MEGSON, HEAGLE & FRIEND

CIVIL ENGINEERS & LAND SURVEYORS, LLC 81 RANKIN ROAD GLASTONBURY, CONNECTICUT 06033 PHONE (860) 659-0587 FAX (860) 657-4429

HYDROLOGY AND HYDRAULICS ENGINEERING REPORT

The Community of Saints Isodore and Maria at St. Paul Church #2557 & Lot W-38A Main Street Glastonbury, CT

December, 2022

Prepared By:

Mark W. Friend, PE Soil Scientist, LEED AP

TABLE OF CONTENTS

PROJECT DESCRIPTION 1				
STORMWATER	MANAGEMENT DESIGN GOALS AND PRACTICES	2		
METHODOLOG	Y	4		
SUMMARY		4		
	APPENDICES			
APPENDIX A -	TR-55 PRE/POST DRAINAGE AREA MAPS			
APPENDIX B -	TR-55 PRE/POST COVERAGE & HYDROLOGIC SOIL GI	ROUPS		
APPENDIX C -	HydroCAD TR-55 SUMMARY REPORT			
APPENDIX D -	RUNOFF AND VOLUME CALCULATIONS – RATIONAL	METHOD		
APPENDIX E -	GLASTONBURY/HARTFORD, CT NOAA ATLAS 14 PRECESTIMATES	CIPITATION		
APPENDIX F –	Hydroflow REPORT FOR PIPE SIZING (HYDRAULIC GR	ADE LINES)		
APPENDIX G -	WATER QUALITY VOLUME CALCULATIONS			
APPENDIX H -	DRAINAGE AREAS MAP – PROPOSED INLET AREAS			
APPENDIX I –	DRAINAGE AREAS MAP – EXISTING PAVEMENT AREA TO WETLAND W/O TREATM			
APPENDIX .I -	STANDPIPE READINGS			

PROJECT DESCRIPTION

The project that is the subject of this report is located on a parcel of land with an address of 2577 Main Street in Glastonbury, CT. The property has 363.44 feet of frontage on the west side of Main Street and 154.44 feet on the north side of Welles Street. It is 7.246 acres in size. Four existing buildings are located on the property which consist of a church, rectory, garage for the rectory, and residential style building used as the Knights of Columbus Hall. Several paved access drives and parking lots are located on the site. The main parking lot is west of the church in the middle portion of the site. A large cell phone tower exists on the westerly most portion of the property on a 100 x 100 foot leased area.

In recent years the congregation utilizing the Church's Main Street campus has grown due to local Church consolidation and general growth within the community, with the existing Parish Center and parking facilities no longer meet the needs of the congregation. The Applicant is therefore proposing a 2-story, 15,341 s.f. (main level: 8,355 s.f., lower level: 6,986 s.f.) building addition to the rear of the existing Church building. Approximately 1,020 s.f. of the existing structure will be demolished in order to make the building connection. The new addition will include new offices, classrooms, an assembly hall with kitchen, together with new bathroom facilities and a glass vestibule entry with elevator access to modernize and upgrade the facility. The Site is currently under parked by 39 parking spaces (192 parking spaces required per the Building-Zone Regulations, and 153 parking spaces existing on Site). The Applicant is proposing to reconfigure and expand the existing parking lot along Main Street, and towards the west with the new construction of 106 additional parking spaces, for a total of 259 on-site parking spaces (please note that a 10.1% parking waiver will be requested from the Town Plan and Zoning Commission). Other proposed site improvements include a stormwater management basin, rain garden, parking lot islands with shade trees and the installation of full-cut off 16 ft. light poles mounted to a 2 ft. concrete base.

STORMWATER MANAGEMENT DESIGN GOALS AND PRACTICES

The design goals of the stormwater management system are as follow:

General

- Design to be consistent with the Town of Glastonbury Standards for Public Improvements Section 4.0 Stormwater Management Design Standards.
- Design to be consistent with National Pollutant Discharge Elimination System (NPDES).
- Design to be consistent with the 2004 Connecticut Stormwater Quality Manual
- Design to be consistent with the 2002 Connecticut Guidelines For Soil Erosion and Sediment Control
- Design to be consistent with the Town's MS4 Permit.
- Design to be functional, environmentally sensitive & aesthetically compatible with the surrounding development.
- Incorporate Low Impact Development (LID) practices.
- Incorporate Best Management Practices (BMP's).
- Remove at least 80% of the total suspended solids & floatable pollutants before discharge to a surface water or wetland.
- Minimize loss of long term recharge during low flow periods.
- Retain 50% of the Water Quality Volume for the site in conformance with the Town of Glastonbury MS4 Permit.
- Mitigate peak runoffs to prevent any increases for storm frequency events from 2 to 100 years.

Treatment Controls

Filtering Practices

- Utilize sheet flow to parking lot islands (micro-scale control)
- Utilize stormwater management areas utilizing created wetlands & wet basins
- Utilize linear bio-swales

Infiltration/Recharge Practices

- Utilize sheet flow to parking islands (micro-scale control)
- Utilize sheet flow to road shoulders (micro-scale control)
- Utilize stormwater management areas utilizing created wetlands & wet basins
- Utilize linear bio-swales
- Utilize Stormwater Management Basin to retain 50% Water Quality Volume for the site consistent with the Town's MS4 Permit.

Settling Practices

- Design lot grading to create ponding areas in islands & shoulders (micro-scale control)
- Utilize stormwater management basins

Detention Practices for Mitigation of Peak Runoff Increase

• Design a Stormwater Management Basin (SWMB) with an Outlet Control Weir to provide detention of peak flow increases.

End of Pipe Controls

- Incorporate a Sediment Forebay
- Utilize 2' sumps in catchbasins
- Design outlet protection @ discharge points

To achieve the above enumerated goals a stormwater treatment train is incorporated into the design, including a linear raingarden to treat the runoff prior to collection in traditional catchbasins with 2' sumps. The discharge from this system is then directed to a SWMB with a wet bottom. This feature is specified to be planted with both wetland and upland plants to provide a bio-retention environment. A sediment forebay is proposed in the SWMB to isolate and contain any incoming sediments not filtered out in the linear raingarden or settled out in the catchbasin sumps.

A critical element of the stormwater management plan is the ability to capture 93% of the existing pavement and direct it into the treatment train. This provides the advantage of managing the existing runoff currently being discharged directly into the adjacent wetland system and achieve the above enumerated goals. This is a substantial improvement in stormwater quality treatment for runoff from the site.

METHODOLOGY

Peak rates of runoff and runoff volumes, for the purpose of determining the detention required for mitigating increases, are computed utilizing the TR-55 method according to the Town requirements. HydroCAD Stormwater Modeling software was used for these calculations.

Peak rates of surface runoffs, for the purpose of culvert sizing, are computed utilizing the Rational Method. The pipes were designed to convey flows from up to a 10 yr frequency storm event. Hydraflow/Storm/Sewers by inteliSOLVE was used to compute the hydraulic grade lines for the system using the runoffs computed. The Water Quality Volume is computed per the 2004 Connecticut Stormwater Quality Manual. The results are included in the appendices.

SUMMARY

- The entire proposed parking lot as well as the runoff from 93% of the existing parking lot is directed to the Treatment Train.
- The SWMB is designed to prevent any increases in peak runoffs for all storm frequency events from 2 to 100 years. The actual peak flows are as follows:

Storm Frequency Events

	2 yr	10 yr	25 yr	50 yr	100yr
Pre-Developed	5.27 cfs	13.18 cfs	18.64 cfs	23.02 cfs	27.42 cfs
Post-Developed	5.08 cfs	12.68 cfs	17.94 cfs	22.15 cfs	26.39 cfs
SWMB Outflow	4.58 cfs	12.56 cfs	16.23 cfs	18.98 cfs	21.71 cfs
Reduction	0.19 cfs	0.50 cfs	0.70 cfs	0.87 cfs	1.03 cfs

• The outlet weir of the SWMB is designed at elevation 28.6 to retain 50% of the Stormwater Quality Volume for the site as required for a Re-development site per the MS4 Permit.

APPENDIX A TR-55 PRE/POST DRAINAGE AREA MAPS

APPENDIX B

TR-55 PRE/POST COVERAGE & HYDROLOGIC SOIL GROUPS

MEGSON, HEAGLE & FRIEND Civil Engineers & Land Surveyors, LLC 81 Rankin Road Glastonbury, Connecticut 06033

JOBBOL		<u> </u>	
SHEET NO.		OF	Z.
CALCULATED BY	MWE	DATE_	10-72

	(860) 659-0587	CHECKED BY	DATE
<u> Omeron observicem plotocem a</u>		SCALE	
	PRE-DEVELOPED C		
	TOTAL DRAWAGE ARE	N-11.71 A4	
	TOTAL PAUEL AREA	- 7.28 A	
	TOTAL BUILISING AREA	+ - 9, TT A'S	
	TOTAL GRASS AREA	1,88 AC	
	TOTAL BRUSH-PAIR NOS		
	TOTAL WOODED AREX	- 5.87 AC	
	HYDOLOGIC SOIL CROUPS		
	NINICRET TSRURY, H		KAWAM
	+ 5014 6ROUT		
	WOODED - 471 A		
	GRASS - 1.88	A/	
	BRUSH - FAIR - 0.85		
	PLYPOUE - SON GEOR	36 4	
	1000EN - 116 A		
	BRUSH FAIR 0.39 A		

MEGSON, HEAGLE & FRIEND Civil Engineers & Land Surveyors, LLC 81 Rankin Road Glastonbury, Connecticut 06033

SHEET NO. OF Z

CALCULATED BY MYF DATE 0 - ZZ

(860) 659-0587	C	CHECKED BY		DATE
	S	SCALE		
Post-Develop		977/2/VQ	N	
		11 4		
TOTOL TOTAL		> - !!! [
TOTAL PAUED AR	LL	- 7 7		
			easts ***********************************	
FOTA BULDING A		- 0,6	OAL	
TOTAL GRASS ARE	- 1	7 -	~ ^ .	
10 12 520 3 1319			2 134	
TOTAL WOODED NO	SEN	- 6.1	4 2	
HYDROLOGIC SOIL GRE	2405			
HINI GRET / TISBURY A	5 1 3		D ACMA	<u> </u>
LI SONL GRE	SUP B	3 []]		
WOODED - 4.64	N/			
48.5 - 2.49.D	44			
RAYPOLE - SON GRO				
W901-ED-1,50 A	<u> </u>			
		The state of the s		
		- Andrews		
		7		

APPENDIX C HydroCAD TR-55 SUMMARY REPORT

Printed 12/1/2022

Page 2

Rainfall Events Listing (selected events)

Event#	Event Name	Storm Type	Curve	Mode	Duration (hours)	B/B	Depth (inches)	AMC
1	2-yr	NRCC 24-hr	С	Default	24.00	1	3.08	2
2	10-yr	NRCC 24-hr	С	Default	24.00	1	4.86	2
3	25-yr	NRCC 24-hr	С	Default	24.00	1	5.97	2
4	50-yr	NRCC 24-hr	С	Default	24.00	1	6.83	2
5	100-yr	NRCC 24-hr	С	Default	24.00	1	7.68	2

Prepared by Microsoft

HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Page 3

Summary for Subcatchment 1S: Pre - Developed to POA

Runoff

5.27 cfs @ 12.68 hrs, Volume=

0.936 af, Depth= 0.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-yr Rainfall=3.08"

Are	a (ac)	CN	Description	on			
	2.280	98	Paved pa	arking,	HSG B		
	0.440	98	Roofs, HS	SG B			
	4.710		Woods, F				
	1.880				over, Good,	, HSG B	
	0.850		Brush, Po	,			
	1.160		Woods, F				
	0.390		Brush, Po				
	1.710		Weighted				
	8.990		76.77% P				
	2.720	•	23.23% II	mperv	rious Area		
To	c Lengt	h Slo	ope Velo	ocity	Capacity	Description	
(min			•	sec)	(cfs)	Description	
1.7		·		1.46		Sheet Flow, Sheet flow over paved area	
			-			Smooth surfaces n= 0.011 P2= 3.07"	
0.8	3 15	0.02	260	3.27		Shallow Concentrated Flow, Shallow Concentrated Flow or	ver na
						Paved Kv= 20.3 fps	
0.2	2 2	5 0.16	300	2.00		Shallow Concentrated Flow, Shallow concentrated flow	
_						Woodland Kv= 5.0 fps	
5.4	1 20	0 0.01	150 (0.61		Shallow Concentrated Flow, Shallow Conc - Knotweed	
20 -	7 44	0 0 00)FO (0.40		Woodland Kv= 5.0 fps	
38.7	7 41	0.00	JOU (0.18		Shallow Concentrated Flow, Shallow Conc - Dense woods	
16 G	2 02	F Tet-		***************************************		Forest w/Heavy Litter Kv= 2.5 fps	
46.8	93	5 Tota	1 1				

Subcatchment 1S: Pre - Developed to POA

Summary for Subcatchment 2S: Post - Developed to POA

Runoff = 5.08 cfs @ 12.74 hrs, Volume=

0.936 af, Depth= 0.96"

Routed to nonexistent node 3P

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-yr Rainfall=3.08"

Area	(ac) C	N Des	cription		
2.	270 9	98 Pave	ed parking	HSG B	
				over, Good	HSG B
			ds, Poor,		, 1100 B
			ods, Poor,		
			fs, HSG B	11000	
***************************************	***************************************				
	840	•	ghted Aver	•	
			9% Pervio		
۷.	870	24.5	1% Imperv	nous Area	
Ta	حالم مرما	Clana	\	0	December 1981
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.7	150	0.0200	1.46		Sheet Flow, Sheet Flow over pavement
					Smooth surfaces n= 0.011 P2= 3.07"
1.0	220	0.0300	3.52		Shallow Concentrated Flow, Shallow Concentrated Flow over pa
					Paved Kv= 20.3 fps
0.1	43	0.0100	5.70	7.00	Pipe Channel, 15" HDCPE
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
					n= 0.012 Corrugated PP, smooth interior
0.2	72	0.0100	7.80	24.51	Pipe Channel, 24" HDCPE
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.012 Corrugated PP, smooth interior
47.1	500	0.0050	0.18		Shallow Concentrated Flow, Shallow Concentrated Heavy woods
			_		Forest w/Heavy Litter Kv= 2.5 fps
50.1	985	Total	*****	***************************************	

Subcatchment 2S: Post - Developed to POA

HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Summary for Subcatchment 5S: Discharge Area to SWMB

Runoff = 7.66 cfs @ 12.17 hrs, Volume=

0.610 af, Depth= 1.97"

Routed to Pond 4P: SWMB

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs NRCC 24-hr C 2-yr Rainfall=3.08"

Area	(ac)	CN	Desc	cription							
2.	180	98	Pave	Paved parking, HSG B							
0.	930	61	>75%	6 Grass co	over, Good	HSG B					
0.	600	98	Roof	s, HSG B							
3.	710	89	Weig	ghted Aver	age						
	930			7% Pervio							
2.	780		74.9	3% Imperv	vious Area						
Тс	Leng		Slope	Velocity	Capacity	Description					
(min)	(fee	et)	(ft/ft)	(ft/sec)	(cfs)						
10.0						Direct Entry.					

Subcatchment 5S: Discharge Area to SWMB

HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Printed 12/1/2022

Page 8

Summary for Pond 4P: SWMB

Inflow Area =

3.710 ac, 74.93% Impervious, Inflow Depth = 1.97" for 2-yr event

Inflow = Outflow =

7.66 cfs @ 12.17 hrs, Volume=

0.610 af 0.476 af, Atten= 40%, Lag= 8.1 min

Primary =

Volume

4.58 cfs @ 12.31 hrs, Volume= 4.58 cfs @ 12.31 hrs, Volume=

0.476 af

Routing by Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs

Peak Elev= 29.55' @ 12.31 hrs Surf.Area= 5,152 sf Storage= 10,410 cf

10.410 CI

Avail.Storage Storage Description

Plug-Flow detention time= 198.5 min calculated for 0.476 af (78% of inflow) Center-of-Mass det. time= 110.5 min (934.9 - 824.4)

Invert

#1	27.00'	18,710 cf Custom	Stage Data (Prisi	matic) Listed below	
Elevation (feet)	Surf.Area (sq-ft)	Inc.Store (cubic-feet)	Cum.Store (cubic-feet)		
27.00	2,800	0	Ó		
27.50	3,220	1,505	1,505		
28.00	3,880	1,775	3,280		
28.50	4,440	2,080	5,360		
29.00	4,800	2,310	7,670		
29.50	5,120	2,480	10,150		
30.00	5,440	2,640	12,790		

Device	Routing

30.50

31.00

Invert Outlet Devices

2,840

3,080

#1 Primary

28.60' (

5,920

6,400

Custom Weir/Orifice, Cv= 2.62 (C= 3.28)

Head (feet) 0.00 0.70 0.70 2.00 2.00 3.00 Width (feet) 0.50 0.50 8.00 8.00 12.00 12.00

15,630

18,710

Primary OutFlow Max=4.51 cfs @ 12.31 hrs HW=29.55' (Free Discharge)

1=Custom Weir/Orifice (Weir Controls 4.51 cfs @ 1.94 fps)

Prepared by Microsoft
HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Page 9

Pond 4P: SWMB

935 Total

46.8

Printed 12/1/2022 Page 10

Summary for Subcatchment 1S: Pre - Developed to POA

Runoff = 13.18 cfs @ 12.65 hrs, Volume=

2.199 af, Depth= 2.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-yr Rainfall=4.86"

Area	(ac) C	N Des	cription		
2.	280	98 Pav	ed parking	, HSG B	A COLOR OF THE PROPERTY OF THE
0.	440		fs, HSG B		
4.	710	36 Woo	ds, Poor,	HSG B	
1.	880 (31 >75	% Grass c	over, Good	, HSG B
0.	850	37 Brus	sh, Poor, H	ISG B	
1.	160	77 Woo	ods, Poor,	HSG C	
0.	390	77 Brus	sh, Poor, H	ISG C	
11.	710	74 Wei	ghted Avei	age	
	990	76.7	7% Pervio	us Area	
2.	720	23.2	3% Imperv	ious Area	
_					
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.7	150	0.0200	1.46		Sheet Flow, Sheet flow over paved area
					Smooth surfaces n= 0.011 P2= 3.07"
0.8	150	0.0260	3.27		Shallow Concentrated Flow, Shallow Concentrated Flow over pa
					Paved Kv= 20.3 fps
0.2	25	0.1600	2.00		Shallow Concentrated Flow, Shallow concentrated flow
- 4					Woodland Kv= 5.0 fps
5.4	200	0.0150	0.61		Shallow Concentrated Flow, Shallow Conc - Knotweed
20.7	440	0.0050	2.42		Woodland Kv= 5.0 fps
38.7	410	0.0050	0.18		Shallow Concentrated Flow, Shallow Conc - Dense woods
***************************************		n n n n n n n n n n n n n n n n n n n			Forest w/Heavy Litter Kv= 2.5 fps

Subcatchment 1S: Pre - Developed to POA

50.1

985 Total

HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Page 12

Summary for Subcatchment 2S: Post - Developed to POA

Runoff = 12.68 cfs @ 12.70 hrs, Volume=

2.199 af, Depth= 2.25"

Routed to nonexistent node 3P

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-yr Rainfall=4.86"

Area	(ac) C	N Des	cription		
2.	270 9	98 Pave	ed parking	, HSG B	
2.				over, Good,	, HSG B
4.	.640 6	66 Woo	ds, Poor, l	HSG B	
1.	.500 7	77 Woo	ds, Poor, l	HSG C	
0.	.600 9	98 Root	fs, HSG B		
11.	.710 7	74 Weig	ghted Aver	age :	
8.	.840		9% Pervio		
2.	.870	24.5	1% Imperv	ious Area	
		01		<u> </u>	
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.7	150	0.0200	1.46		Sheet Flow, Sheet Flow over pavement
					Smooth surfaces n= 0.011 P2= 3.07"
1.0	220	0.0300	3.52		Shallow Concentrated Flow, Shallow Concentrated Flow over pa
					Paved Kv= 20.3 fps
0.1	43	0.0100	5.70	7.00	•
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
		2 2 4 2 2			n= 0.012 Corrugated PP, smooth interior
0.2	72	0.0100	7.80	24.51	Pipe Channel, 24" HDCPE
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
47.4	500	0.0050	0.40		n= 0.012 Corrugated PP, smooth interior
47.1	500	0.0050	0.18		Shallow Concentrated Flow, Shallow Concentrated Heavy woods
delite and constraint			****		Forest w/Heavy Litter Kv= 2.5 fps

Prepared by Microsoft HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Page 13

Subcatchment 2S: Post - Developed to POA

Summary for Subcatchment 5S: Discharge Area to SWMB

Runoff

13.76 cfs @ 12.17 hrs, Volume=

1.125 af, Depth= 3.64"

Routed to Pond 4P: SWMB

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs NRCC 24-hr C 10-yr Rainfall=4.86"

	Area	(ac)	CN	Des	cription							
	2.	.180	98	Pave	ed parking	HSG B						
	0.	.930	61		>75% Grass cover, Good, HSG B							
	0.	.600	98		fs, HSG B		77.57					
	3.710 89 0.930 2.780			25.0	ghted Aver 7% Pervio 3% Imperv							
ú	Tc (min)	Lengti (feet		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description					
	10.0			711111			Direct Entry,					

Subcatchment 5S: Discharge Area to SWMB

Summary for Pond 4P: SWMB

Inflow Area = 3.710 ac, 74.93% Impervious, Inflow Depth = 3.64" for 10-yr event

Inflow = 13.76 cfs @ 12.17 hrs, Volume= 1.125 af

Outflow = 12.56 cfs @ 12.22 hrs, Volume= 0.991 af, Atten= 9%, Lag= 2.7 min

Primary = 12.56 cfs @ 12.22 hrs, Volume= 0.991 af

Routing by Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 29.86' @ 12.22 hrs Surf.Area= 5,349 sf Storage= 12,043 cf

Plug-Flow detention time= 133.7 min calculated for 0.990 af (88% of inflow)

Center-of-Mass det. time= 76.2 min (881.5 - 805.3)

Volume	Inv	ert Ava	il.Storage	Storage	Description	
#1	27.	00'	18,710 cf	Custom	Stage Data (Pris	smatic) Listed below
Elevatio		Surf.Area (sq-ft)		Store c-feet)	Cum.Store (cubic-feet)	
27.0	0	2,800		0	0	
27.5	0	3,220		1,505	1,505	
28.0	0	3,880		1,775	3,280	
28.5	0	4,440		2,080	5,360	
29.0	0	4,800		2,310	7,670	
29.5	0	5,120		2,480	10,150	
30.0	0	5,440		2,640	12,790	
30.5	0	5,920		2,840	15,630	
31.0	0	6,400		3,080	18,710	
Device	Routing	<u> </u>	vert Outl	et Device	es	
#1	Primary	28	Hea	d (feet) C	7/ Orifice, Cv= 2.6 0.00	

Primary OutFlow Max=12.31 cfs @ 12.22 hrs HW=29.85' (Free Discharge) 1=Custom Weir/Orifice (Weir Controls 12.31 cfs @ 2.59 fps)

HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Printed 12/1/2022 Page 16

Pond 4P: SWMB

935 Total

46.8

Printed 12/1/2022

HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Page 17

Summary for Subcatchment 1S: Pre - Developed to POA

Runoff 18.64 cfs @ 12.65 hrs, Volume= 3.083 af, Depth= 3.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs NRCC 24-hr C 25-yr Rainfall=5.97"

Area	(ac) C	N Des	cription		
2.	.280	98 Pave	ed parking	, HSG B	
0.	.440	98 Roo	fs, HSG B		
4.	.710		ds, Poor,		
				over, Good	, HSG B
			sh, Poor, H		
			ds, Poor,		
***************************************			h, Poor, H		
			ghted Aver		
	990		7% Pervio		
2.	720	23.2	3% Imper	ious Area	
Tc	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	Description
1.7	150	0.0200	1.46		Sheet Flow, Sheet flow over paved area
					Smooth surfaces n= 0.011 P2= 3.07"
0.8	150	0.0260	3.27		Shallow Concentrated Flow, Shallow Concentrated Flow over pa
					Paved Kv= 20.3 fps
0.2	25	0.1600	2.00		Shallow Concentrated Flow, Shallow concentrated flow
					Woodland Kv= 5.0 fps
5.4	200	0.0150	0.61		Shallow Concentrated Flow, Shallow Conc - Knotweed
00.7	440	0.0050	0.40		Woodland Kv= 5.0 fps
38.7	410	0.0050	0.18		Shallow Concentrated Flow, Shallow Conc - Dense woods
***************************************					Forest w/Heavy Litter Kv= 2.5 fps

Prepared by Microsoft
HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Printed 12/1/2022 Page 18

Subcatchment 1S: Pre - Developed to POA

50.1

985 Total

Page 19

Summary for Subcatchment 2S: Post - Developed to POA

Runoff 17.94 cfs @ 12.69 hrs, Volume= Routed to nonexistent node 3P

3.083 af, Depth= 3.16"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs NRCC 24-hr C 25-yr Rainfall=5.97"

Area	(ac) C	N Des	cription		
2.	.270	98 Pav	ed parking	, HSG B	
2.	.700 (over, Good	I, HSG B
		36 Wo	ods, Poor,	HSG B	
		77 Wo	ods, Poor,	HSG C	
0.	600 9	98 Roc	fs, HSG B		
			ghted Avei		
	840	75.4	9% Pervio	us Area	
2.	870	24.5	1% Imperv	ious Area	
_					
Tc	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	
1.7	150	0.0200	1.46		Sheet Flow, Sheet Flow over pavement
					Smooth surfaces n= 0.011 P2= 3.07"
1.0	220	0.0300	3.52		Shallow Concentrated Flow, Shallow Concentrated Flow over pa
- 4					Paved Kv= 20.3 fps
0.1	43	0.0100	5.70	7.00	
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
0.0	70	0.0400		_	n= 0.012 Corrugated PP, smooth interior
0.2	72	0.0100	7.80	24.51	Pipe Channel, 24" HDCPE
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
47 4	F00	0.0050	0.40		n= 0.012 Corrugated PP, smooth interior
47.1	500	0.0050	0.18		Shallow Concentrated Flow, Shallow Concentrated Heavy woods
					Forest w/Heavy Litter Kv= 2.5 fps

Subcatchment 2S: Post - Developed to POA

Prepared by Microsoft

HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Printed 12/1/2022 Page 21

Summary for Subcatchment 5S: Discharge Area to SWMB

Runoff = 17.54 cfs @ 12.17 hrs, Volume=

1.455 af, Depth= 4.71"

Routed to Pond 4P: SWMB

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs NRCC 24-hr C 25-yr Rainfall=5.97"

Area	(ac)	CN	Desc	cription					
2.	180	98	Pave	ed parking.	HSG B				
0.	930	61	>75%	6 Grass co	over, Good	HSG B			
0.	600	98	Roof	17/2 5 / 27					
3.	710	89	Weig	hted Aver	age				
0.	0.930			25.07% Pervious Area					
2.	780		74.9	3% Imperv	rious Area				
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
10.0				-1117 117 017		Direct Entry,			

Subcatchment 5S: Discharge Area to SWMB

Prepared by Microsoft

HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Printed 12/1/2022 Page 22

Summary for Pond 4P: SWMB

Inflow Area = 3.710 ac, 74.93% Impervious, Inflow Depth = 4.71" for 25-yr event

Inflow = 17.54 cfs @ 12.17 hrs, Volume= 1.455 af

Outflow = 16.23 cfs @ 12.21 hrs, Volume= 1.321 af, Atten= 7%, Lag= 2.5 min

Primary = 16.23 cfs @ 12.21 hrs, Volume= 1.321 af

Routing by Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 29.97' @ 12.21 hrs Surf.Area= 5,423 sf Storage= 12,653 cf

Plug-Flow detention time= 115.0 min calculated for 1.320 af (91% of inflow)

Center-of-Mass det. time= 67.7 min (865.2 - 797.4)

<u>Volume</u>	lnv	<u>ert</u> Ava	il.Storage	Storage	Description		
#1	27.0	00'	18,710 cf	Custom	Stage Data (Pris	matic) Listed below	
Elevatio		Surf.Area (sq-ft)		:Store c-feet)	Cum.Store (cubic-feet)		
27.0		2,800	(cubi	0			
27.5		3,220		1,505	0 1,505		
28.0		3,880		1,775	3,280		
28.5	50	4,440		2,080	5,360		
29.0		4,800		2,310	7,670		
29.5		5,120		2,480	10,150		
30.0		5,440		2,640	12,790		
30.5		5,920		2,840	15,630		
31.0	00	6,400		3,080	18,710		
Device	Routing	In	vert Outle	et Device	S		
#1	Primary	28			/Orifice, Cv= 2.62	•	

Width (feet) 0.50 0.50 8.00 8.00 12.00 12.00

Primary OutFlow Max=15.94 cfs @ 12.21 hrs HW=29.97' (Free Discharge) 1=Custom Weir/Orifice (Weir Controls 15.94 cfs @ 2.81 fps)

Prepared by Microsoft HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Page 23

Pond 4P: SWMB

<u>Page 24</u>

Summary for Subcatchment 1S: Pre - Developed to POA

Runoff

46.8

935 Total

23.02 cfs @ 12.64 hrs, Volume=

3.800 af, Depth= 3.89"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs NRCC 24-hr C 50-yr Rainfall=6.83"

Area	(ac) C	N Des	cription		
2.	.280	98 Pav	ed parking	, HSG B	
0.	440	98 Roo	fs, HSG B		
			ds, Poor,	HSG B	
			% Grass c	over, Good	, HSG B
			sh, Poor, H		
			ds, Poor,		
***************************************			sh, Poor, H		
			ghted Aver		
	990		7% Pervio		
2.	720	23.2	3% Imper	ious Area	
Tc	Length	Slope	Velocity	Canacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	Capacity (cfs)	Description
1.7	150	0.0200	1.46	(013)	Shoot Flow Shoot flow over and and
1.1	100	0.0200	1.40		Sheet Flow, Sheet flow over paved area Smooth surfaces n= 0.011 P2= 3.07"
0.8	150	0.0260	3.27		Shallow Concentrated Flow, Shallow Concentrated Flow over pa
			J,		Paved Kv= 20.3 fps
0.2	25	0.1600	2.00		Shallow Concentrated Flow, Shallow concentrated flow
					Woodland Kv= 5.0 fps
5.4	200	0.0150	0.61		Shallow Concentrated Flow, Shallow Conc - Knotweed
					Woodland Kv= 5.0 fps
38.7	410	0.0050	0.18		Shallow Concentrated Flow, Shallow Conc - Dense woods
					Forest w/Heavy Litter Kv= 2.5 fps

Page 25

Subcatchment 1S: Pre - Developed to POA

50.1

985 Total

Page 26

Summary for Subcatchment 2S: Post - Developed to POA

Runoff = 22.15 cfs @ 12.68 hrs, Volume=

3.800 af, Depth= 3.89"

Routed to nonexistent node 3P

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs NRCC 24-hr C 50-yr Rainfall=6.83"

Area	(ac) C	N Des	cription		
2.	.270	98 Pav	ed parking	, HSG B	
2.	.700			over, Good	, HSG B
4.	.640		ods, Poor,		,
1.	.500	77 Woo	ods, Poor,	HSG C	
0.	600	98 Roo	fs, HSG B		
11.	710	74 Wei	ghted Avei	rage	
8.	840		9% Pervio		
2.	870			ious Area	
			•		
Тс	Length	Slope	Velocity	Capacity	Description
<u>(min)</u>	(feet)	(ft/ft)	(ft/sec)	(cfs)	'
1.7	150	0.0200	1.46		Sheet Flow, Sheet Flow over pavement
					Smooth surfaces n= 0.011 P2= 3.07"
1.0	220	0.0300	3.52		Shallow Concentrated Flow, Shallow Concentrated Flow over pa
					Paved Kv= 20.3 fps
0.1	43	0.0100	5.70	7.00	
					15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
					n= 0.012 Corrugated PP, smooth interior
0.2	72	0.0100	7.80	24.51	Pipe Channel, 24" HDCPE
					24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
					n= 0.012 Corrugated PP, smooth interior
47.1	500	0.0050	0.18		Shallow Concentrated Flow, Shallow Concentrated Heavy woods
					Forest w/Heavy Litter Kv= 2.5 fps

Prepared by Microsoft
HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Printed 12/1/2022 Page 27

Subcatchment 2S: Post - Developed to POA

Summary for Subcatchment 5S: Discharge Area to SWMB

Runoff = 20.46 cfs @ 12.17 hrs, Volume=

1.713 af, Depth= 5.54"

Routed to Pond 4P: SWMB

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs NRCC 24-hr C 50-yr Rainfall=6.83"

Area	(ac)	CN	Des	cription			
2.	180	98	Pave	ed parking	HSG B	14-514	
0.	.930	61	>759	6 Grass co	over, Good	, HSG B	
0.	600	98	Roo	s, HSG B	100000		
3.	710	89	Weig	hted Aver	age		
0.	930			7% Pervio			
2.	780		74.9	3% Imperv	rious Area		
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
10.0	1.00	-/-	(1.1.11)	(1.000)	(0.0)	Direct Entry,	

Subcatchment 5S: Discharge Area to SWMB

Prepared by Microsoft

HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Printed 12/1/2022 Page 29

Summary for Pond 4P: SWMB

Inflow Area = 3.710 ac, 74.93% Impervious, Inflow Depth = 5.54" for 50-yr event

Inflow = 20.46 cfs @ 12.17 hrs, Volume= 1.713 af

Outflow = 18.98 cfs @ 12.21 hrs, Volume= 1.580 af, Atten= 7%, Lag= 2.5 min

Primary = 18.98 cfs @ 12.21 hrs, Volume= 1.580 af

Routing by Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 30.05' @ 12.21 hrs Surf.Area= 5,493 sf Storage= 13,101 cf

Plug-Flow detention time= 104.5 min calculated for 1.578 af (92% of inflow)

Center-of-Mass det. time= 63.0 min (855.5 - 792.5)

Volume	Inv	vert Avai	il.Storage	Storage	Description	
#1	27.	.00'	18,710 cf	Custom	Stage Data (Pri	ismatic) Listed below
Elevatio		Surf.Area (sq-ft)		.Store c-feet)	Cum.Store (cubic-feet)	
27.0	00	2,800		0	Ó	
27.5	50	3,220		1,505	1,505	
28.0	00	3,880		1,775	3,280	
28.5		4,440		2,080	5,360	
29.0		4,800		2,310	7,670	
29.5		5,120		2,480	10,150	
30.0		5,440		2,640	12,790	
30.5		5,920		2,840	15,630	
31.0	00	6,400		3,080	18,710	
Device	Routing		vert Outle	et Device:	S	
#1	Primary	28	Head	d (feet) 0	Orifice, Cv= 2.6 .00 0.70 0.70 2 0.50 0.50 8.00	52 (C= 3.28) 2.00

Primary OutFlow Max=18.68 cfs @ 12.21 hrs HW=30.05' (Free Discharge) 1=Custom Weir/Orifice (Weir Controls 18.68 cfs @ 2.96 fps)

HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Page 30

Pond 4P: SWMB

46.8

935 Total

HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Page 31

Summary for Subcatchment 1S: Pre - Developed to POA

Runoff = 27.42 cfs @ 12.64 hrs, Volume=

4.528 af, Depth= 4.64"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-yr Rainfall=7.68"

Area ((ac) C	N Desc	cription			
2.	280 9	8 Pave	ed parking.	, HSG B		
0.4	440 9	8 Roof	s, HSG B			
4.	710 6	i6 Woo	ds, Poor, I	HSG B		
1.8					, HSG B	

			_	_		
2.	720	23.2	3% Imperv	/lous Area		
То	Longth	Slono	Volocity	Canacity	Description	
	_	•	•		Description	
				(010)	Sheet Flow Sheet flow over payed area	
1.7	150	0.0200	1.40			
0.8	150	0.0260	3 27			na
0.0	100	0.0200	0.27		· · · · · · · · · · · · · · · · · · ·	۳.
0.2	25	0.1600	2.00		•	
					Woodland Kv= 5.0 fps	
5.4	200	0.0150	0.61		Shallow Concentrated Flow, Shallow Conc - Knotweed	
					Woodland Kv= 5.0 fps	
38.7	410	0.0050	0.18		Shallow Concentrated Flow, Shallow Conc - Dense woods	
	· · · · · · · · · · · · · · · · · · ·				Forest w/Heavy Litter Kv= 2.5 fps	
	2.3 0.4 1.3 0.3 11. 8.9 2. Tc (min) 1.7 0.8 0.2 5.4	2.280 9 0.440 9 4.710 6 1.880 6 0.850 6 1.160 7 0.390 7 11.710 7 8.990 2.720 Tc Length (min) (feet) 1.7 150 0.8 150 0.2 25 5.4 200	2.280 98 Pave 0.440 98 Roof 4.710 66 Woo 1.880 61 >75% 0.850 67 Brus 1.160 77 Woo 0.390 77 Brus 11.710 74 Weig 8.990 76.7 2.720 23.25 Tc Length Slope (min) (feet) (ft/ft) 1.7 150 0.0200 0.8 150 0.0260 0.2 25 0.1600 5.4 200 0.0150	2.280 98 Paved parking, 0.440 98 Roofs, HSG B 4.710 66 Woods, Poor, I 1.880 61 >75% Grass co 0.850 67 Brush, Poor, I 1.160 77 Woods, Poor, I 0.390 77 Brush, Poor, I 11.710 74 Weighted Aver 8.990 76.77% Pervio 2.720 23.23% Imperv Tc Length Slope Velocity (min) (feet) (ft/ft) (ft/sec) 1.7 150 0.0200 1.46 0.8 150 0.0260 3.27 0.2 25 0.1600 2.00 5.4 200 0.0150 0.61	2.280 98 Paved parking, HSG B 0.440 98 Roofs, HSG B 4.710 66 Woods, Poor, HSG B 1.880 61 >75% Grass cover, Good 0.850 67 Brush, Poor, HSG B 1.160 77 Woods, Poor, HSG C 0.390 77 Brush, Poor, HSG C 11.710 74 Weighted Average 8.990 76.77% Pervious Area 2.720 23.23% Impervious Area Tc Length Slope Velocity Capacity (min) (feet) (ft/ft) (ft/sec) (cfs) 1.7 150 0.0200 1.46 0.8 150 0.0260 3.27 0.2 25 0.1600 2.00 5.4 200 0.0150 0.61	2.280

Prepared by Microsoft HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Page 32

Subcatchment 1S: Pre - Developed to POA

Printed 12/1/2022

<u>Page 33</u>

Summary for Subcatchment 2S: Post - Developed to POA

Runoff = 26.39 cfs @ 12.68 hrs, Volume=

4.528 af, Depth= 4.64"

Routed to nonexistent node 3P

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-yr Rainfall=7.68"

-	Area	(ac) C	N Des	cription		
	2.	270 9	98 Pave	ed parking	, HSG B	
	2.	700 6	31 >75°	% Ġrass c	over, Good,	, HSG B
	4.	640	36 Woo	ds, Poor,	HSG B	
	1.	500	77 Woo	ds, Poor,	HSG C	
divisions	0.	600 9	98 Roo	fs, HSG B		
	11.	710	74 Wei	ghted Aver	age	
	8.	840	75.4	9% Pervio	us Area	
	2.	870	24.5	1% Imper	∕ious Area	
	Тс	Length	Slope		Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	1.7	150	0.0200	1.46		Sheet Flow, Sheet Flow over pavement
						Smooth surfaces n= 0.011 P2= 3.07"
	1.0	220	0.0300	3.52		Shallow Concentrated Flow, Shallow Concentrated Flow over pa
	0.4	40	0.0400	= -0	w	Paved Kv= 20.3 fps
	0.1	43	0.0100	5.70	7.00	,
						15.0" Round Area= 1.2 sf Perim= 3.9' r= 0.31'
	0.0	70	0.0400	7.00	04.54	n= 0.012 Corrugated PP, smooth interior
	0.2	72	0.0100	7.80	24.51	Pipe Channel, 24" HDCPE
						24.0" Round Area= 3.1 sf Perim= 6.3' r= 0.50'
	47 1	E00	0.0050	0.10		n= 0.012 Corrugated PP, smooth interior
	47.1	500	0.0050	0.18		Shallow Concentrated Flow, Shallow Concentrated Heavy woods
	<i>F</i> 0.4	005	T-1-1		***************************************	Forest w/Heavy Litter Kv= 2.5 fps
	50.1	985	Total			

Prepared by Microsoft
HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Page 34

Subcatchment 2S: Post - Developed to POA

86-16 - St Pauls Church

Prepared by Microsoft

HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Page 35

Summary for Subcatchment 5S: Discharge Area to SWMB

Runoff = 23.33 cfs @ 12.17 hrs, Volume=

1.970 af, Depth= 6.37"

Routed to Pond 4P: SWMB

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs NRCC 24-hr C 100-yr Rainfall=7.68"

Area	(ac)	CN	Desc	cription			
2.	180	98	Pave	ed parking.	HSG B	Total 2	
0.	930	61	>759	6 Grass co	over, Good	HSG B	
0	.600	98	Root	s, HSG B	11000 011000	117.7	
3.	710	89	Weig	ghted Aver	age		
0.	930		25.0	7% Pervio	us Area		
2.	780		74.9	3% Imperv	rious Area		
Tc (min)	Leng (fee		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
10.0			- 111 - 11			Direct Entry,	

Subcatchment 5S: Discharge Area to SWMB

HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Page 36

Summary for Pond 4P: SWMB

Inflow Area = 3.710 ac, 74.93% Impervious, Inflow Depth = 6.37" for 100-yr event

Inflow 23.33 cfs @ 12.17 hrs, Volume= 1.970 af

Outflow 21.71 cfs @ 12.21 hrs, Volume= 1.836 af, Atten= 7%, Lag= 2.4 min

21.71 cfs @ 12.21 hrs, Volume= 1.836 af Primary =

Routing by Stor-Ind method, Time Span= 1.00-48.00 hrs, dt= 0.05 hrs Peak Elev= 30.13' @ 12.21 hrs Surf.Area= 5,566 sf Storage= 13,535 cf

Plug-Flow detention time= 96.3 min calculated for 1.835 af (93% of inflow)

Center-of-Mass det. time= 59.2 min (847.7 - 788.5)

Volume	Inv	ert Ava	l.Storage	Storage	Description	
#1	27.	00'	18,710 cf	Custom	Stage Data (Pris	smatic) Listed below
pour 1		0 6 4		0.1	0 0	
Elevatio		Surf.Area		.Store	Cum.Store	
(fee	<u>t)</u>	(sq-ft)	(cubi	c-feet)	(cubic-feet)	
27.0	0	2,800		0	0	
27.5	0	3,220		1,505	1,505	
28.0	0	3,880		1,775	3,280	
28.5	0	4,440		2,080	5,360	
29.0	0	4,800		2,310	7,670	
29.5	0	5,120		2,480	10,150	
30.0	0	5,440		2,640	12,790	
30.5	0	5,920		2,840	15,630	
31.0	0	6,400		3,080	18,710	
Device	Routing	In	vert Outl	et Device	es	
#1	Primary	28	Hea	d (feet) (r/ Orifice, Cv= 2.62 0.00	

Primary OutFlow Max=21.39 cfs @ 12.21 hrs HW=30.12' (Free Discharge) 1=Custom Weir/Orifice (Weir Controls 21.39 cfs @ 3.09 fps)

Prepared by Microsoft
HydroCAD® 10.10-6a s/n 08967 © 2020 HydroCAD Software Solutions LLC

Page 37

Pond 4P: SWMB

APPENDIX D

RUNOFF AND VOLUME CALCULATIONS RATIONAL METHOD

DRAINAGE AREAS

<u>DA 1</u>

Total Area = 0.56

Impervious Area = 0.48

Grass Area = 0.08

Weighted Cimp = (0.48)(0.90) + (0.08)(0.3) = 0.81

0.56

Tc = 5 min AI = (0.56)(0.81) = 0.45

<u>DA 3</u>

Total Area = 0.06

Impervious Area = 0.04

Grass Area = 0.02

Weighted Cimp = $\underline{(0.04)(0.90) + (0.02)(0.3)} = 0.70$

0.06

Tc = 5 min AI = (0.06)(0.70) = 0.04

DA 5

Total Area = 0.38

Impervious Area = 0.24

Grass Area = 0.14

Weighted Cimp = $\underline{(0.24)(0.90) + (0.14)(0.3)} = 0.68$

0.38

Tc = 5 min AI = (0.38)(0.68) = 0.26

DA 6

Total Area = 0.87

Impervious Area = 0.60

Grass Area = 0.27

Weighted Cimp = (0.60)(0.90) + (0.27)(0.3) = 0.71

0.87

Tc = 5 min AI = (0.87)(0.71) = 0.62

DRAINAGE AREAS

DA B

Total Area = 0.50

Impervious Area = 0.33

Grass Area = 0.17

Weighted Cimp = $\underline{(0.33)(0.90) + (0.17)(0.3)} = 0.70$

0.50

Tc = 5 min AI = (0.50)(0.70) = 0.35

DA9

Total Area = 0.05

Impervious Area = 0.04

Grass Area = 0.01

Weighted Cimp = (0.04)(0.90) + (0.01)(0.3) = 0.78

0.05

Tc = 5 min AI = (0.05)(0.78) = 0.04

DA 10

Total Area = 0.08

Impervious Area = 0.07

Grass Area = 0.01

Weighted Cimp = (0.07)(0.90) + (0.01)(0.3) = 0.83

80.0

Tc = 5 min AI = (0.08)(0.83) = 0.07

DA 11

Total Area = 0.32

Impervious Area = 0.20

Grass Area = 0.12

Weighted Cimp = (0.20)(0.90) + (0.12)(0.3) = 0.68

0.32

Tc = 5 min AI = (0.32)(0.68) = 0.22

DRAINAGE AREAS

DA 12

Total Area = 0.09

Impervious Area = 0.03

Grass Area = 0.06

Weighted Cimp = (0.03)(0.90) + (0.06)(0.3) = 0.50

0.09

Tc = 5 min AI = (0.09)(0.50) = 0.05

DA 13

Total Area = 0.15

Impervious Area = 0.12

Grass Area = 0.03

Weighted Cimp = (0.12)(0.90) + (0.03)(0.3) = 0.78

0.15

Tc = 5 min AI = (0.15)(0.78) = 0.12

DA YD 1

Total Area = 0.02

Impervious Area = 0.01

Grass Area = 0.01

Weighted Cimp = (0.01)(0.90) + (0.01)(0.3) = 0.600.02

Tc = 5 min AI = (0.02)(0.6) = 0.01

DA YD 2

Total Area = 0.03

Impervious Area = 0.02

Grass Area = 0.01

Weighted Cimp = (0.02)(0.90) + (0.01)(0.3) = 0.70

0.03

Tc = 5 min AI = (0.03)(0.70) = 0.02

STMH 8

Total Area from roof drains = 0.55

Tc = 6 min AI = (0.9)(0.55) = 0.50

MEGSON, HEAGLE & FRIEND Civil Engineers & Land Surveyors, LLC 81 Rankin Road Glastonbury, Connecticut 06033 (860) 659-0587 SCALE . RUNOPTS TO ELLY CATCURACIN 10 9R FREDUEIXY SORM RAN FAUL NITEUSITY FOR 10 KR STORM CHORA ATUS 14 - VOL 10 N3 6MN = 7.0 5 MIN = 7.4 7 MIN = 6.6 QU TO CRI (0,45)(7.4 3 33 CFG Quo TO CB3 (0.04)(7.4) 0, 29 CFS Qu to as 5 (O.Z.)(10) = 1,92 CFS CR6 4.09 CFS (0.62)(66) HOLE (0,01)(7,4) 0.07 CFS Q 10 TO (0.02)(7.4)= = 5 OP OT O, D OIS CES FROM POOF Quo to SMH8= 3.50 CFS (a. sp)(7 0) = CB9 = 030 LFS (0,04) (1.4) Qin to (0.07) (17.4) O,SZ CFS TO CB 10 = TO CE 11 = (D 22 (T.A) 1,63 CFS (0,05) (T.A) TO CB 17 = 0 37 4FS A3 12 (0,12) (T.A) 0.89 aFS

CHECKED BY

APPENDIX E

GLATONBURY/HARTFORD, CT NOAA ATLAS 14 PRECIPITATION ESTIMATES

NOAA Atlas 14, Volume 10, Version 2 Location name: Glastonbury Town of, Connecticut, USA* Latitude: 41.7208°, Longitude: -72.6166°

Itude: 41.7208°, Longitude: -72.6
Elevation: 28.37 ft**

, *source: ESRI Maps

**source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laureni, Carl Trypeluk, Dale Unruh, Orian Withite

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

Duration				Average	recurrence	interval (y	ears)			
Duranon	1	2	5	10	25	50	100	200	500	1000
5-min	0.331 (0.264-0.414)	0.404 (0.321-0.505)	0.522 (0.414-0.656)	0.621 (0.489-0.785)	0.757 (0.575-1.00)	0.861 (0.639-1.17)	0.966 (0.694-1.37)	1.10 (0.743-1.59)	1,27 (0,824-1,91)	1.40
10-min	0.469 (0.374-0.586)	0.572 (0.455-0.715)	0.740 (0.587-0.929)	0.880 (0.693-1.11)	1.07 (0.814-1.42)	1.22 (0.906-1.66)	1.37 (0.983-1.93)	1.55 (1.05-2.25)	1,80 (1,17-2,71)	1.98
16-min	0.552 (0.440-0.689)	0.673 (0.535-0.842)	0.871 (0.690-1.09)	1.03 (0.815-1.31)	1.26 (0.958-1.67)	1.44 (1.07-1.95)	1.61 (1.16-2.27)	1.83 (1.24-2.65)	2,11 (1.37-3,18)	2,33 (1,48-3,59
30-min	0.741 (0.5910.926)	0.904 (0.719-1.13)	1.17 (0.928-1.47)	1,39 (1,10-1,76)	1.70 (1.29-2.26)	1.93 (1.43-2.62)	2.17 (1.56-3.06)	2.46 (1.67-3.56)	2.84 (1.85-4.28)	3.14
60-min	0.931 (0.742-1.16)	1.14 (0.904-1.42)	1.47 (1.17-1.85)	1.75 (1.38-2.21)	2,13 (1.62-2,83)	2.43 (1.80-3.29)	2.72 (1.96-3.84)	3.09 (2.09-4,48)	3.57 (2.32-5,38)	3.94
2-hr	1.22 (0.976-1.51)	1.48 (1.18-1.83)	1.90 (1.51-2.37)	2.25 (1.78-2.82)	2.73 (2.09-3.61)	3.10 (2.32-4.20)	3.48 (2.52-4.91)	3.99 (2.71-5.74)	4.66 (3.03-6.97)	5.17 (3.28-7.90
3-hr	1.41 (1.13-1.74)	1.70 (1.37-2.11)	2.19 (1.75-2.72)	2.59 (2.06-3.24)	3,14 (2.41-4.14)	3.57 (2.68-4.82)	3,99 (2.92-5.64)	4.60 (3.14-6.61)	5.40 (3.53-8.06)	6.01
6-hr	1.76 (1.42-2.16)	2.13 (1.72-2.62)	2,74 (2,21-3,39)	3,25 (2.60-4.04)	3,95 (3,06-5,18)	4.49 (3.40-6.04)	5.03 (3.70-7.08)	5.82 (3.98-8,31)	6.87 (4.50-10.2)	7.67 (4.89-11.
12-hr	2.13	2.60	(2.72 4.44)	(3.23.4.00)	4.90	5.58	6.26	7.28 (4.99–10.3)	8.62 (5.66-12.7)	9,64 (6.17-14,
24-hr	2.48 (2.03-3.01)	3.08 (2.52-3.74)	4.05 (3.30-4.94)	4,86 (3.94-5.96)	5.97 (4.68-7.75)	6.83 (5.24–9.11)	7.68 (5.74-10.8)	9.04 (6.23-12.7)	10.8 (7.14-15.9)	12.2 (7.83-18.
2-day	(2,33-3,40)	(2.93-4.29)	(3.91-5.76)	(4.69-7.01)	(5.63-9.23)	(6.34-10.9)	(6.99-13.0)	11.1 (7.65-15.5)	13.5 (8.92-19.6)	15.3 (9.88-22.
3-day	3.07 (2.55-3.69)	3.88 (3.21-4.66)	5.20 (4.29-6.28)	6.30 (5.16-7.65)	7.81 (6.20-10.1)	8.97 (6.98-11.9)	10.1 (7.70-14.2)	12.2 (8.44-17.0)	14.9 (9.88-21.6)	17.0 (11.0-25.
4-day	3.28 (2.73-3.93)	4.14 (3.44-4.97)	5.55 (4.58-6.67)	6.71 (5.51-8.12)	8.31 (6.61-10.7)	9.55 (7.45-12.7)	10.8 (8.21-15.1)	13.0 (9.00-18.1)	15.9 (10.5-22.9)	18.1 (11.7-26,
7-day	3.85 (3.22-4.59)	4.80 (4.01-5.73)	6.36 (5.28-7.61)	7,65 (6.31-9,21)	9.43 (7.52-12.1)	10.8 (8.44-14.2)	12.2 (9.26-16.9)	14,5 (10,1-20,1)	17.6 (11.7-25.3)	20.0 (12.9-29.
10-day	4.44 (3.72-5.27)	5.44 (4.56-6.47)	7.08 (5.90-8.44)	8.43 (6.98-10.1)	10.3 (8.23-13.1)	11.7 (9.18-15.3)	13.2 (10.0-18.1)	15.5 (10.8-21.4)	18.7 (12.4-26.7)	21.0 (13.6-30.
20-day	6.38 (5.39-7.52)	7.44 (6.27-8.78)	9.17 (7.70–10.9)	10.6 (8.84-12.6)	12.6 (10.1-15.7)	14.1 (11.0-18.1)	15.6 (11.8-20.9)	17.8 (12.5-24.3)	20.6 (13.8-29.2)	22.8 (14.8-33,
30-day	8.06 (6.83-9.47)	9.15 (7.74–10.8)	10.9 (9.20~12.9)	12.4 (10.4-14.7)	14.4 (11.6-17.9)	16,0 (12.5-20,3)	17.6 (13.2-23.2)	19.5 (13.7-26.5)	22.0 (14.8-31.1)	24.0 (15.6-34.
45-day	10.2 (8.66-11.9)	11.3 (9.60–13.2)	13.1 (11.1-15.5)	14.7 (12.3-17.4)	16.8 (13.5-20.6)	18.4 (14.4-23.1)	20.0 (15.0-26.0)	21.7 (15.4-29.3)	23,9 (16.1-33,6)	25.6 (16.7-36.
60-day	12.0 (10.2~13.9)	13.1 (11.2-15.3)	15.0 (12.8–17.6)	16.6 (14.0-19.6)	18.8 (15.1-23.0)	20.5	22.2	23.7 (16.8-31.8)	25.7 (17.4-35.8)	27.2 (17.8-38.

1 Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

NOAA Atlas 14, Volume 10, Version 3 Location name: Hartford, Connecticut, USA* Latitude: 41.7333°, Longitude: -72.65° Elevation: 11.11 ft**

source: ESRI Maps source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sandra Pavlovic, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Orlan Wilhite NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

Duration				Avera	ige recurrer	ce interval	(years)			
	1	2	5	10	25	50	100	200	500	1000
5-min	3.97 (3.18-4.96)	4.85 (3.86-6.05)	6.26 (4.98-7.86)	7.44 (5.88-9.38)	9.06 (6.90-12.0)	10.3 (7.64-14.0)	11.6 (8.32-16.3)	13.0 (8.81-18.8)	15.0 (9.78-22.7)	16.7 (10.6-25.8
10-min	2.81 (2.25-3.51)	3.43 (2.74-4.28)	4.44 (3.53-5.57)	5.27 (4.17-6.65)	6.42 (4.89-8.50)	7.28 (5.42-9.88)	8,19 (5.89-11.6)	9.20 (6.25-13.4)	10.7 (6.92-16.1)	11.8 (7.50-18.3
15-min	2.21 (1.76-2.75)	2.69 (2.15-3.36)	3.48 (2.77-4.36)	4.14 (3.27-5.22)	5.04 (3.84-6.67)	5.72 (4.25-7.75)	6.42 (4.62-9.07)	7.22 (4.90-10.5)	8.36 (5.43-12.6)	9.29 (5.88-14.3
30-min	1.48 (1.19-1.85)	1.81 (1.44-2.26)	2.34 (1.86-2.93)	2.78 (2.20-3.51)	3.39 (2.58-4.49)	3.85 (2.86-5.22)	4.32 (3.11-6.11)	4.86 (3.30-7.05)	5.63 (3.66-8.49)	6.26 (3.96-9.65
60-min	0.931 (0.744-1.16)	1.14 (0.907-1.42)	1.47 (1.17-1.84)	1.75 (1.38-2.20)	2.13 (1.62-2.82)	2.42 (1.80-3.28)	2.72 (1.96-3.84)	3.06 (2.07-4.43)	3.54 (2.30-5.34)	3.93 (2.49-6.07
2-hr	0.608 (0.490-0.754)	0.738 (0.593-0.915)	0.949 (0.760-1.18)	1.12 (0.894-1.41)	1.37 (1.05-1.80)	1.55 (1.16-2.09)	1.74 (1.26-2.46)	1.97 (1.34-2.83)	2.30 (1.50-3.45)	2.58 (1.64-3.96
3-hr	0.468 (0.378-0.577)	0.567 (0.457-0.700)	0.728 (0.585-0.903)	0.862 (0.688-1.08)	1.05 (0.807-1.38)	1.18 (0.893-1.60)	1.33 (0.974-1.88)	1.51 (1.03-2.17)	1.78 (1.16-2.65)	2.01 (1.27-3.06
6-hr	0.293 (0.238-0.359)	0.356 (0.289-0.437)	0.458 (0.371-0.565)	0.543 (0.437-0.674)	0.661 (0.513-0.865)	0.747 (0.567-1.00)	0.841 (0.620-1.19)	0.956 (0.655-1.37)	1.13 (0.742-1.68)	1.29 (0.820-1.95
12-hr	0.176 (0.144-0.214)	0.215 (0.176-0.263)	0.280 (0.228-0.343)	0.334 (0.270-0.411)	0.408 (0.318-0.531)	0.462 (0.353-0.618)	0.521 (0.386-0.731)	0.595 (0.408-0.844)	0.708 (0.465-1.04)	0.805 (0.515-1.21
24-hr	0.103 (0.085-0.124)	0.128 (0.105-0.155)	0.169 (0.138-0.205)	0.203 (0.165-0.248)	0.250 (0.196-0.324)	0.284 (0.219-0.379)	0.322 (0.241-0.451)	0.370 (0.255-0.522)	0.447 (0.294-0.655)	0.514 (0.330-0.76
2-day	0.058 (0.048-0.070)	0.074 (0.061-0.089)	0.099 (0.082-0.120)	0.120 (0.098-0.146)	0.149 (0.118-0.193)	0.170 (0.132-0.227)	0.194 (0.147-0.273)	0.225 (0.156-0.316)	0.277 (0.183-0.404)	0.324 (0.209-0.48
3-day	0.042 (0.035-0.051)	0.054 (0.045-0.064)	0.072 (0.060-0.087)	0.088 (0.072-0.106)	0.109 (0.087-0.141)	0.124 (0.097-0.166)	0.142 (0.108-0.199)	0.165	0.205	0.240
4-day	0.034 (0.028-0.041)	0.043 (0.036-0.051)	0.058 (0.048-0.069)	0.070 (0.058-0.085)	0.087 (0.069-0.112)	0.099	0.113 (0.086-0.159)	0.132	0.163	0.191
7-day	0.023 (0.019-0.027)	0.029 (0.024-0.034)	0.038 (0.032-0.045)	0.046 (0.038-0.055)	0.056 (0.045-0.072)	0.064	0.073	0.085	0.104	0.121
10-day	0.018	0.023	0.030 (0.025-0.035)	0.035	0.043	0.049	0.055	0.064	0.077	0.080
20-day	0.013	0.015	0.019 (0.016-0.023)	0.022	0.026	0.029	0.033	0.037	0.043 (0.029-0.061)	0.048
30-day	0.011	0.013	0.015 (0.013-0.018)	0.017	0.020	0.022	0.024	0.027	0.031 (0.021-0.043)	0.034
45 day	0.009	0.010	0.012 (0.010-0.014)	0.014	0.016	0.017	0.019	0.020	0.022 (0.015-0.031)	0.024
veb-08	0.008	0.009	0.010	0.012	0.013	0.014	0.015	0.017	0.018 (0.012-0.025)	0.010

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

PF graphical

PDS-based intensity-duration-frequency (IDF) curves Latitude: 41.7333°, Longitude: -72.6500°

NOAA Atlas 14, Volume 10, Version 3

Created (GMT): Tue Nov 29 17:33:26 2022

Back to Top

Maps & aerials

Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

APPENDIX F Hydroflow REPORT FOR PIPE SIZING

Hydraflow Storm Sewers 2005

Storm Sewer Inventory Report

Line		ΙΨ	Alignment			Flow Data	Data					Physical Data	il Data				Line ID
	Dnstr line No.	Line length (ft)	Defi angle (deg)	Junc type	Known Q (cfs)	Drng area (ac)	Runoff coeff (C)	Inlet time (min)	Invert El Dn (ft)	Line slope (%)	Invert EI Up (ft)	Line size (in)	Line type	N value (n)	J-loss coeff (K)	Inlet/ Rim El (ft)	
τ-	End	73.0	0.0	Grate	0.29	0.00	00:00	0.0	27.48	0.60	27.92	30	Cir	0.012	0.50	32.25	FL End 4 to CB 3
2	~	0.99	-1.0	Curb	00.00	00.00	00:00	0.0	27.92	0.50	28.25	24	ö	0.012	1.77	34.10	CB 3 to CB 2
ო	7	176.0	99.0	Curb	3.33	00.00	0.00	0.0	28.25	0.50	29.13	18	ċ	0.012	1.49	33.00	CB 2 to CB 1
4	2	92.0	28.0	MH	3.72	0.00	0.00	0.0	28.25	0.50	28.71	15	Ċ	0.012	1.00	36.00	CB 2 to MH 8
5	ო	47.0	-81.0	Curb	0.52	00:00	0.00	0.0	29.13	0.51	29.37	15	ö	0.012	09:0	33.50	CB1 to CB 10
9	5	76.0	8.0	Curb	0.30	0.00	0.00	0.0	29.37	1.20	30.28	15	ö	0.012	0.62	33.00	CB 10 to CB 9
2	9	96.0	-21.0	Curb	0.89	00.00	0.00	0.0	30.28	5.60	35.66	15	ij	0.012	0.54	00.00	CB 9 to CB 13
∞	۷	135.0	-18.0	Curb	0.37	0.00	0.00	0.0	35.66	4.30	41.47	15	Ċ	0.012	1.46	00.00	CB 13 to CB 12
86-16 S	86-16 St Pauls Church	ıurch										Number	Number of lines: 8			Date: 12	12-01-2022
										AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA							Hydraflow Storm Sewers 2005

Elev. (ft)

APPENDIX G WATER QUALITY VOLUME CALCULATIONS

WQV CALCULATIONS

The WQV for the SWMB is calculated as follows:

WGV = (1")(R)(A)/12

Where:

R = 0.05 + 0.009(I)

I = % Impervious Cover

A = Area in Acres

A = 11.71 AC

Impervious area = 2.87 AC

I = 2.87/11.71 = 24.5%

R = 0.05 + 0.009(24.5) = 0.271

WQV = (1")(11.71)(0.271)/12 = 0.264 ac-ft = 11,500 CF

Existing site is > 40% impervious so qualifies under redevelopment. Therefore, system is designed to retain 50% of the WQV.

(11,500 CF)(0.5) = 5750 CF

This volume is achieved at elevation 28.6

APPENDIX H DRAINAGE AREAS MAP – PROPOSED INLET AREAS

<u>LEGEND</u> EXISTING TELECOMMUNICATION /PRIMARY ELECTRIC MS4 INFORMATION DIRECTLY CONNECTED IMPERVIOUS COVER COVER EXISTING LIGHT POLE PRE-DEVELOPMENT - 1600 SF POST-DEVELOPMENT - 1600 SF EXISTING FORCE MAIN PROPOSED BIT/CONC CURBING PROPOSED TREELINE POROPOSED H.C. PARKING SIGN PROPOSED UNDERDRAIN PROPOSED EXPLORATORY PROPOSED BIKE RACK PROPOSED SPOT ELEV. N/F
THE GLASTONBURY INTERFAITH
HOUSING CORPORATION PROPOSED AREA OF REPAVING PROPOSED NEW PAVEMENT PROPOSED CONCRETE PROPOSED CONS. EASE. I HAVE REVIEWED THE WETLAND BOUNDARIES AS SHOWN ON THIS PLAN AND AM OF THE OPINION THAT THEY REPRESENT THE SOIL BOUNDARIES MARKED BY ME IN THE FIELD. 10'X20'
----6 SPACES PARALELL SOIL SCIENTIST DEPTHS OF ALL EXISTING UNDERGROUND UTILITIES TO BE DETERMINED AT ALL PROPOSED CROSSINGS WITH EXPLORATORY TEST PITS PRIOR TO INITIATION OF CONSTRUCTION NOTIFY TOWN OF GLASTONBURY ENGINEERING DEPARTMENT PRIOR TO EXCAVATING TEST PITS OVER FORCE MAINS NOTE: VERIFY ALL UTILITY LOCATIONS IN THE FIELD PRIOR TO START OF ANY WORK (SEE NOTE BELOW). ALL CONSTRUCTION METHODS TO CONFORM TO CONN. D.O.T. FORM 818 AND/OR THE TOWN STANDARDS SPECIFICATIONS. SAINTS ISODIRE AND MARIA PARISH CORPORATION TOWN CENTER ZONE / FLOOD ZONE X THE LOCATION OF ALL EXISTING UTILITIES SHOWN IS APPROXIMATE. THE CONTRACTOR IS RESPONSIBLE FOR CONFIRMING THE LOCATIONG OF EXISTING UTILITIES IN THE FIGURE TO CONSTRUCTION AND FOR COORDINATING ANY CONFLICTS PROJECT/APPLICANT #2577 MAIN ST. & LOT W-38A MAIN STREET WITH EXISTING UTILITIES PROJECT ADDRESS WARNING: THESE PLANS NOT TO BE USED FOR LOCATION OF UNDERGROUND UTILITIES — CALL BEFORE YOU DIG 1-800-922-4455 TWO WORKING DAYS SPECIAL PERMIT SECTION TPZ CHAIRMAN GRAPHIC SCALE BEFORE YOU DIG. CONTOURS TAKEN FROM ACTUAL FIELD SURVEY AND TOWN OF GLASTONBURY AERIAL TOPOGRAPHIC MAPS. DATE SPECIAL PERMIT APP'D DIRECTOR OF COMMUNITY DEVELOPMENT (IN FEET) NOTE: ALL SHEETS OF THIS PLAN SET ARE LOCATED IN THE OFFICE OF COMMUNITY DEVELOPMENT

1 inch = 40 ft.

MEGSON,

DRW. BY: BTC DATE: 11-1-22

SCALE: 1"=40' SHEET 2 OF 18

MAP NO. 86-16-10A

APPENDIX I

DRAINAGE AREAS MAP -EXISTING PAVEMENT AREA DIRECTED TO WETLAND W/O TREATMENT

<u>LEGEND</u> MS4 INFORMATION DIRECTLY CONNECTED IMPERVIOUS COVER COVER EXISTING LIGHT POLE PRE-DEVELOPMENT - 1600 SF POST-DEVELOPMENT - 1600 SF EXISTING FORCE MAIN PROPOSED BIT/CONC CURBING PROPOSED TREELINE POROPOSED H.C. PARKING SIGN PROPOSED UNDERDRAIN PROPOSED EXPLORATORY PROPOSED BIKE RACK PROPOSED SPOT ELEV. N/F THE GLASTONBURY INTERFAITH HOUSING CORPORATION PROPOSED AREA OF REPAVING PROPOSED NEW PAVEMENT APPROX LOCATION
35x23UGND UTILITY
LINES FROM CELL
TOWER AREA PROPOSED CONCRETE PROPOSED CONS. EASE. FRIEND ORS, LLC MEGSON, CIVIL ENGINE -APPROXIMATE
LOCATION

33x04 EXISTING FORCE MAINS PROPOSED CONSERVATION EASEMENT I HAVE REVIEWED THE WETLAND BOUNDARIES AS SHOWN ON THIS PLAN AND AM OF THE OPINION THAT THEY REPRESENT THE SOIL 10'X20' PARALLEL —6 SPACES BOUNDARIES MARKED BY ME IN THE FIELD. MARK W. FRIEND SOIL SCIENTIST DEPTHS OF ALL EXISTING UNDERGROUND UTILITIES TO BE DETERMINED AT ALL PROPOSED CROSSINGS WITH EXPLORATORY TEST PITS PRIOR TO INITIATION OF CONSTRUCTION NOTIFY TOWN OF GLASTONBURY ENGINEERING DEPARTMENT PRIOR TO EXCAVATING TEST PITS OVER FORCE MAINS NOTE: VERIFY ALL UTILITY LOCATIONS IN THE FIELD PRIOR TO START OF ANY WORK (SEE NOTE BELOW). ALL CONSTRUCTION METHODS TO CONFORM TO CONN. D.O.T. FORM 818 AND/OR THE TOWN STANDARDS SPECIFICATIONS. SAINTS ISODIRE AND MARIA PARISH CORPORATION TOWN CENTER ZONE / FLOOD ZONE X THE LOCATION OF ALL EXISTING UTILITIES SHOWN IS APPROXIMATE. THE PROJECT/APPLICANT CONTRACTOR IS RESPONSIBLE FOR CONFIRMING THE LOCATIONG OF EXISTING UTILITIES IN THE FIELD PRIOR TO CONSTRUCTION AND FOR COORDINATING ANY CONFLICTS #2577 MAIN ST. & LOT W-38A MAIN STREET CK. BY: WITH EXISTING UTILITIES PROJECT ADDRESS WARNING: THESE PLANS NOT TO BE USED FOR LOCATION OF UNDERGROUND DRW. BY: BTC UTILITIES - CALL BEFORE YOU DIG 1-800-922-4455 TWO WORKING DAYS SPECIAL PERMIT SECTION TPZ CHAIRMAN BEFORE YOU DIG. CONTOURS TAKEN FROM ACTUAL FIELD SURVEY AND TOWN OF GLASTONBURY AERIAL TOPOGRAPHIC MAPS. DATE SPECIAL PERMIT APP'D DIRECTOR OF COMMUNITY DEVELOPMENT (IN FEET) NOTE: ALL SHEETS OF THIS PLAN SET ARE LOCATED IN THE OFFICE OF COMMUNITY DEVELOPMENT

1 inch = 40 ft.

MWF

DATE: 11-1-22 SCALE: 1"=40'

SHEET 2 OF 18

MAP NO. 86-16-10A

APPENDIX J STANPIPE READINGS

STANDPIPE READINGS

Depth Below Surface to Static Water Table (Positive number = Standing water)

	(Pos	itive number $= 8$	tanding water	er)	
<u>Date</u>	<u>SP-1</u>	<u>SP-2</u>	<u>SP-3</u>	<u>SP-4</u>	<u>SP-5</u>
5-6-19	-2"	5"	1"	-5"	-4"
5-13-19	-2"	3"	1"	0	0
5-20-19	-3"	1"	-2"	-6"	-6"
5-28-19	-2"	0"	-16"	-14" est*	-17"
6-3-19	-2"	1"	-11"	filled	-16"
6-10-19	-8"	-10"	filled	filled	-20"
6-10-19	Reinst	all SP's 3,4 & 5	which fille	d with silt du	ring high GW
6-17-19	-4"	2"	-20"	-24"	-23.5"
6-24-19	-4"	0"	-15"	-20"	-19"
7-1-19	-5"	-11"	-27" dry	-28" dry	-28"

The results of the standpipe readings indicate potential hydric conditions in SP-1 & SP-2. Both of these are within a sanitary sewer easement and bank of communications lines and were found to contain disturbed soils.