Atten= 0%, Lag= 0.0 min

 Routed to Link T : TOTAL SITE
 Total Site
 1.497 af, Atten= 0%, Lag= 0.0 min

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link T-P1: TOTAL NYE ROAD

Summary for Link T-P2: TOTAL OFFSITE SE

Inflow Area =5.072 ac, 32.49% Impervious, Inflow Depth > 2.84" for 100-year eventInflow =7.04 cfs @12.30 hrs, Volume=1.199 afPrimary =7.04 cfs @12.30 hrs, Volume=1.199 af, Atten= 0%, Lag= 0.0 minRouted to Link T : TOTAL SITE

Primary outflow = Inflow, Time Span= 0.00-24.00 hrs, dt= 0.01 hrs

Link T-P2: TOTAL OFFSITE SE

APPENDIX C

HYDRAULIC COMPUTATIONS

11/2/2023

KS

Job Number:

70896.00

ainage Areas

BASIN	TOTAL (FT.)	TOTAL (AC.)	IMPERVIOUS (FT.)	IMPERVIOUS (AC.)	GRAVEL (FT.)	GRAVEL (AC.)	PERVIOUS (FT.)	PERVIOUS (AC.)	C-Value	Tc (Min.)
S1.0A	1,872.0	0.04	286.0	0.01	0.0	0.00	1,586.0	0.04	0.39	5
S1.0B	1,125.0	0.03	218.0	0.01	0.0	0.00	907.0	0.02	0.42	5
S1.0C	0.0	0.00	0.0	0.00	0.0	0.00	0.0	0.00	0.00	5
S1.0D	4,225.0	0.10	0.0	0.00	0.0	0.00	4,225.0	0.10	0.30	5
S1.2	5,358.0	0.12	2,389.0	0.05	0.0	0.00	2,969.0	0.07	0.57	5
S1.3	5,706.0	0.13	2,186.0	0.05	857.0	0.02	2,663.0	0.06	0.57	5
S1.3A	6,112.0	0.14	0.0	0.00	0.0	0.00	6,112.0	0.14	0.30	5
S1.3B	14,644.0	0.34	293.0	0.01	0.0	0.00	14,351.0	0.33	0.31	10
S1.4	11,242.0	0.26	8,649.0	0.20	943.0	0.02	1,650.0	0.04	0.79	5
S1.7	14,173.0	0.33	8,024.0	0.18	2,526.0	0.06	3,623.0	0.08	0.69	5
S1.9	2,622.0	0.06	2,622.0	0.06	0.0	0.00	0.0	0.00	0.90	5
S1.10	818.0	0.02	185.0	0.00	0.0	0.00	633.0	0.01	0.44	5
S1.11	6,012.0	0.14	4,026.0	0.09	1,101.0	0.03	885.0	0.02	0.76	5
S1.12	6,583.0	0.15	5,078.0	0.12	181.0	0.00	1,324.0	0.03	0.77	5
S1.14	1,412.0	0.03	461.0	0.01	0.0	0.00	951.0	0.02	0.50	5
S1.15	3,677.0	0.08	3,315.0	0.08	0.0	0.00	362.0	0.01	0.84	5
S1.16	6,421.0	0.15	4,186.0	0.10	0.0	0.00	2,235.0	0.05	0.69	5
S1.17	4,648.0	0.11	1,326.0	0.03	0.0	0.00	3,322.0	0.08	0.47	5
S1.18	9,798.0	0.22	1,530.0	0.04	0.0	0.00	8,268.0	0.19	0.39	5
S1.20	4,517.0	0.10	1,490.0	0.03	0.0	0.00	3,027.0	0.07	0.50	5
S1.20A	23,436.0	0.54	3,225.0	0.07	0.0	0.00	20,211.0	0.46	0.38	10
S1.20B	101,630.0	2.33	3,117.0	0.07	9,026.0	0.21	89,487.0	2.05	0.35	10
S1.20C	4,870.0	0.11	0.0	0.00	551.0	0.01	4,319.0	0.10	0.33	5
S1.21	5,110.0	0.12	2,287.0	0.05	1,555.0	0.04	1,268.0	0.03	0.66	5
S1.22	8,700.0	0.20	5,110.0	0.12	634.0	0.01	2,956.0	0.07	0.67	5
S2.1	3,901.0	0.09	2,986.0	0.07	682.0	0.02	233.0	0.01	0.81	5
S2.2	3,746.0	0.09	2,144.0	0.05	1,184.0	0.03	418.0	0.01	0.74	5
S2.3	2,858.0	0.07	1,884.0	0.04	0.0	0.00	974.0	0.02	0.70	5
S2.4	5,824.0	0.13	683.0	0.02	0.0	0.00	5,141.0	0.12	0.37	5
S2.5	1,095.0	0.03	572.0	0.01	0.0	0.00	523.0	0.01	0.61	5
S2.6	9,872.0	0.23	8,275.0	0.19	675.0	0.02	922.0	0.02	0.82	5
S2.7	6,040.0	0.14	3,069.0	0.07	1,364.0	0.03	1,607.0	0.04	0.67	5
S2.8	1,597.0	0.04	370.0	0.01	0.0	0.00	1,227.0	0.03	0.44	5
S2.10	7,495.0	0.17	3,691.0	0.08	1,948.0	0.04	1,856.0	0.04	0.67	5
S2.11	5,898.0	0.14	2,126.0	0.05	2,042.0	0.05	1,730.0	0.04	0.62	5
S2.12	4,141.0	0.10	1,121.0	0.03	2,079.0	0.05	941.0	0.02	0.61	5
S2.13	2,836.0	0.07	459.0	0.01	2,043.0	0.05	334.0	0.01	0.61	5
S2.14	11,213.0	0.26	5,157.0	0.12	4,503.0	0.10	1,553.0	0.04	0.70	5
S2.15	19,005.0	0.44	11,760.0	0.27	3,220.0	0.07	4,025.0	0.09	0.72	5
S2.16	2,807.0	0.06	311.0	0.01	0.0	0.00	2,496.0	0.06	0.37	5
S2.17	5,948.0	0.14	3,591.0	0.08	1,260.0	0.03	1,097.0	0.03	0.73	5
S2.18	4,883.0	0.11	3,169.0	0.07	1,232.0	0.03	482.0	0.01	0.77	5
S2.19	1,662.0	0.04	562.0	0.01	0.0	0.00	1,100.0	0.03	0.50	5
S2.21	9,103.0	0.21	4,704.0	0.11	2,252.0	0.05	2,147.0	0.05	0.68	5
S2.23	2,826.0	0.06	1,535.0	0.04	0.0	0.00	1,291.0	0.03	0.63	5
S2.24	2,655.0	0.06	0.0	0.00	0.0	0.00	2,655.0	0.06	0.30	5
S2.25	17,204.0	0.39	0.0	0.00	1,308.0	0.03	15,896.0	0.36	0.32	10
52.26	1,624.0	0.18	1,033.0	0.02	0.0	0.00	0,591.0	0.15	0.38	10
S2.27	13,880.0	0.32	661.0	0.02	1,090.0	0.03	12,129.0	0.28	0.35	10
52.28	0,338.0	0.15	0.0	0.00	339.0	0.01	5,999.0	0.14	0.32	10
\$3.1	2,250.0	0.05	0.0	0.00	213.0	0.00	2,037.0	0.05	0.33	5
EV OD	00.040.0	0 77	00.040.0	0.77	0.0	0.00		0.00	0.00	-
EX CB*	33,640.0	0.77	33,640.0	0.//	0.0	0.00	0.0	0.00	0.90	5
EX CB1	2,250.0	0.05	1,700.0	0.04	0.0	0.00	550.0	0.01	0.75	5
EX CB2	1,988.0	0.05	1,885.0	0.04	0.0	0.00	103.0	0.00	0.87	5

*ASSUMES 50% OF PROPOSED IMPERVIOUS AREA ON CONCEPT PLAN ENTERS EXISTING CATCH BASIN WITH NO PEAK FLOW ATTENTUATION

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Tabulation

Station		Len	Drng A	rea	Rnoff	Area x C		Тс		Rain	Total	Cap	Vel	Pipe		Invert Elev		HGL Elev		Grnd / Rim Elev		Line ID		
Line	То		Incr	Total	-coen	Incr	Total	Inlet	Syst	-(1)	now	TUII		Size	Slope	Dn	Up	Dn	Up	Dn	Up			
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)			
1	End	10.572	0.00	6.43	0.00	0.00	3.15	0.0	12.2	4.8	15.20	19.79	10.56	18	3.03	46.93	47.25	47.92	48.66	52.27	53.37	EX CB-S1.0		
2	1	85.835	0.33	5.53	0.69	0.23	2.80	5.0	11.8	4.9	13.78	18.21	8.69	18	3.01	47.48	50.06	48.66	51.43	53.37	53.50	S1.0-S1.7		
3	2	18.029	0.26	4.40	0.79	0.21	2.01	5.0	11.7	4.9	9.91	18.17	6.16	18	3.00	50.06	50.60	51.43	51.81	53.50	53.80	S1.7-S1.4		
4	3	123.980	0.17	4.14	0.76	0.13	1.80	5.0	11.4	5.0	9.01	9.53	7.51	15	1.86	50.60	52.90	51.81	54.06	53.80	55.90	S1.4-S1.11		
5	4	57.310	0.22	3.42	0.39	0.09	1.27	5.0	11.3	5.0	6.41	10.54	5.69	15	2.27	52.90	54.20	54.06	55.22	55.90	57.24	S1.11-S1.18		
6	5	76.562	0.10	3.20	0.50	0.05	1.19	5.0	11.0	5.1	6.04	9.46	5.71	15	1.83	54.20	55.60	55.22	56.59	57.24	58.90	S1.18-S1.20		
7	6	36.260	0.54	2.98	0.38	0.21	1.06	10.0	11.0	5.1	5.40	10.91	8.19	12	8.00	55.90	58.80	56.59	59.73	58.90	62.00	S1.20-S1.20A		
8	7	84.738	2.33	2.44	0.35	0.82	0.85	10.0	10.8	5.2	4.40	10.91	6.56	12	8.00	59.00	65.78	59.73	66.66	62.00	73.00	S1.20A-S1.20B		
9	8	109.411	0.11	0.11	0.33	0.04	0.04	10.0	10.0	5.4	0.19	1.31	2.43	8	1.00	67.91	69.00	68.08	69.20	73.00	72.00	S1.20B-S1.20C		
10	4	14.313	0.15	0.55	0.77	0.12	0.40	5.0	5.6	7.1	2.86	5.49	3.70	12	2.03	52.90	53.19	54.06	54.11	55.90	55.90	S1.11-S1.12		
11	10	71.111	0.00	0.40	0.00	0.00	0.29	0.0	5.3	7.3	2.10	5.45	3.39	12	2.00	53.19	54.61	54.22	55.23	55.90	59.84	S1.12-S1.13		
12	11	56.669	0.08	0.08	0.84	0.07	0.07	5.0	5.0	7.4	0.50	1.82	3.67	8	1.94	56.30	57.40	56.54	57.73	59.84	60.10	S1.13-S1.15		
13	6	15.065	0.12	0.12	0.66	0.08	0.08	5.0	5.0	7.4	0.59	4.45	1.74	12	1.33	55.60	55.80	56.59	56.12	58.90	58.80	S1.20-S1.21		
14	11	57.585	0.15	0.15	0.69	0.10	0.10	5.0	5.0	7.4	0.77	1.31	3.64	8	1.01	54.92	55.50	55.29	55.91	59.84	58.50	S1.13-S1.16		
15	11	27.717	0.03	0.03	0.50	0.02	0.02	5.0	5.0	7.4	0.11	0.61	2.17	6	1.01	55.22	55.50	55.36	55.67	59.84	58.50	S1.13-S1.14		
16	2	193.221	0.14	0.72	0.62	0.09	0.50	5.0	6.0	6.9	3.45	4.07	4.84	12	1.11	50.50	52.65	51.43	53.44	53.50	58.20	S1.7-S2.11		
17	16	34.460	0.17	0.58	0.67	0.11	0.41	5.0	5.9	7.0	2.88	4.74	4.51	12	1.51	52.65	53.17	53.44	53.90	58.20	58.20	S2.11-S2.10		
18	11	28.735	0.14	0.14	0.73	0.10	0.10	5.0	5.0	7.4	0.76	0.61	3.87	6	1.01	54.61	54.90	55.23	55.68	59.84	57.50	S1.13-S1.17		
19	17	89.357	0.14	0.41	0.67	0.09	0.30	5.0	5.5	7.2	2.15	2.74	3.76	12	0.50	53.17	53.62	53.90	54.27	58.20	56.70	S2.10-S2.7		
20	19	22.461	0.04	0.04	0.44	0.02	0.02	5.0	5.0	7.4	0.13	0.99	0.81	6	2.67	53.90	54.50	54.83	54.83	56.70	57.70	S2.7-S2.8		
21	19	15.465	0.23	0.23	0.82	0.19	0.19	5.0	5.0	7.4	1.40	2.77	1.79	12	0.52	53.62	53.70	54.83	54.85	56.70	56.70	S2.7-S2.6		
22	2	34.524	0.06	0.06	0.90	0.05	0.05	5.0	5.0	7.4	0.40	4.64	1.49	12	1.45	50.50	51.00	51.43	51.26	53.50	54.00	S1.7-S1.9		
Proje	ect File:	Storm.s	stm	I			1		1	1	1	1	1	1		Numbe	r of lines: 5	54	1	Run Da	Run Date: 11/1/2023			
NOT	ES:Inte	nsity = 3	57.58 / (I	nlet time	e + 4.00)	^ 0.74;	Return p	beriod = Y	′rs. 10;	c = cir	e = ellip	b = box				<u> </u>				<u> </u>				

Storm Sewer Tabulation

Station L		Len	Drng Area		Rnoff	Area x C		Тс		Rain	Total	Сар	Vel	Pipe		Invert Elev		HGL Elev		Grnd / Rim Elev		Line ID
Line	To		Incr	Total	-coem	Incr	Total	Inlet	Syst	(1)	now	run		Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	Line	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
	_				_									_								
23	2	90.356	0.02	0.02	0.44	0.01	0.01	5.0	5.0	7.4	0.07	1.11	1.01	6	3.32	50.50	53.50	51.43	53.63	53.50	56.90	S1.7-S1.10
24	1	35.199	0.04	0.17	0.39	0.02	0.06	5.0	7.1	6.4	0.37	1.30	2.92	8	0.99	49.36	49.71	49.60	49.99	53.37	52.50	S1.0-S1.0A
25	24	52.095	0.03	0.13	0.42	0.01	0.04	5.0	6.7	6.5	0.28	0.43	2.32	6	0.50	49.71	49.97	50.00	50.26	52.50	54.50	S1.0A-S1.0B
26	25	57.954	0.00	0.10	0.00	0.00	0.03	5.0	6.2	6.8	0.20	0.43	1.90	6	0.50	49.97	50.26	50.31	50.49	54.50	57.50	S1.0B-S1.0C
27	26	147.901	0.10	0.10	0.30	0.03	0.03	5.0	5.0	7.4	0.22	0.43	2.02	6	0.50	50.26	51.00	50.59	51.24	57.50	53.50	S1.0C-S1.0D
28	1	25.530	0.12	0.73	0.57	0.07	0.29	5.0	11.9	4.9	1.41	2.75	1.80	12	0.51	47.25	47.38	48.66	48.69	53.37	50.50	S1.7-S1.2
29	28	24.013	0.13	0.61	0.57	0.07	0.22	5.0	11.6	4.9	1.10	2.73	1.40	12	0.50	47.38	47.50	48.77	48.79	50.50	50.50	S1.2-S1.3
30	29	107.469	0.14	0.48	0.30	0.04	0.15	5.0	11.0	5.1	0.75	1.78	2.75	8	1.86	47.70	49.70	48.80	50.11	50.50	52.50	S1.3-S1.3A
31	30	163.974	0.34	0.34	0.31	0.11	0.11	10.0	10.0	5.4	0.57	1.97	2.77	8	2.26	49.70	53.40	50.11	53.75	52.50	56.10	S1.3A-S1.3B
32	End	23.556	0.00	2.55	0.00	0.00	1.54	0.0	11.7	4.9	7.60	7.87	6.98	15	1.49	54.61	54.96	55.60	56.05	56.13	59.55	FES-S2.31
33	32	36.244	0.09	2.55	0.74	0.07	1.54	5.0	11.7	4.9	7.63	7.88	6.70	15	1.49	54.96	55.50	56.05	56.60	59.55	58.70	S2.31-S2.2
34	33	54.603	0.26	1.71	0.70	0.18	1.01	5.0	11.5	5.0	5.06	9.96	4.85	15	2.38	55.50	56.80	56.60	57.71	58.70	59.90	S2.2-S2.14
35	34	76.316	0.14	1.41	0.73	0.10	0.81	5.0	11.2	5.0	4.09	6.40	5.59	12	2.75	56.80	58.90	57.71	59.75	59.90	61.90	S2.14-S2.17
36	35	65.501	0.21	0.66	0.68	0.14	0.29	5.0	10.9	5.1	1.47	6.89	2.84	12	3.19	58.90	60.99	59.75	61.50	61.90	64.20	S2.17-S2.21
37	36	100.652	0.06	0.45	0.30	0.02	0.14	5.0	10.2	5.3	0.76	2.75	2.41	12	0.51	60.99	61.50	61.50	61.86	64.20	64.50	S2.21-S2.24
38	37	30.955	0.39	0.39	0.32	0.12	0.12	10.0	10.0	5.4	0.67	2.93	3.32	8	5.01	61.50	63.05	61.86	63.44	64.50	73.50	S2.24-S2.25
39	35	37.495	0.06	0.50	0.37	0.02	0.34	5.0	5.3	7.3	2.47	4.88	3.93	12	1.60	58.90	59.50	59.75	60.17	61.90	62.50	S2.17-2.16
40	39	64.645	0.44	0.44	0.72	0.32	0.32	5.0	5.0	7.4	2.36	5.88	4.25	12	2.32	59.50	61.00	60.17	61.66	62.50	64.00	S2.16-S2.15
41	33	13.987	0.09	0.75	0.81	0.07	0.46	5.0	6.9	6.5	3.00	3.86	3.84	12	1.00	55.56	55.70	56.60	56.67	58.70	58.70	S2.2-S2.1
42	41	82.732	0.03	0.59	0.61	0.02	0.34	5.0	6.5	6.7	2.27	3.79	3.50	12	0.97	55.70	56.50	56.91	57.16	58.70	59.50	S2.1-S2.5
43	42	113.455	0.10	0.37	0.61	0.06	0.24	5.0	5.8	7.0	1.66	4.97	2.94	12	1.66	56.50	58.38	57.59	58.93	59.50	61.20	S2.5-S2.12
44	43	24.173	0.07	0.27	0.61	0.04	0.18	5.0	5.7	7.0	1.24	2.72	3.12	12	0.50	58.38	58.50	58.93	58.97	61.20	61.30	S2.12-S2.13
Proje	ct File	Storm	l	L				<u> </u>				<u> </u>				Numbe	r of lines [.] F	۱ ۲۵		Run Date: 11/1/2023		
																	. 51 11105. 0					

NOTES:Intensity = 37.58 / (Inlet time + 4.00) ^ 0.74; Return period =Yrs. 10 ; c = cir e = ellip b = box

Storm Sewer Tabulation

Station		Len	Drng A	g Area	Rnoff	Area x C		Тс		Rain	Total	Cap	Vel	Pipe		Invert Elev		HGL Elev		Grnd / Rim Elev		Line ID	
Line	To		Incr	Total	coen	Incr	Total	Inlet	Syst	(1)	now	run		Size	Slope	Dn	Up	Dn	Up	Dn	Up		
	LINE	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)		
45	44	101.100	0.20	0.20	0.67	0.13	0.13	5.0	5.0	7.4	1.00	4.02	2.42	12	1.09	58.50	59.60	59.22	60.02	61.30	62.60	S2.13-S1.22	
46	35	14.454	0.11	0.11	0.77	0.08	0.08	5.0	5.0	7.4	0.63	2.68	1.81	12	0.48	58.83	58.90	59.75	59.23	61.90	61.90	S2.17-S2.18	
47	42	66.971	0.06	0.06	0.63	0.04	0.04	5.0	5.0	7.4	0.28	2.58	1.61	8	3.88	56.50	59.10	57.59	59.34	59.50	62.10	S2.5-S2.23	
48	42	18.618	0.13	0.13	0.37	0.05	0.05	5.0	5.0	7.4	0.36	0.42	1.82	6	0.48	57.00	57.09	57.59	57.65	59.50	59.80	S2.5-S2.4	
49	34	58.672	0.04	0.04	0.50	0.02	0.02	5.0	5.0	7.4	0.15	1.78	1.22	8	1.86	56.80	57.89	57.71	58.07	59.90	60.80	S2.14-S2.19	
50	41	35.781	0.07	0.07	0.70	0.05	0.05	5.0	5.0	7.4	0.36	0.93	1.04	8	0.50	55.87	56.05	56.91	56.94	58.70	58.80	S2.1-S2.3	
51	End	105.625	0.18	0.65	0.38	0.07	0.23	10.0	11.5	5.0	1.14	0.93	3.62	8	0.50	56.00	56.53	56.51	57.45	56.80	59.50	FES-S2.26	
52	51	135.803	0.32	0.47	0.35	0.11	0.16	10.0	10.7	5.2	0.83	2.15	2.92	8	2.70	56.53	60.20	57.69	60.63	59.50	63.20	S2.26-S2.27	
53	52	73.654	0.15	0.15	0.32	0.05	0.05	10.0	10.0	5.4	0.26	2.92	1.72	8	5.00	60.20	63.88	60.63	64.11	63.20	74.50	S2.27-S2.28	
54	End	129.871	0.05	0.05	0.33	0.02	0.02	5.0	5.0	7.4	0.12	0.43	1.89	6	0.50	47.50	48.15	47.68	48.34	48.58	50.61	FES-S3.1	
Proje	ct File:	Storm.s	stm													Number	of lines: 5	4		Run Date: 11/1/2023			
NOT	ES:Inte	nsity = 3	57.58 / (I	nlet time	+ 4.00)	^ 0.74; F	Return p	eriod =Y	′rs. 10 ;	c = cir e	e = ellip	b = box											

Hydraflow Storm Sewers Extension for Autodesk® Civil 3D® Plan

Storm Sewer Tabulation

Statio	n	Len	Drng A	rea	Rnoff	Area x	«C Tc		Tc Rain		Total	Сар	Vel	Pipe		Invert Ele	ev	HGL Ele	v	Grnd / Ri	m Elev	Line ID
Line	To]	Incr	Total	COGI	Incr	Total	Inlet	Syst		now			Size	Slope	Dn	Up	Dn	Up	Dn	Up	
	LINE	(ft)	(ac)	(ac)	(C)			(min)	(min)	(in/hr)	(cfs)	(cfs)	(ft/s)	(in)	(%)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft)	
1	End	29.901	0.77	0.87	0.90	0.69	0.77	5.0	5.3	7.3	20.83	47.27	18.86	18	20.27	38.01	44.07	38.71	45.54	40.00	48.27	FES-EX CB1
2	1	73.945	0.05	0.10	0.75	0.04	0.08	5.0	5.1	7.4	15.80	14.40	8.94	18	1.88	44.07	45.46	45.57	47.24	48.27	49.46	EX CB1-EX CB2
3	2	71.282	0.05	0.05	0.87	0.04	0.04	5.0	5.0	7.4	15.52	10.55	8.79	18	1.01	45.56	46.28	48.49	50.04	49.46	52.27	EX CB 2-EX CB
Proje	ct File:	Ex Stor	m.stm													Number	r of lines: 3	3		Run Da	te: 11/1/20	023
	ES:Inte	nsity = 3	97.58 / (I	nlet time	e + 4.00)	^ 0.74; I	Return p	period =\	′rs . 10;	c = cir	e = ellip	b = box										

Project	NYE ROAD HOUSING AUTHORITY	By	JJD	Date	11/1/2023
Location	Glastonbury, CT	Checked	KMS	Date	11/1/2023

Outlet ID: POND

Outlet Protection Design - 2002 ConnDOT Drainage Manual

Table 11.11 Allowable Outlet Velocities for Type A and B Riprap ApronsOutlet VelocityRiprap Specification0-8 FT/SModified8-10 FT/SIntermediate10-14 FT/SStandard

11.13.4 Tailwater Depth	
TW < 0.5 Rp	Type A Riprap Apron
TW ≥ 0.5 Rp	Type B Riprap Apron
Well-Defined Channel	Type C Riprap Apron

Outlet Pipe Interior Diameter	Sp		15 in
Discharge at Outlet			1.39 cfs
Use Preformed Scour Hole		No	

Type A or B Riprap Apron - Tables 11.12.1 & 11.13.1 and Figure 11-13

Type of Apron Selected

Depth of Riprap	d	12 in	12" Modified, 18" Intermediate, or 36" Standard Riprap
Type of Riprap		Modified	
Outlet Width of Apron	W2	10.8 ft	Type A: W2 =3 Sp + 0.7 La, Type B: W2 = 3 Sp + 0.7 La
Inlet Width of Apron	W1	3.8 ft	Type A: W1 = 3 Sp, Type B: W1 = 3 Sp
Length of Apron	La	10.0 ft	Type B or C Riprap Apron - use Table 11.13.1
			Type A Riprap Apron - use Table 11.12.1,

Project	NYE ROAD HOUSING AUTHORITY	Ву	JJD	Date	11/1/2023
Location	Glastonbury, CT	Checked	KMS	Date	11/1/2023

Outlet ID: S3.2

Outlet Protection Design - 2002 ConnDOT Drainage Manual

Table 11.11 Allowable Outlet Velocities for Type A and B Riprap ApronsOutlet VelocityRiprap Specification0-8 FT/SModified8-10 FT/SIntermediate10-14 FT/SStandard

11.13.4 Tailwater Depth	Type A Riprap Apron
TW < 0.5 Rp	Type B Riprap Apron
TW ≥ 0.5 Rp	Type C Riprap Apron
Well-Defined Channel	

	Sp		12 in
Outlet Pipe Interior Diameter			0.12 cfs
Discharge at Outlet		No	
Use Preformed Scour Hole			

Type A or B Riprap Apron - Tables 11.12.1 & 11.13.1 and Figure 11-13

		Type A Riprap Apron - use Table 11.12.1,
La	10 ft	Type B or C Riprap Apron - use Table 11.13.1
W1	3 ft	Type A: W1 = 3 Sp, Type B: W1 = 3 Sp
W2	10 ft	Type A: W2 =3 Sp + 0.7 La, Type B: W2 = 3 Sp + 0.7 La
	Modified	
d	12 in	12" Modified, 18" Intermediate, or 36" Standard Riprap
	La W1 W2 d	La 10 ft W1 3 ft W2 10 ft Modified d 12 in

Project	NYE ROAD HOUSING AUTHORITY	Ву	JJD	Date 11/1/2023
Location	Glastonbury, CT	Checked	KMS	Date 11/1/2023

Outlet ID: S2.26A

Outlet Protection Design - 2002 ConnDOT Drainage Manual

Table 11.11 Allowable Outlet Velocities for Type A and B Riprap ApronsOutlet VelocityRiprap Specification0-8 FT/SModified8-10 FT/SIntermediate10-14 FT/SStandard

11.13.4 Tailwater Depth	
TW < 0.5 Rp	Type A Riprap Apron
TW ≥ 0.5 Rp	Type B Riprap Apron
Well-Defined Channel	Type C Riprap Apron

Outlet Pipe Interior Diameter	Sp		12 in
Discharge at Outlet			1.14 cfs
Use Preformed Scour Hole		No	

Type A or B Riprap Apron - Tables 11.12.1 & 11.13.1 and Figure 11-13

Type of Apron Selected

		Type & Ripran Apron - use Table 11 12 1
La	10 ft	Type B or C Riprap Apron - use Table 11.13.1
W1	3 ft	Type A: W1 = 3 Sp, Type B: W1 = 3 Sp
W2	10 ft	Type A: W2 =3 Sp + 0.7 La, Type B: W2 = 3 Sp + 0.7 La
	Modified	
d	12 in	12" Modified, 18" Intermediate, or 36" Standard Riprap
	La W1 W2 d	La 10 ft W1 3 ft W2 10 ft Modified d 12 in

Project	NYE ROAD HOUSING AUTHORITY	Ву	JJD	Date	11/1/2023
Location	Glastonbury, CT	Checked	KMS	Date	11/1/2023

Outlet ID: S2.31A

Outlet Protection Design - 2002 ConnDOT Drainage Manual

Table 11.11 Allowable Outlet Velocities for Type A and B Riprap ApronsOutlet VelocityRiprap Specification0-8 FT/SModified8-10 FT/SIntermediate10-14 FT/SStandard

11.13.4 Tailwater Depth	
TW < 0.5 Rp	Type A Riprap Apron
TW ≥ 0.5 Rp	Type B Riprap Apron
Well-Defined Channel	Type C Riprap Apron

Outlet Pipe Interior Diameter	Sp		15 in
Discharge at Outlet			7.6 cfs
Use Preformed Scour Hole		Yes	

Scour Hole - Table 11.14.1 and Figure 11-15

Outlet Pipe Interior Diameter	Rp	15 in	
Depression of Scour Hole	F	7.5 in	Type 1: F = 0.5 Rp, Type 2: F= Rp
Length of Scour Hole	С	90 in	3 Sp + 6F
Inlet/Outlet Width of Scour Ho	B	75 in	2 Sp + 6F
Type of Riprap			
Depth of Riprap	d	12 in	12" Modified, 18" Intermediate, or 36" Standard Riprap

APPENDIX D

WATER QUALITY CALCULATIONS

Proposed Housing – Glastonbury Housing Authority | Stormwater Management Plan

Water Quality Computations Glastonbury Housing Authority Project # 70896.00

ID	Total Drainage Area (ac)	Directly Connected Impervious Area (ac)	Percent Impervious Cover, I	P (1.3" for water quality storm, in)	Volumetric Runoff Coefficient, R	Water Quality Volume, WQV (acre- ft)	Water Quality Volume, WQV (cubic- ft)	Provided WQV* (cubic-ft)
TOTAL SITE	8.85	2.77	31.28%	1.3	0.332	0.318	13,844	18,833
S1.0*	6.27	1.67	26.58%	1.3	0.289	0.197	8,564	n/a
S2.31*	3.01	1.19	39.33%	1.3	0.404	0.132	5,744	n/a

ID	P (1.3" for water quality storm, in)	NRCS Runoff Curve Number	la, (in, Table 4-1, TR-55)	la/P	Tc, (hr)	Peak unit discharge, qu, (csm/in, Exhibit 4- III, TR-55	Runoff Depth, Q (watershe d inches)	Total WQF (cfs)	Treatment Unit	Provided WQF (cfs)
S1.0*	1.3	71	0.817	0.628	0.343	225	0.43	1.3	CDS 3020-6-C	2.0
S2.31*	1.3	66	1.030	0.792	0.265	200	0.53	0.5	CDS 2015-4-C	0.7

*CALCULATIONS INCLUDE OFFSITE CONTRIBUTING AREA. OFFSITE LAND COVER DETERMINED PER TOWN GIS.

*Provided Water Quality Volume Calculations					
	Peri	meable Pave	ers		
	Base	Subbase			
Surface	Reservoir	Reservoir	Stono	Storage	
	Course	Course	Borogity	Provided	
Alea [ci]	Thickness	Thickness	FOIDSILY	[cf]	
	[in]	[in]			
33,177	6	8	40%	15,483	
Stormwat	ter Pond				
Lowest	Storage				
Invert	Provided				
Elevation	[cf]				
54.3	3,350				

Hydrodynamic Separation Products Overview

New England States

CDS®

Patented continuous deflection separation (CDS) technology

Using continuous deflective separation technology, the CDS system screens, separates and traps sediment, debris, and oil and grease from stormwater runoff. The indirect screening capability of the system allows for 100% removal of floatables and neutrally buoyant material without blinding. Flow and screening controls physically separate captured solids, and minimize the re-suspension and release of previously trapped pollutants. Available in precast or cast-in-place. Offline units can treat flows from 30 to 8500 L/s (1 to 300 cfs). Inline units can treat up to 170 L/s (7.5 cfs), and internally bypass larger flows in excess of 1420 L/s (50 cfs). The pollutant removal capability of the CDS system has been proven in the lab and field.

How does it work?

Stormwater enters the CDS unit's diversion chamber where the diversion weir guides the flow into the unit's separation chamber and pollutants are removed. All flows up to the system's treatment design capacity enter the separation chamber.

Swirl concentration and screen deflection forces floatables and solids to the center of the separation chamber where 100% of floatables and neutrally buoyant debris larger than the screen apertures are trapped.

Stormwater then moves through the separation screen, under the oil baffle and exits the system. The separation screen remains clog free due to continuous deflection.

During flow events exceeding the design capacity, the diversion weir bypasses excessive flows around the separation chamber, so captured pollutants will not wash out.

CDS

- Removes sediment, trash and free oil and grease
- Patented screening technology captures and retains 100% of floatables, including neutrally buoyant and all other material larger than the screen aperture
- Operation independent of flow
- Performance verified through lab and field testing
- Unobstructed maintenance access
- Customizable/flexible design and multiple configurations available
- · Separates and confines pollutants from outlet flow
- Inline, offline, grate inlet and drop inlet configurations available
- Multiple screen aperture sizes available
- Allows for multiple inlet pipes

Vortechs®

High performance hydrodynamic separation

The Vortechs system is a high-performance hydrodynamic separator that effectively removes finer sediment, oil and grease, and floating and sinking debris. Its swirl concentrator and flow controls work together to

minimize turbulence and provide stable storage of captured pollutants. The design also allows for easy inspection and unobstructed maintenance access. With comprehensive lab and field testing, the system delivers proven results and site-specific solutions.

Precast models can treat peak design flows up to 25 cfs; cast-in-place models handle even greater flows. A typical system is sized to provide an 80% load reduction based on laboratoryverified removal efficiencies for varying particle size distributions such as 50-micron sediment particles.

How does it work?

Water enters the swirl chamber at a tangent,

inducing a gentle swirling flow pattern and enhancing gravitational separation. Sinking pollutants stay in the swirl chamber while floating pollutants are stopped at the baffle wall. Typically Vortechs systems are sized such that 80% or more of runoff through the system will be controlled exclusively by the low flow control. This orifice effectively reduces inflow velocity and turbulence by inducing a slight backwater appropriate to the site.

During larger storms, the water level rises above the low flow control and begins to flow through the high flow control. The layer of floating pollutants is elevated above the influent pipe, preventing re-entrainment. Swirling action increases in relation to the storm intensity, which helps prevent re-suspension. When the storm drain is flowing at peak capacity, the water surface in the system approaches the top of the high flow control. The Vortechs system will be sized large enough so that previously captured pollutants are retained in the system even during these infrequent events.

As a storm subsides, treated runoff decants out of the Vortechs system at a controlled rate, restoring the water level to a dry-weather level equal to the invert of the inlet and outlet pipes. The low water level facilitates easier inspection and cleaning, and significantly reduces maintenance costs by reducing pump-out volume.

Vortechs

- Proven performance speeds approval process
- Treats peak flows without bypassing
- Flow controls reduce inflow velocity and increase residence time
- Unobstructed access simplifies maintenance
- Shallow system profile makes installation easier and less expensive
- Very low headloss
- Flexible design fits multiple site constraints

VortSentry[®] HS

Engineered performance and installation simplicity

The VortSentry HS system employs a helical flow pattern that enhances trapping and containment of pollutants and provides effective removal of settleable solids and floating contaminants from urban runoff.

With the ability to accept a wide range of pipe sizes, the VortSentry HS can treat and convey flows from small to large sites. A unique internal bypass design means higher flows can be diverted without the use of external bypass structures. The design of the VortSentry HS minimizes adverse velocities or turbulence in the treatment chamber. This helps to prevent the washout of previously captured pollutants even during peak conditions.

The VortSentry HS is also available in a grate inlet configuration, which is ideal for retrofits.

How does it work?

Flows from low intensity storms, which are most frequent, are directed into the treatment chamber through the primary inlet. The tangentially oriented downward pipe induces a swirling motion in the treatment chamber that increases capture and containment abilities. Moderate storm flows are

increases capture and containment abilities. Moderate storm flows are directed into the treatment chamber through the secondary inlet, which allows for capture of floating trash and debris. The secondary inlet also provides for treatment of higher flows without significantly increasing the velocity or turbulence in the treatment chamber. This allows for a more quiescent separation environment. Settleable solids and floating pollutants are captured and contained in the treatment chamber.

Flow exits the treatment chamber through the outlet flow control, which manages the amount of flow that is treated and helps maintain the helical flow patterns developed within the treatment chamber.

Flows exceeding the system's rated treatment flow are diverted away from the treatment chamber by the flow partition. Internal diversion of high flows eliminates the need for external bypass structures. During bypass, the head equalizing baffle applies head on the outlet flow control to limit the flow through the treatment chamber. This helps prevent re-suspension of previously captured pollutants.

VortSentry HS

- Helical flow pattern enhances trapping and containment of pollutants
- High treatment and bypass capacities
- Compact footprint ideal for congested sites
- Lightweight design easy to install
- Available in both inline and grate inlet configurations
- Quick manufacturing turnaround time

Available Models I

CDS Model	Treatment Capacity³ (cfs)	Maximum Sediment Storage Capacity (CF)
1515	1.0	26
w/ 1' added sump	1.0	33
w/ 2' added sump	1.0	40
w/ 3' added sump	1.0	47
2015_4	1.4	50
w/ 1' added sump	1.4	63
w/ 2' added sump	1.4	75
w/ 3' added sump	1.4	88
2015	1.4	79
w/ 1' added sump	1.4	98
w/ 2' added sump	1.4	118
2020	2.2	90
w/ 1' added sump	2.2	110
w/ 2' added sump	2.2	129
2025	3.2	97
w/ 1' added sump	3.2	117
w/ 2' added sump	3.2	136
3020	3.9	134
w/ 1' added sump	3.9	163
w/ 2' added sump	3.9	191
3030	6.1	157
w/ 1' added sump	6.1	185
w/ 2' added sump	6.1	213
4030	7.9	329
w/ 1' added sump	7.9	379
w/ 2' added sump	7.9	429
4040	12.4	381
w/ 1' added sump	12.4	431
w/ 2' added sump	12.4	482

1. Structure diameter represents the typical inside dimension of the concrete structure. Offline systems will require additional concrete diversion components

2. Depth below pipe can vary to accommodate site specific design. Depth below pipe invert represents the depth from the pipe invert to the inside bottom of concrete structure.

3. Treatment Capacity is based on laboratory testing using OK-110 (average d50 particle size of approximately 100 microns) and a 2400 micron screen.

Sediment Depths Indicating Required Servicing*							
CDS Model	Standard Sediment Depth (in.)	w/ 1' added Sump Sediment Depth (in.)	w/ 2' added Sump Sediment Depth (in.)				
1515	18	27	36				
2015_4	18	30	42				
2015	18	30	42				
2020	18	30	42				
2025	18	30	42				
3020	18	30	42				
3030	18	39	42				
4030	27	39	51				
4040	27	39	51				

* Based on 75% capacity of isolated sump.

Available Models

Vortechs Model	Swirl C Dian	hamber neter	Interna	l Length	Peak Treat	ment Flow ¹	Sediment	t Storage ²
	ft	m	ft	m	cfs	L/s	yd3	m3
1000	3	0.9	9	2.7	1.6	45.3	0.7	0.5
2000	4	1.2	10	3	2.8	79.3	1.2	0.9
3000	5	1.5	11	3.4	4.5	127.4	1.8	1.4
4000	6	1.8	12	3.7	6	169.9	2.4	1.8
5000	7	2.1	13	4	8.5	240.7	3.2	2.4
7000	8	2.4	14	4.3	11	311.5	4	3.1
9000	9	2.7	15	4.6	14	396.4	4.8	3.7
11000	10	3	16	4.9	17.5	495.5	5.6	4.3
16000	12	3.7	18	5.5	25	707.9	7.1	5.4

1. Peak Treatment Flow is maximum flow treated for each unit listed. This flow represents an infrequent storm event such as a 10 or 25 yr storm. Standard Vortechs System depth below invert is 3' for all precast models.

Cast-in-place system are available to treat higher flows. Check with your local representatives for specifications.

2. Maintenance recommended when sediment depth has accumulated to within 12-18 inches of the dry weather water surface elevation.

VortSentry HS Model	Treatment Capacity (cfs) ¹	Maximum Sediment Storage Capacity (CF)
VortSentry HS36*	0.55	39
w/ 1' added sump	0.55	47
w/ 2' added sump	0.55	54
w/ 3' added sump	0.55	61
w/ 4' added sump	0.55	68
w/ 5' added sump	0.55	75
VortSentry HS48**	1.2	85
w/ 1' added sump	1.2	97
w/ 2' added sump	1.2	110
w/ 3' added sump	1.2	123
w/ 4' added sump	1.2	135
VortSentry HS60***	2.2	156
w/ 1' added sump	2.2	176
w/ 2' added sump	2.2	196
w/ 3' added sump	2.2	215
VortSentry HS96****	8.10	578

* Maintenance recommended when sediment reaches a height of 3'-7" below water surface elevation in sump.

** Maintenance recommended when sediment reaches a height of 4'-9" below water surface elevation in sump.

*** Maintenance recommended when sediment reaches a height of 6.0' below water surface elevation in sump.

Customer Support

Installation

Contech products are some of the easiest to install in the industry. We provide comprehensive installation drawings, details and instructions, as well as full technical support on every project.

Maintenance

Maintenance of Contech Stormwater Solutions products is cost effective, straightforward and efficient. We offer a complete range of engineering planning, design and drawing, and construction services that can be tailored to your specific site needs.

Inspection

Contech has created a network of Certified Maintenance Providers (CCMP's) to provide maintenance on your stormwater BMP's.

CCMP's agree to:

- Inspect and maintain systems in accordance to the manufacturer's specifications
- Provide maintenance only when necessary to avoid undue costs to system owners
- Utilize only OEM replacement cartridges
- Provide quality reports to system owners
- Allow Contech to audit maintenance events to ensure quality
- Maintain the highest level of service standards

Support

- Drawings and specifications are available at www.ContechES.com.
- Site-specific design support is available from our professional engineering staff engineers.

©2017 Contech Engineered Solutions LLC, a QUIKRETE Company

Contech Engineered Solutions provides site solutions for the civil engineering industry. Contech's portfolio includes bridges, drainage, sanitary sewer, stormwater and earth stabilization products. For information on other Contech division offerings, visit ContechES.com or call 800.338.1122.

NOTHING IN THIS CATALOG SHOULD BE CONSTRUED AS A WARRANTY. APPLICATIONS SUGGESTED HEREIN ARE DESCRIBED ONLY TO HELP READERS MAKE THEIR OWN EVALUATIONS AND DECISIONS, AND ARE NEITHER GUARANTEES NOR WARRANTIES OF SUITABILITY FOR ANY APPLICATION. CONTECH MAKES NO WARRANTY WHATSOEVER, EXPRESS OR IMPLIED, RELATED TO THE APPLICATIONS, MATERIALS, COATINGS, OR PRODUCTS DISCUSSED HEREIN. ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND ALL IMPLIED WARRANTIES OF FITNESS FOR ANY PARTICULAR PURPOSE ARE DISCLAIMED BY CONTECH. SEE CONTECH'S CONDITIONS OF SALE (AVAILABLE AT WWW.CONTECHES.COM/COS) FOR MORE INFORMATION.

The product(s) described may be protected by one or more of the following US patents: 5,322,629; 5,624,576; 5,707,527; 5,759,415; 5,788,848; 5,985,157; 6,027,639; 6,350,374; 6,406,218; 6,641,720; 6,511,595; 6,649,048; 6,991,114; 6,998,038; 7,186,058; 7,296,692; 7,297,266 related foreign patents or other patents pending.

Vortechs, VortSentry HS, and CDS are trademarks, registered trademarks, or licensed trademarks of Contech Engineered Solutions LLC

800.338.1122 www.ContechES.com

OPERATIONS AND MAINTENANCE GUIDELINES

CDS Stormwater Treatment Unit

INTRODUCTION

The CDS unit is an important and effective component of your storm water management program and proper operation and maintenance of the unit are essential to demonstrate your compliance with local, state and federal water pollution control requirements.

The CDS technology features a patented non-blocking, indirect screening technique developed in Australia to treat water runoff. The unit is highly effective in the capture of suspended solids, fine sands and larger particles. Because of its non-blocking screening capacity, the CDS unit is un-matched in its ability to capture and retain gross pollutants such as trash and debris. In short, CDS units capture a very wide range of organic and in-organic solids and pollutants that typically result in tons of captured solids each year such as: Total suspended solids (TSS) and other sedimentitious materials, oil and greases, trash, and other debris (including floatables, neutrally buoyant, and negatively buoyant debris). These pollutants will be captured even under very high flow rate conditions.

CDS units are equipped with conventional oil baffles to capture and retain oil and grease. Laboratory evaluations show that the CDS units are capable of capturing up to 70% of the free oil and grease from storm water. CDS units can also accommodate the addition of oil sorbents within their separation chambers. The addition of the oil sorbents can ensure the permanent removal of 80% to 90% of the free oil and grease from the storm water runoff.

OPERATIONS

The CDS unit is a non-mechanical self-operating system and will function any time there is flow in the storm drainage system. The unit will continue to effectively capture pollutants in flows up to the design capacity even during extreme rainfall events when the design capacity may be exceeded. Pollutants captured in the CDS unit's separation chamber and sump will be retained even when the units design capacity is exceeded.

CDS UNIT INSPECTION

Access to the CDS unit is typically achieved through two manhole access covers – one allows inspection (and cleanout) of the separation chamber (screen/cylinder) & sump and another allows inspection (and cleanout) of sediment captured and retained behind the screen.

The unit should be periodically inspected to determine the amount of accumulated pollutants and to ensure that the cleanout frequency is adequate to handle the predicted pollutant load being processed by the CDS unit. The unit should be periodically inspected for indications of vector infestation, as well. The recommended cleanout of

CDS®

Patented continuous deflection separation (CDS) technology

Using patented continuous deflective separation technology, the CDS system screens, separates and traps debris, sediment, and oil and grease from stormwater runoff. The indirect screening capability of the system allows for 100% removal of floatables and neutrally buoyant material without blinding. Flow and screening controls physically separate captured solids, and minimize the re-suspension and release of previously trapped pollutants. Available precast or cast-in-place, offline units can treat flows from 1 to 300 cfs. Inline units can treat up to 6 cfs, and internally bypass flows in excess of 50 cfs. The pollutant removal capability of the CDS system has been proven in the lab and field.

How does it work?

Stormwater enters the CDS unit's diversion chamber where the diversion weir guides the flow into the unit's separation chamber and pollutants are removed. All flows up to the system's treatment design capacity enter the separation chamber.

Swirl concentration and screen deflection forces floatables and solids to the center of the separation chamber where 100% of floatables and neutrally buoyant debris larger than the screen apertures are trapped.

Stormwater then moves through the separation screen, under the oil baffle and exits the system. The separation screen remains clog free due to continuous deflection.

During flow events exceeding the design capacity, the diversion weir bypasses excessive flows around the separation chamber, so captured pollutants will not wash out.

CDS

- Removes sediment, trash, and free oil and grease
- Patented screening technology captures and retains 100% of floatables, including neutrally buoyant and all other material greater than the screen aperture
- Operation independent of flow
- Performance verified through lab and field testing
- Unobstructed maintenance access
- Customizable/flexible design and multiple configurations available
- · Separates and confines pollutants from outlet flow
- Grate inlet available
- Multiple screen aperture sizes available

Available Models

Refer to the following tables for our standard models, sizes, and treatment capacities. Drawings and specifications are available at contechstormwater.com.

We encourage you to contact your local stormwater consultant for site-specific design assistance. In many cases our products can be customized to fit your particular project's needs.

Local regulations may impact design requirements.

	CDS Model	DS Model Structure Diameter¹ ft m		Typical Depth Below Invert ft m		Water Quality Flow ² 125 µm cfs L/s		Screen Diameter/Height ft m		Sump Storage yd³ m³	
ine	PMIU20_15	4	1.2	3.7	1.1	0.7	19.8	2.0/1.5	0.6/0.5	0.5	0.4
	PMIU20_15_4	4	1.2	3.5	1.1	0.7	19.8	2.0/1.5	0.6/0.5	0.5	0.4
	PMSU20_15	5	1.5	4.4	1.3	0.7	19.8	2.0/1.5	0.6/0.5	1.1	0.8
	PMSU20_20	5	1.5	5.0	1.5	1.1	31.1	2.0/2.0	0.6/0.6	1.1	0.8
2	PMSU20_25	5	1.5	5.3	1.6	1.6	45.3	2.0/2.5	0.6/0.8	1.1	0.8
-	PMSU30_20	6	1.8	5.5	1.7	2.0	56.6	3.0/2.0	0.9/0.6	2.1	1.6
	PMSU30_30	6	1.8	6.5	2.0	3.0	85.0	3.0/3.0	0.9/0.9	2.1	1.6
	PMSU40_30	8	2.4	7.8	2.4	4.5	127.4	4.0/3.0	1.2/0.9	5.6	4.3
	PMSU40_40	8	2.4	8.8	2.7	6.0	169.9	4.0/4.0	1.2/1.2	5.6	4.3
- Offline -	PSWC30_20	6	1.8	5.3	1.6	2.0	56.6	3.0/2.0	0.9/0.6	1.9	1.5
	PSW30_30	varies	varies	6.3	1.9	3.0	85.0	3.0/3.0	0.9/0.9	5.8	4.4
	PSWC30_30	6	1.8	6.3	1.9	3.0	85.0	3.0/3.0	0.9/0.9	2.1	1.6
	PSWC40_30	7	2.1	7.7	2.3	4.5	127.4	4.0/3.0	1.2/0.9	1.9	1.5
	PSWC40_40	7	2.1	8.8	2.7	6.0	169.9	4.0/4.0	1.2/1.2	1.9	1.5
	PSW50_42	varies	varies	8.8	2.7	9.0	254.9	5.0/4.2	1.5/1.3	1.9	1.5
	PSWC56_40	8	2.4	8.8	2.7	9.0	254.9	5.6/4.0	1.7/1.2	1.9	1.5
	PSW50_50	varies	varies	9.5	2.9	11.0	311.5	5.0/5.0	1.5/1.5	1.9	1.5
	PSWC56_53	8	2.4	10.1	3.1	14.0	396.4	5.6/5.3	1.7/1.6	1.9	1.5
	PSWC56_68	8	2.4	11.8	3.6	19.0	538.0	5.6/6.8	1.7/2.1	1.9	1.5
	PSWC56_78	8	2.4	12.8	3.9	25.0	707.9	5.6/7.8	1.7/2.4	1.9	1.5
	PSW70_70	varies	varies	13.0	4.0	26.0	736.2	7.0/7.0	2.1/2.1	3.9	3.0
	PSW100_60	varies	varies	11.0	3.4	30.0	849.5	10.0/6.0	3.0/1.8	6.9	5.3
	PSW100_80	varies	varies	13.0	4.0	50.0	1415.8	10.0/8.0	3.0/2.4	6.9	5.3
	PSW100_100	varies	varies	15.0	4.6	64.0	1812.3	10.0/10.0	3.0/3.0	6.9	5.3

1. Structure diameter represents the standard inside dimension of the concrete structure. Offline systems will require additional concrete diversion components.

2. Water Quality Flow is based on 80% removal of a particle size distribution with an average particle size of 125 microns. This flow also represents the maximum flow prior to which bypass occurs. Test results are based on use of a 2400 micron screen.

Cast-in-place system are available to treat higher flows. Check with your local representatives for specifications.

Notes: Systems can be sized based on a water quality flow (e.g. 1 inch storm) or on a net annual basis depending on the local regulatory requirement. When sizing based on a water quality storm, the required flow to be treated should be equal to or less than the listed water quality flow for the selected system. Systems sized based on a water quality storm are generally more conservatively sized. Additional particle size distributions are available for sizing purposes upon request.

Depth below invert is measured to the inside bottom of the system. This depth can be adjusted to meet specific storage or maintenance requirements. Contact our support staff for the most cost effective sizing for your area.

APPENDIX E

NRCS SOIL MAP

Proposed Housing – Glastonbury Housing Authority | Stormwater Management Plan

Custom Soil Resource Report Soil Map

APPENDIX F

NOAA RAINFALL DATA

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 10, Version 3 Location name: Glastonbury, Connecticut, USA* Latitude: 41.7199°, Longitude: -72.599° Elevation: 54 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹												
Duration	Average recurrence interval (years)											
Duration	1	2	5	10	25	50	100	200	500	1000		
5-min	0.331 (0.263-0.415)	0.404 (0.320-0.507)	0.523 (0.413-0.658)	0.621 (0.488-0.788)	0.757 (0.573-1.01)	0.859 (0.636-1.17)	0.966 (0.693-1.37)	1.09 (0.735-1.57)	1.26 (0.817-1.90)	1.40 (0.886-2.15)		
10-min	0.469 (0.372-0.588)	0.572 (0.454-0.718)	0.741 (0.585-0.932)	0.881 (0.691-1.12)	1.07 (0.812-1.42)	1.22 (0.901-1.65)	1.37 (0.982-1.94)	1.54 (1.04-2.23)	1.78 (1.16-2.68)	1.98 (1.26-3.05)		
15-min	0.552 (0.438-0.691)	0.673 (0.534-0.844)	0.871 (0.688-1.10)	1.04 (0.813-1.31)	1.26 (0.956-1.68)	1.43 (1.06-1.95)	1.61 (1.16-2.28)	1.81 (1.23-2.63)	2.10 (1.36-3.16)	2.33 (1.48-3.59)		
30-min	0.742 (0.589-0.930)	0.905 (0.717-1.14)	1.17 (0.925-1.47)	1.39 (1.09-1.76)	1.70 (1.28-2.25)	1.93 (1.43-2.62)	2.17 (1.55-3.06)	2.44 (1.65-3.53)	2.82 (1.83-4.24)	3.14 (1.98-4.82)		
60-min	0.932 (0.740-1.17)	1.14 (0.901-1.43)	1.47 (1.16-1.85)	1.75 (1.37-2.22)	2.13 (1.62-2.83)	2.42 (1.79-3.29)	2.72 (1.95-3.85)	3.06 (2.07-4.44)	3.54 (2.30-5.33)	3.94 (2.49-6.06)		
2-hr	1.22 (0.973-1.52)	1.48 (1.18-1.84)	1.90 (1.51-2.38)	2.25 (1.78-2.83)	2.73 (2.08-3.61)	3.09 (2.31-4.19)	3.47 (2.52-4.91)	3.93 (2.67-5.66)	4.60 (2.99-6.88)	5.16 (3.28-7.89)		
3-hr	1.41 (1.13-1.75)	1.70 (1.36-2.12)	2.19 (1.74-2.73)	2.59 (2.05-3.24)	3.14 (2.41-4.14)	3.55 (2.66-4.80)	3.99 (2.91-5.64)	4.52 (3.08-6.49)	5.32 (3.47-7.93)	6.00 (3.82-9.13)		
6-hr	1.76 (1.42-2.17)	2.14 (1.72-2.63)	2.74 (2.20-3.40)	3.25 (2.59-4.05)	3.95 (3.05-5.18)	4.46 (3.37-6.01)	5.02 (3.69-7.07)	5.71 (3.90-8.14)	6.75 (4.42-9.99)	7.65 (4.88-11.6)		
12-hr	2.14 (1.74-2.62)	2.61 (2.12-3.20)	3.38 (2.73-4.16)	4.02 (3.23-4.98)	4.90 (3.80-6.40)	5.55 (4.22-7.43)	6.26 (4.62-8.76)	7.13 (4.89-10.1)	8.46 (5.56-12.4)	9.62 (6.15-14.4)		
24-hr	2.49 (2.04-3.03)	3.09 (2.52-3.76)	4.06 (3.30-4.96)	4.86 (3.93-5.98)	5.97 (4.67-7.76)	6.79 (5.19-9.06)	7.68 (5.72-10.8)	8.81 (6.06-12.4)	10.6 (6.98-15.5)	12.2 (7.80-18.1)		
2-day	2.84 (2.33-3.43)	3.57 (2.93-4.32)	4.76 (3.90-5.79)	5.76 (4.68-7.03)	7.12 (5.61-9.24)	8.12 (6.27-10.8)	9.23 (6.96-13.0)	10.7 (7.38-15.0)	13.1 (8.65-19.0)	15.3 (9.82-22.6)		
3-day	3.09 (2.55-3.72)	3.89 (3.21-4.69)	5.21 (4.28-6.30)	6.30 (5.14-7.67)	7.80 (6.17-10.1)	8.89 (6.90-11.8)	10.1 (7.67-14.2)	11.8 (8.13-16.4)	14.5 (9.57-20.9)	16.9 (10.9-24.9)		
4-day	3.30 (2.74-3.96)	4.16 (3.44-5.00)	5.55 (4.58-6.70)	6.71 (5.49-8.15)	8.31 (6.59-10.7)	9.46 (7.36-12.6)	10.8 (8.18-15.1)	12.5 (8.66-17.4)	15.4 (10.2-22.2)	18.0 (11.6-26.4)		
7-day	3.88 (3.23-4.63)	4.82 (4.01-5.77)	6.37 (5.28-7.65)	7.66 (6.30-9.25)	9.43 (7.50-12.1)	10.7 (8.36-14.1)	12.2 (9.24-16.8)	14.1 (9.77-19.4)	17.1 (11.4-24.6)	19.9 (12.9-29.0)		
10-day	4.47 (3.74-5.32)	5.46 (4.56-6.51)	7.09 (5.90-8.48)	8.45 (6.97-10.2)	10.3 (8.22-13.1)	11.7 (9.10-15.2)	13.2 (9.99-18.1)	15.1 (10.5-20.8)	18.2 (12.1-26.0)	20.9 (13.6-30.5)		
20-day	6.42 (5.40-7.59)	7.47 (6.28-8.85)	9.20 (7.70-10.9)	10.6 (8.83-12.7)	12.6 (10.1-15.8)	14.1 (11.0-18.1)	15.6 (11.8-20.9)	17.5 (12.3-23.9)	20.3 (13.6-28.7)	22.7 (14.8-32.8)		
30-day	8.10 (6.85-9.54)	9.19 (7.75-10.8)	11.0 (9.21-13.0)	12.4 (10.4-14.8)	14.5 (11.6-18.0)	16.0 (12.5-20.3)	17.6 (13.2-23.2)	19.3 (13.6-26.2)	21.9 (14.7-30.8)	23.9 (15.6-34.4)		
45-day	10.2 (8.67-12.0)	11.3 (9.61-13.3)	13.2 (11.1-15.5)	14.7 (12.3-17.4)	16.8 (13.5-20.7)	18.4 (14.4-23.2)	20.0 (15.0-26.1)	21.7 (15.4-29.3)	23.9 (16.1-33.4)	25.5 (16.7-36.6)		
60-day	12.0 (10.2-14.0)	13.2 (11.2-15.4)	15.1 (12.8-17.7)	16.7 (14.0-19.7)	18.8 (15.1-23.1)	20.5 (16.0-25.7)	22.2 (16.5-28.6)	23.8 (16.9-31.9)	25.7 (17.4-35.9)	27.1 (17.7-38.7)		

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 10, Version 3 Location name: Glastonbury, Connecticut, USA* Latitude: 41.7199°, Longitude: -72.599° Elevation: 54 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular

PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹											
Duration	Average recurrence interval (years)										
Duration	1	2	5	10	25	50	100	200	500	1000	
5-min	3.97 (3.16-4.98)	4.85 (3.84-6.08)	6.28 (4.96-7.90)	<mark>7.45</mark> (5.86-9.46)	9.08 (6.88-12.1)	10.3 (7.63-14.0)	11.6 (8.32-16.4)	13.0 (8.82-18.9)	15.1 (9.80-22.7)	16.8 (10.6-25.8)	
10-min	2.81 (2.23-3.53)	3.43 (2.72-4.31)	4.45 (3.51-5.59)	5.29 (4.15-6.70)	6.44 (4.87-8.55)	7.31 (5.41-9.92)	8.21 (5.89-11.6)	9.23 (6.25-13.4)	10.7 (6.94-16.1)	11.9 (7.53-18.3)	
15-min	2.21	2.69	3.48	<mark>4.14</mark>	5.05	5.73	6.44	7.24	8.39	9.33	
	(1.75-2.76)	(2.14-3.38)	(2.75-4.39)	(3.25-5.24)	(3.82-6.70)	(4.24-7.79)	(4.62-9.11)	(4.90-10.5)	(5.45-12.6)	(5.90-14.3)	
30-min	1.48	1.81	2.34	<mark>2.79</mark>	3.39	3.85	4.33	4.87	5.64	6.27	
	(1.18-1.86)	(1.43-2.27)	(1.85-2.95)	(2.19-3.53)	(2.57-4.51)	(2.85-5.24)	(3.11-6.12)	(3.30-7.06)	(3.66-8.49)	(3.97-9.65)	
60-min	0.932 (0.740-1.17)	1.14 (0.901-1.43)	1.47 (1.16-1.85)	<mark>1.75</mark> (1.37-2.22)	2.13 (1.62-2.83)	2.42 (1.79-3.29)	2.72 (1.95-3.85)	3.06 (2.07-4.44)	3.54 (2.30-5.33)	3.94 (2.49-6.06)	
2-hr	0.609 (0.486-0.758)	0.738 (0.589-0.920)	0.949 (0.754-1.19)	1.12 (0.888-1.42)	1.36 (1.04-1.81)	1.54 (1.15-2.09)	1.74 (1.26-2.46)	1.96 (1.33-2.83)	2.30 (1.50-3.44)	2.58 (1.64-3.94)	
3-hr	0.468 (0.375-0.581)	0.567 (0.454-0.704)	0.728 (0.581-0.908)	0.861 (0.683-1.08)	1.04 (0.801-1.38)	1.18 (0.886-1.60)	1.33 (0.968-1.88)	1.50 (1.02-2.16)	1.77 (1.16-2.64)	2.00 (1.27-3.04)	
6-hr	0.294	0.356	0.458	0.543	0.659	0.745	0.839	0.953	1.13	1.28	
	(0.237-0.362)	(0.287-0.439)	(0.367-0.567)	(0.433-0.676)	(0.508-0.865)	(0.563-1.00)	(0.615-1.18)	(0.650-1.36)	(0.737-1.67)	(0.815-1.93)	
12-hr	0.177 (0.144-0.217)	0.216 (0.175-0.265)	0.280 (0.226-0.345)	0.333 (0.267-0.412)	0.406 (0.315-0.530)	0.460 (0.349-0.616)	0.519 (0.383-0.727)	0.591 (0.405-0.838)	0.702 (0.461-1.03)	0.798 (0.510-1.20)	
24-hr	0.103	0.128	0.169	0.202	0.248	0.282	0.320	0.367	0.441	0.506	
	(0.084-0.126)	(0.105-0.156)	(0.137-0.206)	(0.163-0.249)	(0.194-0.323)	(0.216-0.377)	(0.238-0.447)	(0.252-0.517)	(0.290-0.644)	(0.324-0.754)	
2-day	0.059	0.074	0.099	0.119	0.148	0.169	0.192	0.222	0.273	0.317	
	(0.048-0.071)	(0.061-0.089)	(0.081-0.120)	(0.097-0.146)	(0.116-0.192)	(0.130-0.225)	(0.144-0.269)	(0.153-0.312)	(0.180-0.396)	(0.204-0.470)	
3-day	0.042	0.054	0.072	0.087	0.108	0.123	0.140	0.163	0.201	0.234	
	(0.035-0.051)	(0.044-0.065)	(0.059-0.087)	(0.071-0.106)	(0.085-0.140)	(0.095-0.164)	(0.106-0.197)	(0.112-0.227)	(0.132-0.290)	(0.151-0.345)	
4-day	0.034	0.043	0.057	0.069	0.086	0.098	0.112	0.130	0.160	0.187	
	(0.028-0.041)	(0.035-0.052)	(0.047-0.069)	(0.057-0.084)	(0.068-0.111)	(0.076-0.130)	(0.085-0.156)	(0.090-0.181)	(0.106-0.231)	(0.120-0.275)	
7-day	0.023	0.028	0.037	0.045	0.056	0.063	0.072	0.083	0.102	0.118	
	(0.019-0.027)	(0.023-0.034)	(0.031-0.045)	(0.037-0.055)	(0.044-0.071)	(0.049-0.083)	(0.054-0.100)	(0.058-0.115)	(0.067-0.146)	(0.076-0.172)	
10-day	0.018	0.022	0.029	0.035	0.042	0.048	0.054	0.062	0.075	0.087	
	(0.015-0.022)	(0.019-0.027)	(0.024-0.035)	(0.029-0.042)	(0.034-0.054)	(0.037-0.063)	(0.041-0.075)	(0.043-0.086)	(0.050-0.108)	(0.056-0.126)	
20-day	0.013	0.015	0.019	0.022	0.026	0.029	0.032	0.036	0.042	0.047	
	(0.011-0.015)	(0.013-0.018)	(0.016-0.022)	(0.018-0.026)	(0.020-0.032)	(0.022-0.037)	(0.024-0.043)	(0.025-0.049)	(0.028-0.059)	(0.030-0.068)	
30-day	0.011	0.012	0.015	0.017	0.020	0.022	0.024	0.026	0.030	0.033	
	(0.009-0.013)	(0.010-0.015)	(0.012-0.018)	(0.014-0.020)	(0.016-0.024)	(0.017-0.028)	(0.018-0.032)	(0.018-0.036)	(0.020-0.042)	(0.021-0.047)	
45-day	0.009	0.010	0.012	0.013	0.015	0.017	0.018	0.020	0.022	0.023	
	(0.008-0.011)	(0.008-0.012)	(0.010-0.014)	(0.011-0.016)	(0.012-0.019)	(0.013-0.021)	(0.013-0.024)	(0.014-0.027)	(0.014-0.030)	(0.015-0.033)	
60-day	0.008	0.009	0.010	0.011	0.013	0.014	0.015	0.016	0.017	0.018	
	(0.007-0.009)	(0.007-0.010)	(0.008-0.012)	(0.009-0.013)	(0.010-0.016)	(0.011-0.017)	(0.011-0.019)	(0.011-0.022)	(0.012-0.024)	(0.012-0.026)	

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical