MEGSON, HEAGLE & FRIEND

CIVIL ENGINEERS & LAND SURVEYORS, LLC 81 RANKIN ROAD GLASTONBURY, CONNECTICUT 06033 PHONE (860) 659-0587 FAX (860) 657-4429

HYDROLOGY AND HYDRAULICS ENGINEERING REPORT

103 HOUSE STREET PREPARED FOR 103 HOUSE STREET, LLC GLASTONBURY, CT

July, 2020

Prepared By:

Jonathan H. Sczurek, P.E.

TABLE OF CONTENTS

I.	INTRODUCTION	
	Project Description	1
	Drainage Considerations	2
	Methodology	2
	Conclusions	2-3
II.	STORMWATER RUNOFF	
	Pre-Development Runoff	4-6
	Post Development Runoff	7-9
	Pre/Post Development Comparison	10
III.	REQUIRED WATER QUALITY VOLUMES	11
IV.	WATER QUALITY VOLUMES PROVIDED	11

APPENDICES

APPENDIX A –	HydroCAD Report
APPENDIX B -	Pre-Development Drainage Map
APPENDIX C –	Post-Development Drainage Map
APPENDIX D -	Storm Sewer Design

APPENDIX E - Infiltration Chamber Details

I. INTRODUCTION

Project Description:

This project is located at 103 House Street, on the north west corner of the intersection with Salmon Brook Drive. It will consist of the construction of 3 new multifamily town home buildings with 17 units total on 1.05 acres located in the Town Center zone. The project will be accessed via a two-way driveway connection to House Street and will utilize the existing curb cut for Colonial Village Apartments (owned by the same owners).

The majority of the site currently drains toward the northwest corner of the property where it flows toward catch basins on the Colonial Village Apartment property which drain to wetlands adjacent to Salmon Brook. The easterly and southerly portions of the site drain toward the roadway shoulders of House Street and Salmon Brook Drive. All of the stormwater drains into pipe systems that flow northerly and discharge to wetlands adjacent to Salmon Brook. Pre and Post Development drainage patterns will be maintained.

The proposed Stormwater Management System will include directing runoff from paved & roof areas to subsurface infiltration chambers. The chambers are sized to infiltrate the runoff from the impervious areas up to a 10-year return frequency storm. Overflow pipes will be connected to the storm drainage system for higher frequency events.

The water quality volume will be captured and recharged in accordance with 2004 Stormwater Quality Manual and peak flows attenuated as required by the Town of Glastonbury Master Drainage Study for the Salmon Brook Watershed.

Drainage Considerations:

The proposed drainage system is designed to treat the WQV of the collected runoff and infiltrate it into the subsurface soils. This will also satisfy the MS 4 requirements and promote groundwater recharge. This is proposed to be accomplished by incorporating the following techniques.

First, through the utilization of Subsurface Leaching Chambers designed to receive roof runoff from the townhomes. Second, by directing runoff from paved areas to Subsurface Leaching Chambers (located in the center island) encouraging infiltration. Test pits at the site confirm the subsurface conditions of the site are generally characterized by sandy and gravelly soils and are favorable to infiltrate water, groundwater monitoring through the spring confirmed that the chambers will have the required volume and will be above groundwater.

Methodology:

The stormwater models for the proposed development were calculated using TR-55 methodology even though detention is not required, being so close in proximity to the Salmon Brook. The hydrographs are included in Appendix B. The results demonstrate the peak flows for the 2, 10, 25, 50 & 100 year return frequency storms.

The storm drainage system was sized based on a 10 year return frequency storm. Sizing for the proposed Water Quality Treatment/MS 4 systems was calculated utilizing the techniques outlined in the 2004 Connecticut Stormwater Quality Manual. The Water Quality Volume was computed with the formulas presented in this manual.

Conclusions:

• The proposed drainage system will retain and infiltrate a 10 year return frequency storm in accordance with the Town of Glastonbury requirements.

- No adverse impacts from development will be created for downstream areas.
- The Water Quality Volumes from the proposed lots will be collected and infiltrated within the Subsurface Leaching Chambers proposed.
- The proposed improvements will meet the MS 4 requirements for disconnecting paved areas to the extent possible.

II. STORMWATER RUNOFF

Pre Development Runoff to Point 'A'

 $0.77 \ AC-Grass$

0.19 AC - Impervious

0.96 AC – Total Area

Weighted CN = 68 Tc = 10.9 Minutes

TR-55 (NOAA ATLAS14 rainfall rates)

Flow Rate:

 $Q_2 = 0.84 \text{ cfs}$ $Q_{10} = 2.49 \text{ cfs}$ $Q_{25} = 3.68 \text{ cfs}$ $Q_{50} = 4.65 \text{ cfs}$ $Q_{100} = 5.65 \text{ cfs}$

Volume:

 $V_2 = 0.047$ af $V_{10} = 0.130$ af $V_{25} = 0.191$ af $V_{50} = 0.242$ af $V_{100} = 0.295$ af

Pre Development Runoff to Point 'B'

0.14 AC – Grass <u>0.10 AC - Impervious</u> 0.24 AC – Total Area

Weighted CN = 76

Tc = 6.9 Minutes

(NOAA ATLAS14 rainfall rates)

Flow Rate:

 $Q_2 = 0.43 \text{ cfs}$ $Q_{10} = 0.99 \text{ cfs}$ $Q_{25} = 1.36 \text{ cfs}$ $Q_{50} = 1.66 \text{ cfs}$ $Q_{100} = 1.96 \text{ cfs}$

Volume:

 $V_2 = 0.019$ af $V_{10} = 0.045$ af $V_{25} = 0.062$ af $V_{50} = 0.077$ af $V_{100} = 0.091$ af

103 House Street, LLC 103 House St, Glastonbury, CT

Pre Development Runoff to Point 'C'

0.10 AC – Grass <u>0.11 AC - Impervious</u> 0.21 AC – Total Area

Weighted CN = 80 Tc = 6.6 Minutes

(NOAA ATLAS14 rainfall rates)

Flow Rate:

 $Q_2 = 0.47 \text{ cfs}$ $Q_{10} = 0.99 \text{ cfs}$ $Q_{25} = 1.33 \text{ cfs}$ $Q_{50} = 1.59 \text{ cfs}$ $Q_{100} = 1.85 \text{ cfs}$

Volume:

 $V_2 = 0.021$ af $V_{10} = 0.045$ af $V_{25} = 0.061$ af $V_{50} = 0.074$ af $V_{100} = 0.088$ af

Post Development Runoff to Point 'A'

0.13 AC – Grass <u>0.16 AC - Impervious</u> 0.29 AC – Total Area

Weighted CN = 81

Tc = 10.9 Minutes

TR-55 (NOAA ATLAS14 rainfall rates)

Flow Rate:

 $Q_2 = 0.58 \text{ cfs}$ $Q_{10} = 1.22 \text{ cfs}$ $Q_{25} = 1.62 \text{ cfs}$ $Q_{50} = 1.94 \text{ cfs}$ $Q_{100} = 2.26 \text{ cfs}$

Volume:

 $V_2 = 0.030$ af $V_{10} = 0.064$ af $V_{25} = 0.087$ af $V_{50} = 0.105$ af $V_{100} = 0.124$ af

Post Development Runoff to Point 'B'

0.13 AC – Grass <u>0.41 AC - Impervious</u> 0.54 AC – Total Area

Weighted CN = 89

Tc = 9.6 Minutes

TR-55 (NOAA ATLAS14 rainfall rates)

Flow Rate:

 $Q_2 = 1.61 \text{ cfs}$ $Q_{10} = 2.90 \text{ cfs}$ $Q_{25} = 3.70 \text{ cfs}$ $Q_{50} = 4.32 \text{ cfs}$ $Q_{100} = 4.94 \text{ cfs}$

Volume:

 $V_2 = 0.082$ af $V_{10} = 0.154$ af $V_{25} = 0.199$ af $V_{50} = 0.235$ af $V_{100} = 0.271$ af

103 House Street, LLC 103 House St, Glastonbury, CT

Post Development Runoff to Point 'C'

0.21 AC – Grass <u>0.37 AC - Impervious</u> 0.21 AC – Total Area

Weighted CN = 85 Tc = 8.5 Minutes

TR-55 (NOAA ATLAS14 rainfall rates)

Flow Rate:

 $Q_2 = 1.53 \text{ cfs}$ $Q_{10} = 2.95 \text{ cfs}$ $Q_{25} = 3.85 \text{ cfs}$ $Q_{50} = 4.54 \text{ cfs}$ $Q_{100} = 5.24 \text{ cfs}$

Volume:

 $V_2 = 0.073$ af $V_{10} = 0.146$ af $V_{25} = 0.194$ af $V_{50} = 0.232$ af $V_{100} = 0.270$ af

Pre/Post Development Comparison - 10 Year Storm (Not Including Infiltration)

Flow Rate:

	Q10 Pre	Q10 Post	$Q_{10\Delta}$
Point A	2.49cfs	1.22cfs	-1.27cfs
Point B	0.99cfs	2.90cfs	1.91cfs
Point C	0.99cfs	2.98cfs	1.99cfs

Volume:

	V10 Pre	V10 Post	$V_{10\Delta}$
Point A:	0.130af	0.064af	-0.066af
Point B:	0.045af	0.154af	0.109af
Point C:	0.045af	0.144af	0.099af

Volumes Retained w/Infiltration

Point A:	None Required	
Point B:	0.109 af = 4,748 c.f. required	4,867 c.f. provided
Point C:	0.099 af = 4,312 c.f. required	4,274 c.f provided

INFILTRATION RATE WAS NOT CONSIDERED AS PART OF THE VOLUME CALCULATIONS. EFFECT OF INFILTRATION RATE WILL SURPASS VOLUMETRIC INCREASES OF A 10 YEAR STORM.

III. REQUIRED WATER QUALITY VOLUMES

WQV =
$$(1")(R)(A)$$
 Where R = 0.05 + 0.009(I)
12

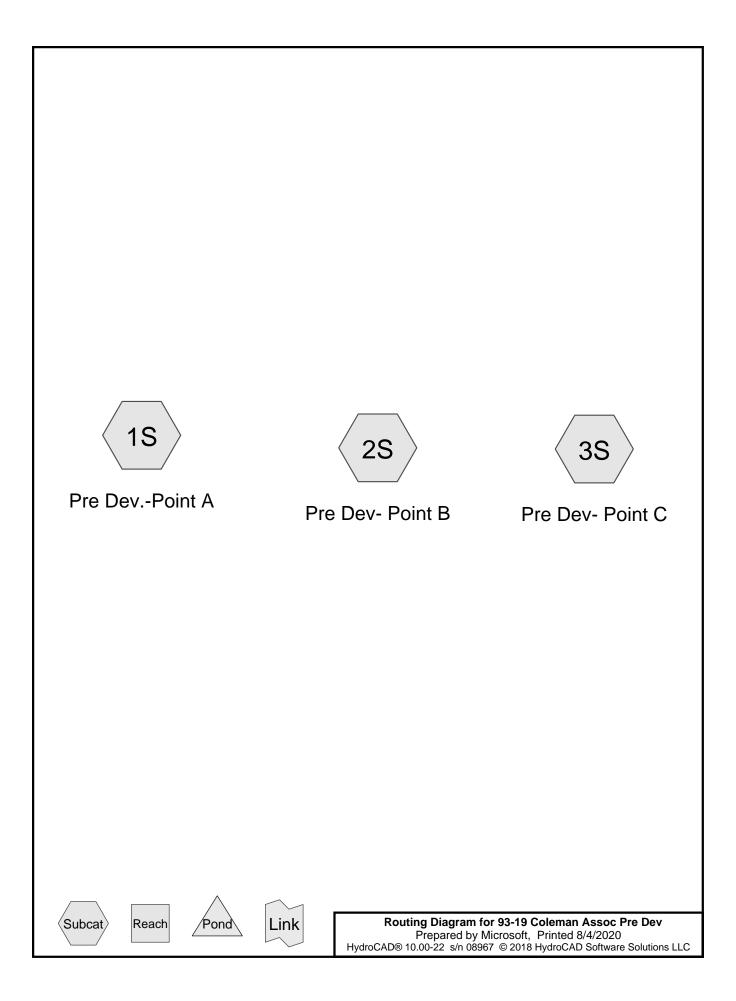
I= % Impervious Surface

Total Drainage Area = 1.41 AC

Impervious Area = 0.94 AC

 $I = \frac{0.94 \text{ AC}}{1.41 \text{ AC}} = 66.7$

R = 0.05 + 0.009(66.7) = 0.650


WQV = (1")(0.650)(1.41) = 0.0764 AC-FT = 3.328 CF12

IV. WATER QUALITY VOLUMES PROVIDED

Total Infiltration Volume = 9,131 c.f.

103 House Street, LLC 103 House St, Glastonbury, CT

APPENDIX A HYDROCAD REPORT

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
1.010	61	>75% Grass cover, Good, HSG B (1S, 2S, 3S)
0.400	98	Paved parking, HSG B (1S, 2S, 3S)
1.410	71	TOTAL AREA

Soil Listing (all nodes)

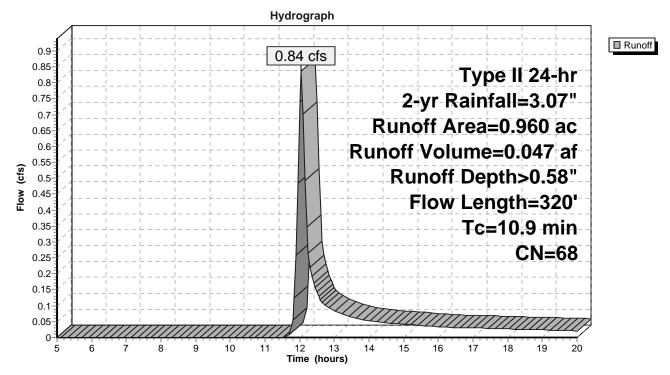
Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
1.410	HSG B	1S, 2S, 3S
0.000	HSG C	
0.000	HSG D	
0.000	Other	
1.410		TOTAL AREA

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.000	1.010	0.000	0.000	0.000	1.010	>75% Grass cover, Good	1S, 2S, 3S
0.000	0.400	0.000	0.000	0.000	0.400	Paved parking	1S, 2S, 3S
0.000	1.410	0.000	0.000	0.000	1.410	TOTAL AREA	

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Pre DevPoint A	Runoff Area=0.960 ac 19.79% Impervious Runoff Depth>0.58" Flow Length=320' Tc=10.9 min CN=68 Runoff=0.84 cfs 0.047 af
Subcatchment 2S: Pre Dev- Point B	Runoff Area=0.240 ac 41.67% Impervious Runoff Depth>0.96" Flow Length=135' Tc=4.0 min CN=76 Runoff=0.48 cfs 0.019 af
Subcatchment 3S: Pre Dev- Point C	Runoff Area=0.210 ac 52.38% Impervious Runoff Depth>1.19" Flow Length=170' Tc=3.9 min CN=80 Runoff=0.52 cfs 0.021 af
Total Runoff Area = 1.410	0 ac Runoff Volume = 0.087 af Average Runoff Depth = 0.74" 71.63% Pervious = 1.010 ac 28.37% Impervious = 0.400 ac


Summary for Subcatchment 1S: Pre Dev.-Point A

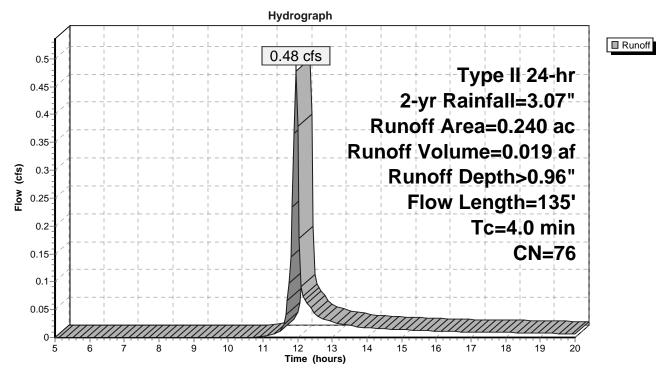
Runoff = 0.84 cfs @ 12.05 hrs, Volume= 0.047 af, Depth> 0.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.07"

_	Area	(ac) C	N Desc	cription			
	0.	770 6	61 >759	% Grass co	over, Good	, HSG B	
_	0.	190 9	8 Pave	ed parking	HSG B		
	0.	960 6	8 Weig	ghted Aver	age		
	0.	770	80.2	1% Pervio	us Area		
	0.	190	19.7	9% Imperv	vious Area		
	_				•	- · · ·	
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	9.1	100	0.0250	0.18		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.09"	
	1.6	190	0.0158	2.02		Shallow Concentrated Flow,	
						Unpaved Kv= 16.1 fps	
	0.2	30	0.0150	2.49		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
	10.9	320	Total				

Subcatchment 1S: Pre Dev.-Point A

Summary for Subcatchment 2S: Pre Dev- Point B


[49] Hint: Tc<2dt may require smaller dt

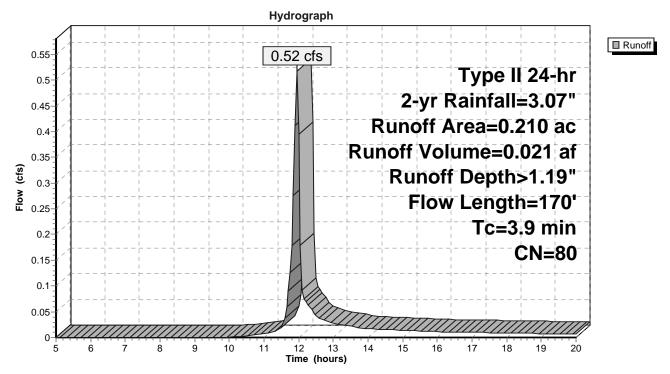
Runoff = 0.48 cfs @ 11.95 hrs, Volume= 0.019 af, Depth> 0.96"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.07"

Area	(ac) C	N Dese	cription			
0	.140	61 >759	% Grass co	over, Good	, HSG B	
0	.100	98 Pave	ed parking,	, HSG B		
0	.240	76 Weig	ghted Aver	age		
0	.140	58.3	3% Pervio	us Area		
0	.100	41.6	7% Imperv	vious Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
3.4	25	0.0180	0.12		Sheet Flow,	
0.6	110	0.0250	3.21		Grass: Short n= 0.150 P2= 3.09" Shallow Concentrated Flow, Paved Kv= 20.3 fps	
4.0	135	Total				

Subcatchment 2S: Pre Dev- Point B

Summary for Subcatchment 3S: Pre Dev- Point C


[49] Hint: Tc<2dt may require smaller dt

Runoff = 0.52 cfs @ 11.95 hrs, Volume= 0.021 af, Depth> 1.19"

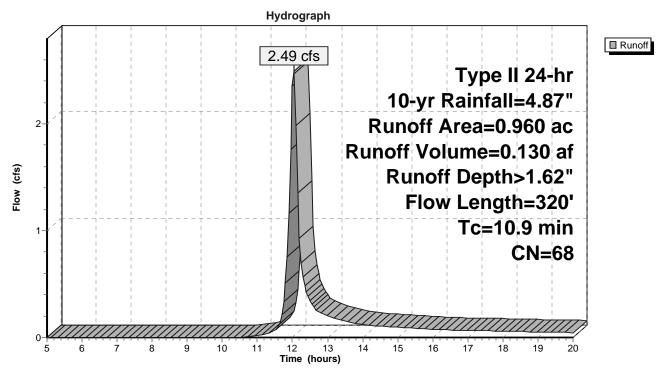
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.07"

_	Area	(ac) (CN Des	cription					
	0.100 61 >75% Grass cover, Good, HSG B								
0.110 98 Paved parking, HSG B									
	0.210 80 Weighted Average								
	0.								
	0.	110	52.3	88% Imperv	vious Area				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	3.0	25	0.0250	0.14		Sheet Flow,			
	0.9	145	0.0170	2.65		Grass: Short n= 0.150 P2= 3.09" Shallow Concentrated Flow, Paved Kv= 20.3 fps			
	3.9	170	Total						

Subcatchment 3S: Pre Dev- Point C

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Pre DevPoint A	Runoff Area=0.960 ac 19.79% Impervious Runoff Depth>1.62" Flow Length=320' Tc=10.9 min CN=68 Runoff=2.49 cfs 0.130 af						
Subcatchment 2S: Pre Dev- Point B	Runoff Area=0.240 ac 41.67% Impervious Runoff Depth>2.24" Flow Length=135' Tc=4.0 min CN=76 Runoff=1.09 cfs 0.045 af						
Subcatchment 3S: Pre Dev- Point C	Runoff Area=0.210 ac 52.38% Impervious Runoff Depth>2.58" Flow Length=170' Tc=3.9 min CN=80 Runoff=1.09 cfs 0.045 af						
Total Runoff Area = 1.410 ac Runoff Volume = 0.219 af Average Runoff Depth = 1.87" 71.63% Pervious = 1.010 ac 28.37% Impervious = 0.400 ac							


Summary for Subcatchment 1S: Pre Dev.-Point A

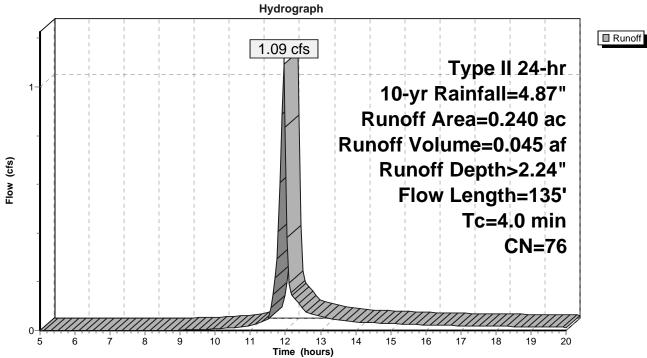
Runoff = 2.49 cfs @ 12.03 hrs, Volume= 0.130 af, Depth> 1.62"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=4.87"

	Area	(ac) C	N Desc	cription		
	0.	770 6	51 >759	% Grass co	over, Good	, HSG B
_	0.	190 9	8 Pave	ed parking	, HSG B	
	0.	960 6	8 Weig	ghted Aver	age	
	0.	770	80.2	1% Pervio	us Area	
	0.	190	19.7	9% Imperv	vious Area	
	_				•	- · · · ·
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.1	100	0.0250	0.18		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.09"
	1.6	190	0.0158	2.02		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	0.2	30	0.0150	2.49		Shallow Concentrated Flow,
_						Paved Kv= 20.3 fps
	10.9	320	Total			

Subcatchment 1S: Pre Dev.-Point A

Summary for Subcatchment 2S: Pre Dev- Point B

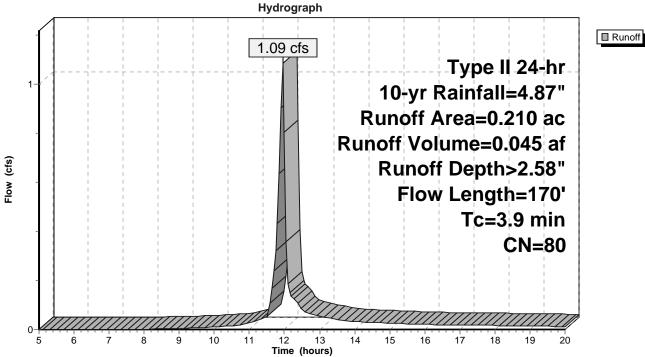

[49] Hint: Tc<2dt may require smaller dt

1.09 cfs @ 11.95 hrs, Volume= 0.045 af, Depth> 2.24" Runoff =

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=4.87"

Area	(ac) (CN Des	cription					
0.140 61 >75% Grass cover, Good, HSG B								
0	.100	98 Pav	ed parking	, HSG B				
0.240 76 Weighted Average								
0								
0	.100	41.6	7% Imperv	vious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
3.4	25	0.0180	0.12		Sheet Flow,			
0.6	110	0.0250	3.21		Grass: Short n= 0.150 P2= 3.09" Shallow Concentrated Flow, Paved Kv= 20.3 fps			
4.0	135	Total						

Subcatchment 2S: Pre Dev- Point B


[49] Hint: Tc<2dt may require smaller dt

1.09 cfs @ 11.94 hrs, Volume= 0.045 af, Depth> 2.58" Runoff =

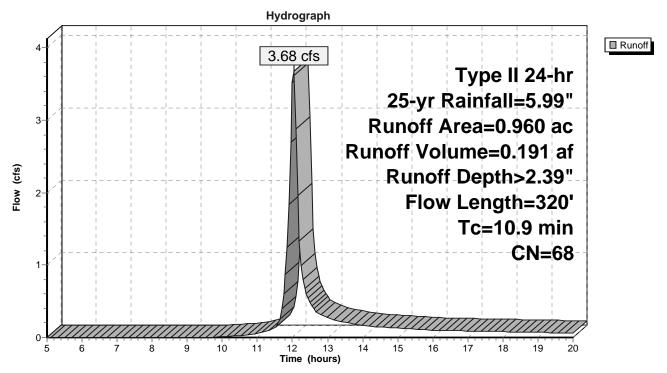
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=4.87"

_	Area	(ac) C	CN Des	cription					
0.100 61 >75% Grass cover, Good, HSG B									
	0.	110	98 Pave	ed parking	, HSG B				
	0.210 80 Weighted Average								
	0.	100		2% Pervio					
	0.	110	52.3	8% Imperv	vious Area				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	3.0	25	0.0250	0.14		Sheet Flow,			
	0.9	145	0.0170	2.65		Grass: Short n= 0.150 P2= 3.09" Shallow Concentrated Flow, Paved Kv= 20.3 fps			
	3.9	170	Total						

Subcatchment 3S: Pre Dev- Point C

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Pre DevPoint A	Runoff Area=0.960 ac 19.79% Impervious Runoff Depth>2.39" Flow Length=320' Tc=10.9 min CN=68 Runoff=3.68 cfs 0.191 af						
Subcatchment 2S: Pre Dev- Point B	Runoff Area=0.240 ac 41.67% Impervious Runoff Depth>3.12" Flow Length=135' Tc=4.0 min CN=76 Runoff=1.50 cfs 0.062 af						
Subcatchment 3S: Pre Dev- Point C	Runoff Area=0.210 ac 52.38% Impervious Runoff Depth>3.51" Flow Length=170' Tc=3.9 min CN=80 Runoff=1.46 cfs 0.061 af						
Total Runoff Area = 1.410 ac Runoff Volume = 0.315 af Average Runoff Depth = 2.68" 71.63% Pervious = 1.010 ac 28.37% Impervious = 0.400 ac							


Summary for Subcatchment 1S: Pre Dev.-Point A

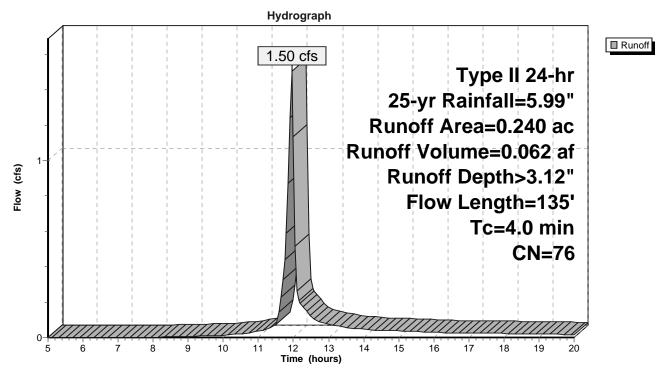
Runoff = 3.68 cfs @ 12.03 hrs, Volume= 0.191 af, Depth> 2.39"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=5.99"

	Area	(ac) C	N Desc	cription			
	0.	770 6	61 >759	% Grass co	over, Good	, HSG B	
_	0.	190 9	98 Pave	ed parking	HSG B		
	0.	960 6	8 Weig	ghted Aver	age		
	0.	770	80.2	1% Pervio	us Area		
	0.	190	19.7	9% Imperv	vious Area		
	_				•	_	
	Tc	Length	Slope	Velocity	Capacity	Description	
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
	9.1	100	0.0250	0.18		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.09"	
	1.6	190	0.0158	2.02		Shallow Concentrated Flow,	
						Unpaved Kv= 16.1 fps	
	0.2	30	0.0150	2.49		Shallow Concentrated Flow,	
_						Paved Kv= 20.3 fps	
	10.9	320	Total				

Subcatchment 1S: Pre Dev.-Point A

Summary for Subcatchment 2S: Pre Dev- Point B


[49] Hint: Tc<2dt may require smaller dt

1.50 cfs @ 11.95 hrs, Volume= 0.062 af, Depth> 3.12" Runoff =

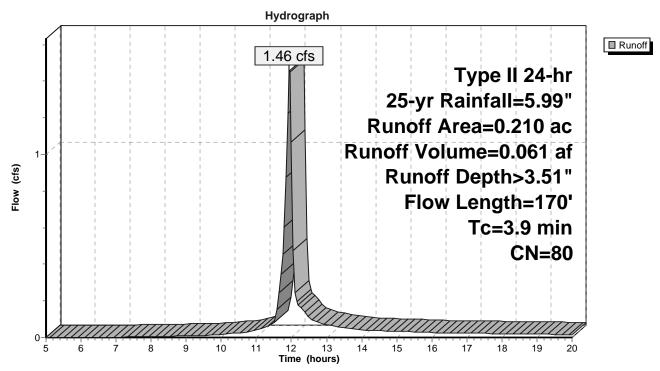
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=5.99"

_	Area	(ac) (CN Des	cription					
0.140 61 >75% Grass cover, Good, HSG B									
	0.	100	98 Pav	ed parking	, HSG B				
	0.240 76 Weighted Average								
0.140 58.33% Pervious Area									
	0.	100	41.6	37% Imperv	vious Area				
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
	3.4	25	0.0180	0.12		Sheet Flow,			
	0.6	110	0.0250	3.21		Grass: Short n= 0.150 P2= 3.09" Shallow Concentrated Flow, Paved Kv= 20.3 fps			
	4.0	135	Total						

Subcatchment 2S: Pre Dev- Point B

Summary for Subcatchment 3S: Pre Dev- Point C

Page 16


[49] Hint: Tc<2dt may require smaller dt

1.46 cfs @ 11.94 hrs, Volume= 0.061 af, Depth> 3.51" Runoff =

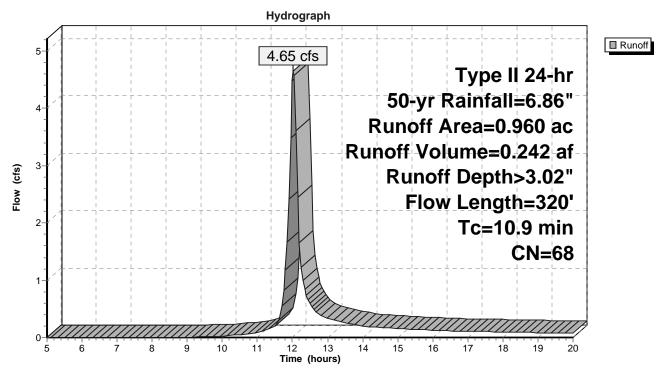
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=5.99"

Area	ı (ac)	CN Des	scription					
C).100	61 >75	% Grass c	over, Good	, HSG B			
0).110	98 Pav	ed parking	, HSG B				
0.210 80 Weighted Average								
C).100	47.	62% Pervio	us Area				
C).110	52.3	38% Imperv	vious Area				
Tc (min)	Length (feet)		Velocity (ft/sec)	Capacity (cfs)	Description			
3.0	25	5 0.0250	0.14		Sheet Flow,			
0.9	145	5 0.0170	2.65		Grass: Short n= 0.150 P2= 3.09" Shallow Concentrated Flow, Paved Kv= 20.3 fps			
3.9	170) Total						

Subcatchment 3S: Pre Dev- Point C

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method Page 17

Subcatchment 1S: Pre DevPoint A	Runoff Area=0.960 ac 19.79% Impervious Runoff Depth>3.02" Flow Length=320' Tc=10.9 min CN=68 Runoff=4.65 cfs 0.242 af						
Subcatchment 2S: Pre Dev- Point B	Runoff Area=0.240 ac 41.67% Impervious Runoff Depth>3.84" Flow Length=135' Tc=4.0 min CN=76 Runoff=1.83 cfs 0.077 af						
Subcatchment 3S: Pre Dev- Point C	Runoff Area=0.210 ac 52.38% Impervious Runoff Depth>4.26" Flow Length=170' Tc=3.9 min CN=80 Runoff=1.75 cfs 0.075 af						
Total Runoff Area = 1.410 ac Runoff Volume = 0.393 af Average Runoff Depth = 3.35" 71.63% Pervious = 1.010 ac 28.37% Impervious = 0.400 ac							


Summary for Subcatchment 1S: Pre Dev.-Point A

Runoff = 4.65 cfs @ 12.03 hrs, Volume= 0.242 af, Depth> 3.02"

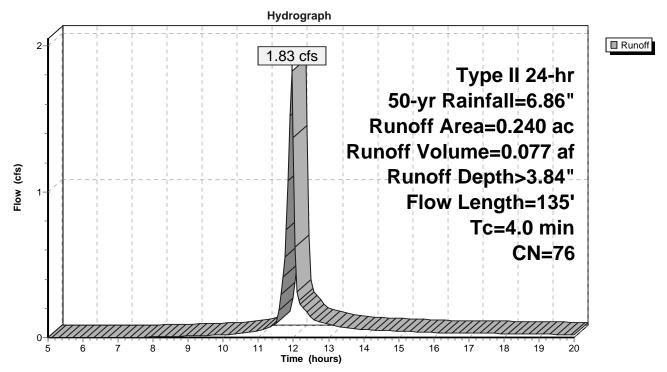
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 50-yr Rainfall=6.86"

Ar	ea (a	ac) C	N Desc	cription		
	0.7	70 6	51 >75%	6 Grass co	over, Good	, HSG B
	0.1	90 9	8 Pave	ed parking,	HSG B	
	0.9	60 6	8 Weig	hted Aver	age	
	0.7	70		1% Pervio		
	0.1	90	19.7	9% Imperv	vious Area	
-	-				0	
		Length	Slope	Velocity	Capacity	Description
(mi	n)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
9	.1	100	0.0250	0.18		Sheet Flow,
						Grass: Short n= 0.150 P2= 3.09"
1	.6	190	0.0158	2.02		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
0	.2	30	0.0150	2.49		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
10	.9	320	Total			

Subcatchment 1S: Pre Dev.-Point A

Summary for Subcatchment 2S: Pre Dev- Point B

Page 19


[49] Hint: Tc<2dt may require smaller dt

1.83 cfs @ 11.95 hrs, Volume= 0.077 af, Depth> 3.84" Runoff _

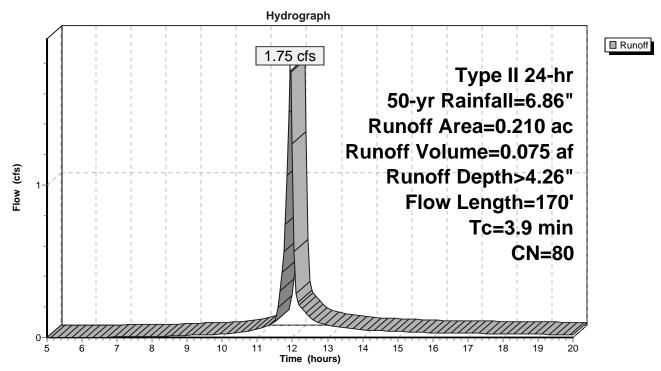
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 50-yr Rainfall=6.86"

Area	(ac) (CN Des	cription					
0.140 61 >75% Grass cover, Good, HSG B								
0	.100	98 Pav	ed parking	, HSG B				
0.240 76 Weighted Average								
0								
0	.100	41.6	7% Imperv	vious Area				
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description			
3.4	25	0.0180	0.12		Sheet Flow,			
0.6	110	0.0250	3.21		Grass: Short n= 0.150 P2= 3.09" Shallow Concentrated Flow, Paved Kv= 20.3 fps			
4.0	135	Total						

Subcatchment 2S: Pre Dev- Point B

Summary for Subcatchment 3S: Pre Dev- Point C

Page 20


[49] Hint: Tc<2dt may require smaller dt

1.75 cfs @ 11.94 hrs, Volume= 0.075 af, Depth> 4.26" Runoff =

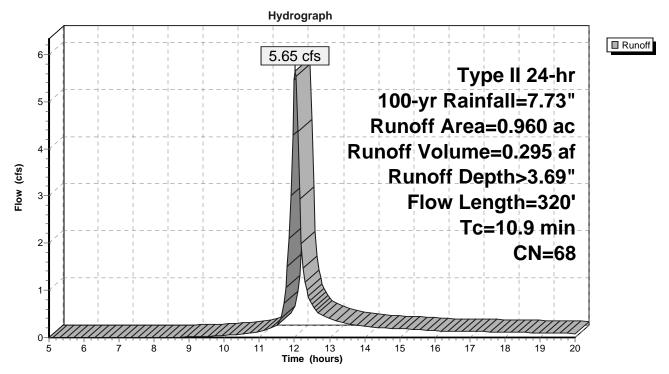
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 50-yr Rainfall=6.86"

Area (ac) CN Description							
0.100 61 >75% Grass cover, Good, HSG B							
0.110 98 Paved parking, HSG B							
0.210 80 Weighted Average							
0.100 47.62% Pervious Area							
0	0.110 52.38% Impervious Area						
Tc (min)	Length (feet)		Velocity (ft/sec)	Capacity (cfs)	Description		
3.0	25	0.0250	0.14		Sheet Flow,		
0.9	145	0.0170	2.65		Grass: Short n= 0.150 P2= 3.09" Shallow Concentrated Flow, Paved Kv= 20.3 fps		
3.9	170	Total					

Subcatchment 3S: Pre Dev- Point C

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Pre DevPoint A	Runoff Area=0.960 ac 19.79% Impervious Runoff Depth>3.69" Flow Length=320' Tc=10.9 min CN=68 Runoff=5.65 cfs 0.295 af
Subcatchment 2S: Pre Dev- Point B	Runoff Area=0.240 ac 41.67% Impervious Runoff Depth>4.57" Flow Length=135' Tc=4.0 min CN=76 Runoff=2.16 cfs 0.091 af
Subcatchment 3S: Pre Dev- Point C	Runoff Area=0.210 ac 52.38% Impervious Runoff Depth>5.02" Flow Length=170' Tc=3.9 min CN=80 Runoff=2.03 cfs 0.088 af
Total Runoff Area = 1.410	0 ac Runoff Volume = 0.475 af Average Runoff Depth = 4.04" 71.63% Pervious = 1.010 ac 28.37% Impervious = 0.400 ac


Summary for Subcatchment 1S: Pre Dev.-Point A

Runoff = 5.65 cfs @ 12.03 hrs, Volume= 0.295 af, Depth> 3.69"

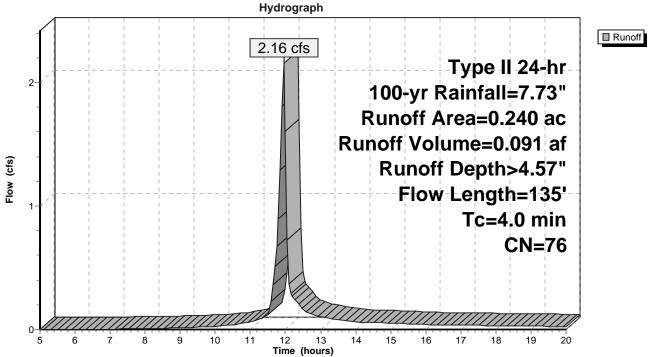
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=7.73"

Ar	Area (ac) CN Description						
0.770 61 >75% Grass cover, Good,					over, Good	, HSG B	
0.190 98 Paved parking, HSG B							
0.960 68 Weighted Average							
0.770 80.21% Pervious Area							
0.190 19.79% Impervious Area							
-	-				0		
		Length	Slope	Velocity	Capacity	Description	
(mi	n)	(feet)	(ft/ft)	(ft/sec)	(cfs)		
9	.1	100	0.0250	0.18		Sheet Flow,	
						Grass: Short n= 0.150 P2= 3.09"	
1	.6	190	0.0158	2.02		Shallow Concentrated Flow,	
						Unpaved Kv= 16.1 fps	
0	.2	30	0.0150	2.49		Shallow Concentrated Flow,	
						Paved Kv= 20.3 fps	
10	.9	320	Total				

Subcatchment 1S: Pre Dev.-Point A

Summary for Subcatchment 2S: Pre Dev- Point B

Page 23


[49] Hint: Tc<2dt may require smaller dt

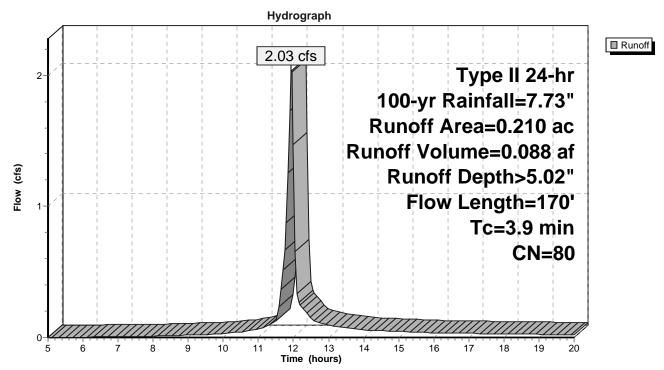
2.16 cfs @ 11.94 hrs, Volume= 0.091 af, Depth> 4.57" Runoff _

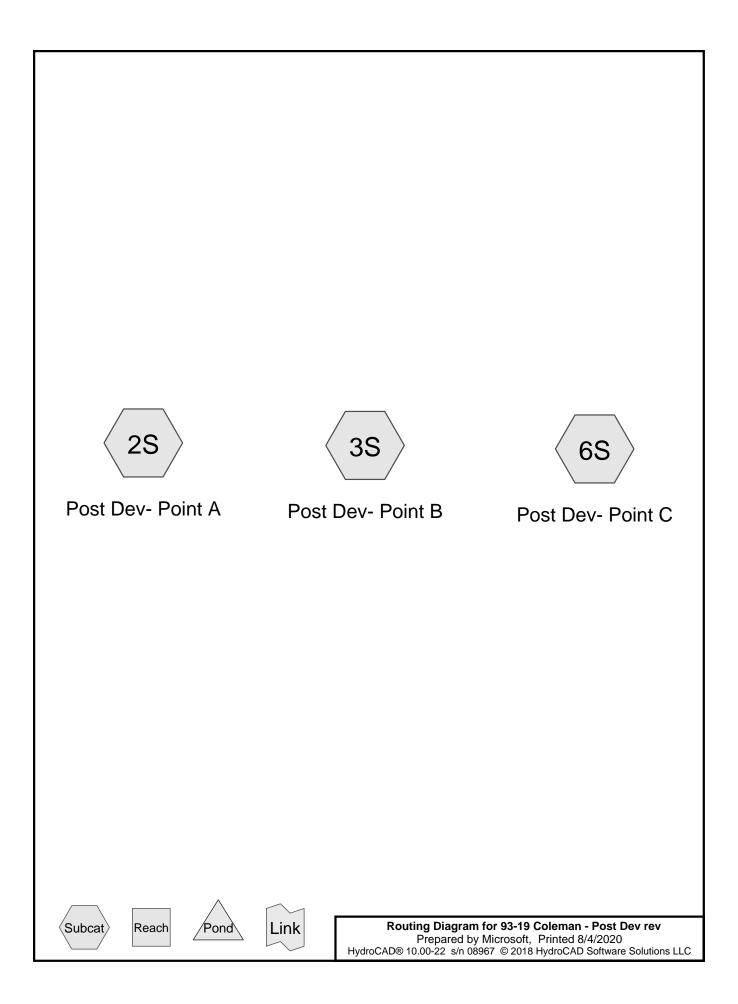
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=7.73"

_	Area	(ac) C	N Des	cription		
	0.	140	61 >75	% Grass co	over, Good	, HSG B
	0.	100	98 Pave	ed parking	, HSG B	
0.240 76 Weighted Average						
	0.	140	58.3	3% Pervio	us Area	
	0.	100	41.6	7% Imperv	vious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	3.4	25	0.0180	0.12		Sheet Flow,
	0.6	110	0.0250	3.21		Grass: Short n= 0.150 P2= 3.09" Shallow Concentrated Flow, Paved Kv= 20.3 fps
	4.0	135	Total			

Subcatchment 2S: Pre Dev- Point B

Summary for Subcatchment 3S: Pre Dev- Point C


[49] Hint: Tc<2dt may require smaller dt


Runoff = 2.03 cfs @ 11.94 hrs, Volume= 0.088 af, Depth> 5.02"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=7.73"

Area	(ac) C	N Des	cription			
0.	.100	61 >75 ^o	% Grass co	over, Good	, HSG B	
0	.110	98 Pave	ed parking	, HSG B		
0.	.210	80 Weig	ghted Aver	age		
0.	.100	47.6	2% Pervio	us Area		
0.	.110	52.3	8% Imperv	vious Area		
Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	
3.0	25	0.0250	0.14		Sheet Flow,	
0.9	145	0.0170	2.65		Grass: Short n= 0.150 P2= 3.09" Shallow Concentrated Flow, Paved Kv= 20.3 fps	
3.9	170	Total				

Subcatchment 3S: Pre Dev- Point C

Area Listing (all nodes)

Area	CN	Description
(acres)		(subcatchment-numbers)
0.470	61	>75% Grass cover, Good, HSG B (2S, 3S, 6S)
0.940	98	Paved parking, HSG B (2S, 3S, 6S)
1.410	86	TOTAL AREA

Soil Listing (all nodes)

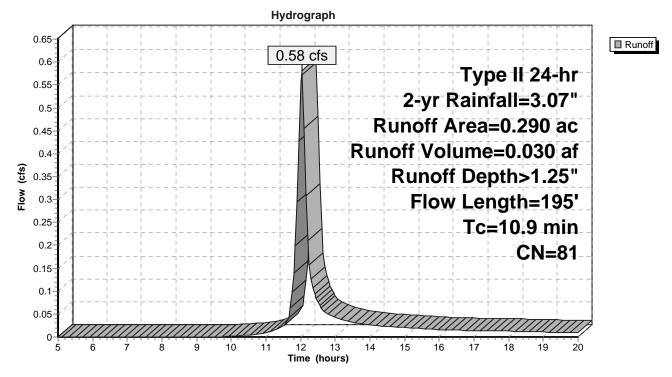
Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
1.410	HSG B	2S, 3S, 6S
0.000	HSG C	
0.000	HSG D	
0.000	Other	
1.410		TOTAL AREA

Ground Covers (all nodes)

HSG-A (acres)	HSG-B (acres)	HSG-C (acres)	HSG-D (acres)	Other (acres)	Total (acres)	Ground Cover	Subcatchment Numbers
 0.000	0.470	0.000	0.000	0.000	0.470	>75% Grass cover, Good	2S, 3S, 6S
0.000	0.940	0.000	0.000	0.000	0.940	Paved parking	65 2S, 3S, 6S
0.000	1.410	0.000	0.000	0.000	1.410	TOTAL AREA	

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 2S: Post Dev- Point A	Runoff Area=0.290 ac 55.17% Impervious Runoff Depth>1.25" Flow Length=195' Tc=10.9 min CN=81 Runoff=0.58 cfs 0.030 af
Subcatchment 3S: Post Dev- Point B	Runoff Area=0.540 ac 75.93% Impervious Runoff Depth>1.83" Flow Length=145' Tc=9.6 min CN=89 Runoff=1.61 cfs 0.082 af
Subcatchment 6S: Post Dev- Point C	Runoff Area=0.580 ac 63.79% Impervious Runoff Depth>1.52" Flow Length=215' Tc=8.5 min CN=85 Runoff=1.53 cfs 0.073 af
Total Runoff Area = 1.410	0 ac Runoff Volume = 0.186 af Average Runoff Depth = 1.58" 33.33% Pervious = 0.470 ac 66.67% Impervious = 0.940 ac

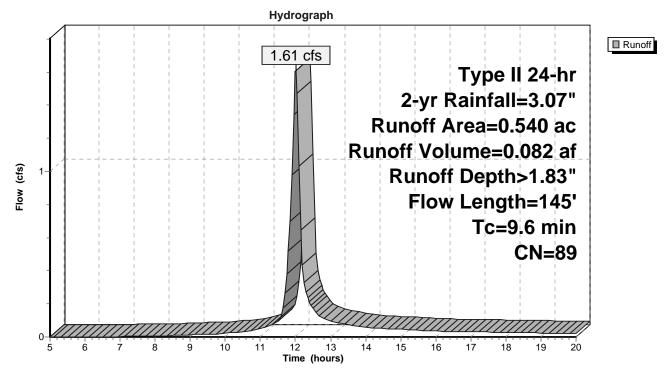

Summary for Subcatchment 2S: Post Dev- Point A

Runoff = 0.58 cfs @ 12.03 hrs, Volume= 0.030 af, Depth> 1.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.07"

_	Area	(ac) C	N Dese	cription		
	0.	130 6	61 >759	% Grass co	over, Good	, HSG B
_	0.	160 9	98 Pave	ed parking	, HSG B	
	0.	290 8	31 Weig	ghted Aver	age	
	0.	130	44.8	3% Pervio	us Area	
	0.	160	55.1	7% Imperv	/ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.4	50	0.0150	0.09		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.09"
	1.5	145	0.0100	1.61		Shallow Concentrated Flow,
_						Unpaved Kv= 16.1 fps
	10.9	195	Total			

Subcatchment 2S: Post Dev- Point A

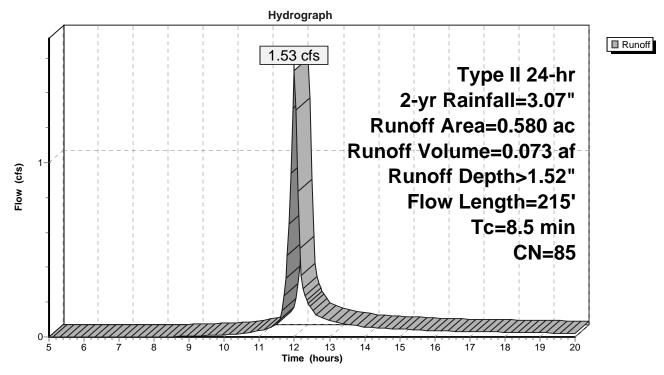

Summary for Subcatchment 3S: Post Dev- Point B

Runoff = 1.61 cfs @ 12.01 hrs, Volume= 0.082 af, Depth> 1.83"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.07"

 Area	(ac) C	N Dese	cription		
0.	130 6	61 >759	% Grass co	over, Good	, HSG B
 0.	410 9	98 Pave	ed parking	, HSG B	
0.	540 8				
0.	130	24.0	7% Pervio	us Area	
0.	410	75.9	3% Imperv	vious Area	
Тс	Length	Slope	Velocity	Capacity	Description
 (min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.6	45	0.0150	0.09		Sheet Flow,
					Grass: Dense n= 0.240 P2= 3.09"
1.0	100	0.0100	1.61		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
 9.6	145	Total			

Subcatchment 3S: Post Dev- Point B


Summary for Subcatchment 6S: Post Dev- Point C

Runoff = 1.53 cfs @ 12.00 hrs, Volume= 0.073 af, Depth> 1.52"

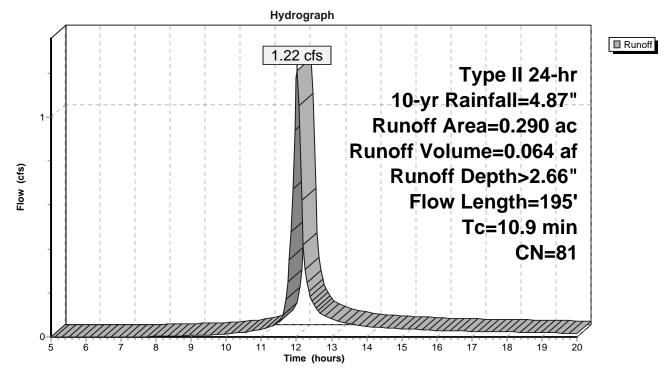
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 2-yr Rainfall=3.07"

	Area	(ac) C	N Des	cription			_
	0.	210	61 >75	% Grass co	over, Good	, HSG B	
	0.	370	98 Pav	ed parking	, HSG B		_
0.580 85 Weighted Average							
	0.	210	36.2	1% Pervio	us Area		
	0.	370	63.7	'9% Imperv	vious Area		
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	_
	7.0	35	0.0150	0.08		Sheet Flow,	
	1.5	180	0.0100	2.03		Grass: Dense n= 0.240 P2= 3.09" Shallow Concentrated Flow, Paved Kv= 20.3 fps	_
	8.5	215	Total				

Subcatchment 6S: Post Dev- Point C

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method Page 9

Subcatchment 2S: Post Dev- Point A	Runoff Area=0.290 ac 55.17% Impervious Runoff Depth>2.66" Flow Length=195' Tc=10.9 min CN=81 Runoff=1.22 cfs 0.064 af
Subcatchment 3S: Post Dev- Point B	Runoff Area=0.540 ac 75.93% Impervious Runoff Depth>3.42" Flow Length=145' Tc=9.6 min CN=89 Runoff=2.90 cfs 0.154 af
Subcatchment 6S: Post Dev- Point C	Runoff Area=0.580 ac 63.79% Impervious Runoff Depth>3.03" Flow Length=215' Tc=8.5 min CN=85 Runoff=2.95 cfs 0.146 af
Total Runoff Area = 1.410	0 ac Runoff Volume = 0.364 af Average Runoff Depth = 3.10" 33.33% Pervious = 0.470 ac 66.67% Impervious = 0.940 ac

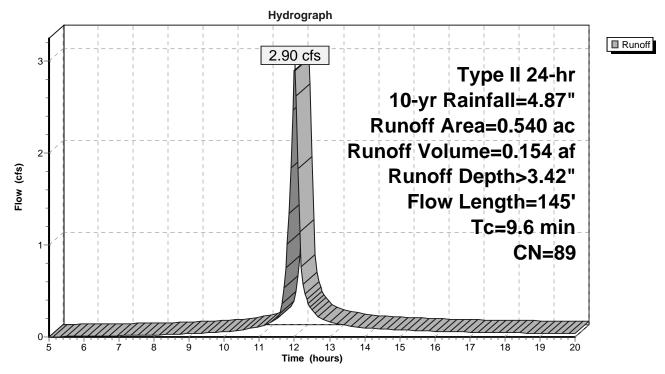

Summary for Subcatchment 2S: Post Dev- Point A

Runoff = 1.22 cfs @ 12.03 hrs, Volume= 0.064 af, Depth> 2.66"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=4.87"

Area	(ac) C	N Des	cription				
0	.130	61 >75 [°]	% Grass co	over, Good	, HSG B		
0	.160	98 Pave	ed parking	, HSG B			
0	0.290 81 Weighted Average						
0	.130	44.8	3% Pervio	us Area			
0	.160	55.1	7% Imperv	vious Area			
Tc	Length	Slope	Velocity	Capacity	Description		
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)			
9.4	50	0.0150	0.09		Sheet Flow,		
					Grass: Dense n= 0.240 P2= 3.09"		
1.5	145	0.0100	1.61		Shallow Concentrated Flow,		
					Unpaved Kv= 16.1 fps		
10.9	195	Total					

Subcatchment 2S: Post Dev- Point A

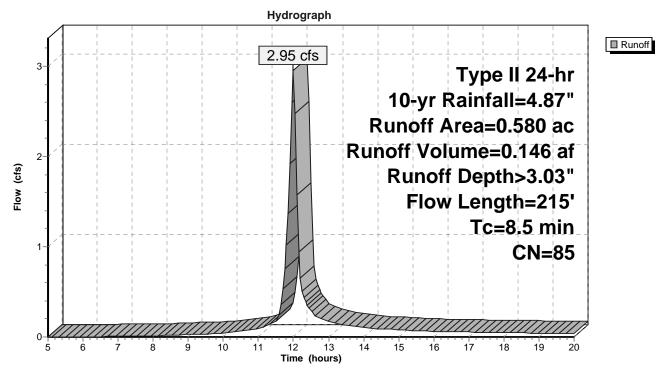

Summary for Subcatchment 3S: Post Dev- Point B

Runoff = 2.90 cfs @ 12.01 hrs, Volume= 0.154 af, Depth> 3.42"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=4.87"

_	Area	(ac) C	N Dese	cription		
	0.	130 6	51 >759	% Grass co	over, Good	, HSG B
_	0.	410 9	98 Pave	ed parking	, HSG B	
	0.	540 8	39 Weig	ghted Aver	age	
	0.	130	24.0	7% Pervio	us Area	
	0.	410	75.9	3% Imperv	vious Area	
	Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	8.6	45	0.0150	0.09		Sheet Flow,
_	1.0	100	0.0100	1.61		Grass: Dense n= 0.240 P2= 3.09" Shallow Concentrated Flow, Unpaved Kv= 16.1 fps
	9.6	145	Total			

Subcatchment 3S: Post Dev- Point B


Summary for Subcatchment 6S: Post Dev- Point C

Runoff = 2.95 cfs @ 12.00 hrs, Volume= 0.146 af, Depth> 3.03"

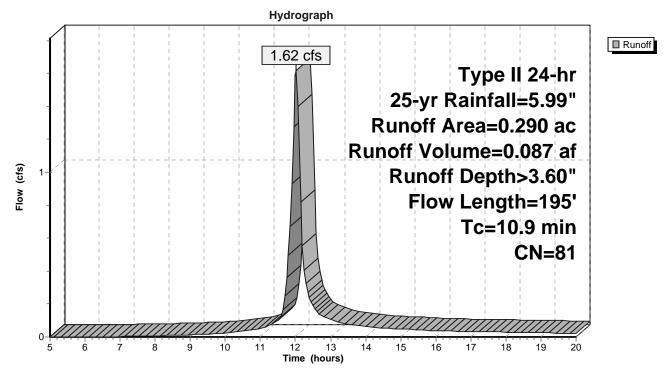
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 10-yr Rainfall=4.87"

	Area	(ac) C	N Dese	cription		
	0.	210	61 >759	% Grass co	over, Good	, HSG B
_	0.	370	98 Pave	ed parking	, HSG B	
	0.	580	35 Weig	ghted Aver	age	
	0.	210	36.2	1% Pervio	us Area	
	0.	370	63.7	9% Imperv	vious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.0	35	0.0150	0.08		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.09"
	1.5	180	0.0100	2.03		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	8.5	215	Total			

Subcatchment 6S: Post Dev- Point C

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 2S: Post Dev- Point A	Runoff Area=0.290 ac 55.17% Impervious Runoff Depth>3.60" Flow Length=195' Tc=10.9 min CN=81 Runoff=1.62 cfs 0.087 af
Subcatchment 3S: Post Dev- Point B	Runoff Area=0.540 ac 75.93% Impervious Runoff Depth>4.43" Flow Length=145' Tc=9.6 min CN=89 Runoff=3.70 cfs 0.199 af
Subcatchment 6S: Post Dev- Point C	Runoff Area=0.580 ac 63.79% Impervious Runoff Depth>4.01" Flow Length=215' Tc=8.5 min CN=85 Runoff=3.85 cfs 0.194 af
Total Runoff Area = 1.410	0 ac Runoff Volume = 0.480 af Average Runoff Depth = 4.09" 33.33% Pervious = 0.470 ac 66.67% Impervious = 0.940 ac

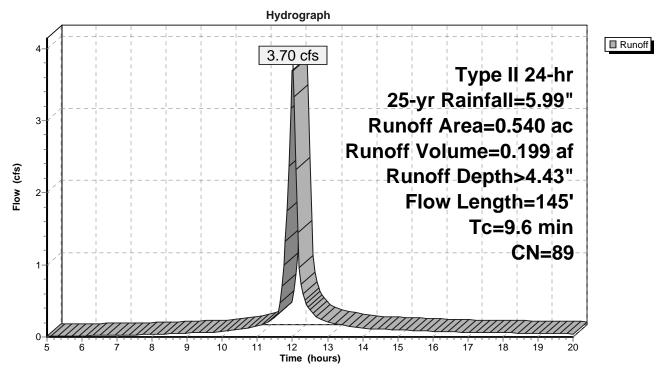

Summary for Subcatchment 2S: Post Dev- Point A

Runoff = 1.62 cfs @ 12.02 hrs, Volume= 0.087 af, Depth> 3.60"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=5.99"

A	rea	(ac) C	N Dese	cription		
	0.	130 6	61 >759	% Grass co	over, Good	, HSG B
	0.	160 9	98 Pave	ed parking	, HSG B	
	0.	290 8	31 Weig	phted Aver	age	
	0.	130	44.8	3% Pervio	us Area	
	0.	160	55.1	7% Imperv	ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
(m	in)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
ç	9.4	50	0.0150	0.09		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.09"
	1.5	145	0.0100	1.61		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
1(0.9	195	Total			

Subcatchment 2S: Post Dev- Point A

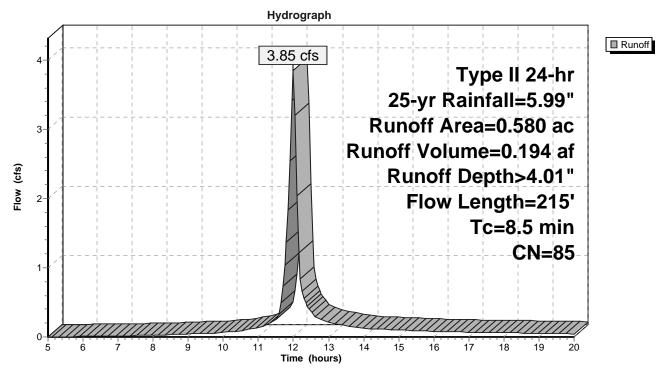

Summary for Subcatchment 3S: Post Dev- Point B

Runoff = 3.70 cfs @ 12.00 hrs, Volume= 0.199 af, Depth> 4.43"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=5.99"

_	Area	(ac) C	N Dese	cription		
	0.	130 6	61 >759	% Grass co	over, Good	, HSG B
_	0.	410 9	98 Pave	ed parking	, HSG B	
	0.	540 8	39 Weig	ghted Aver	age	
	0.	130	24.0	7% Pervio	us Area	
	0.	410	75.9	3% Imperv	/ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	8.6	45	0.0150	0.09		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.09"
	1.0	100	0.0100	1.61		Shallow Concentrated Flow,
_						Unpaved Kv= 16.1 fps
	9.6	145	Total			

Subcatchment 3S: Post Dev- Point B


Summary for Subcatchment 6S: Post Dev- Point C

Runoff = 3.85 cfs @ 12.00 hrs, Volume= 0.194 af, Depth> 4.01"

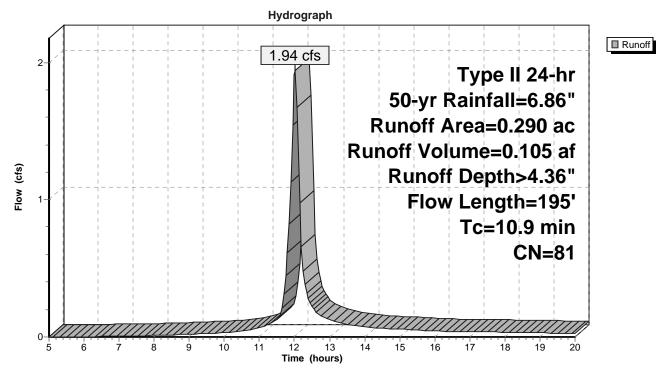
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 25-yr Rainfall=5.99"

	Area	(ac) C	N Des	cription		
0.210 61 >75% Grass cover, Good, HSG B						
	0.	370	98 Pav	ed parking,	, HSG B	
	0.	580	85 Wei	ghted Aver	age	
	0.	210	36.2	1% Pervio	us Area	
	0.	370	63.7	9% Imperv	ious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.0	35	0.0150	0.08		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.09"
	1.5	180	0.0100	2.03		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	8.5	215	Total			

Subcatchment 6S: Post Dev- Point C

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 2S: Post Dev- Point A	Runoff Area=0.290 ac 55.17% Impervious Runoff Depth>4.36" Flow Length=195' Tc=10.9 min CN=81 Runoff=1.94 cfs 0.105 af
Subcatchment 3S: Post Dev- Point B	Runoff Area=0.540 ac 75.93% Impervious Runoff Depth>5.22" Flow Length=145' Tc=9.6 min CN=89 Runoff=4.32 cfs 0.235 af
Subcatchment 6S: Post Dev- Point C	Runoff Area=0.580 ac 63.79% Impervious Runoff Depth>4.79" Flow Length=215' Tc=8.5 min CN=85 Runoff=4.54 cfs 0.232 af
Total Runoff Area = 1.410	0 ac Runoff Volume = 0.572 af Average Runoff Depth = 4.87" 33.33% Pervious = 0.470 ac 66.67% Impervious = 0.940 ac

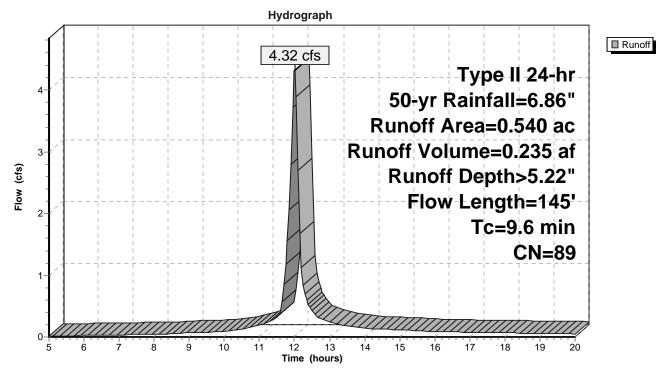

Summary for Subcatchment 2S: Post Dev- Point A

Runoff = 1.94 cfs @ 12.02 hrs, Volume= 0.105 af, Depth> 4.36"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 50-yr Rainfall=6.86"

_	Area	(ac) C	N Dese	cription		
	0.	130 6	61 >759	% Grass co	over, Good	, HSG B
	0.	160 9	98 Pave	ed parking	, HSG B	
	0.	290 8	31 Weig	ghted Aver	age	
	0.	130	44.8	3% Pervio	us Area	
	0.	160	55.1	7% Imperv	/ious Area	
	Tc	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.4	50	0.0150	0.09		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.09"
	1.5	145	0.0100	1.61		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	10.9	195	Total			

Subcatchment 2S: Post Dev- Point A

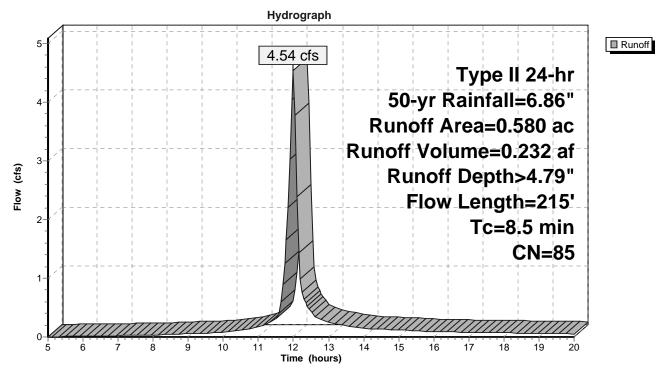

Summary for Subcatchment 3S: Post Dev- Point B

Runoff 4.32 cfs @ 12.00 hrs, Volume= 0.235 af, Depth> 5.22" _

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 50-yr Rainfall=6.86"

_	Area	(ac) C	N Dese	cription		
	0.	130 (61 >759	% Grass co	over, Good	, HSG B
_	0.	410 9	98 Pave	ed parking	, HSG B	
	0.	540 8	39 Weig	ghted Aver	age	
	0.	130	24.0	7% Pervio	us Area	
	0.	410	75.9	3% Imperv	vious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	8.6	45	0.0150	0.09		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.09"
	1.0	100	0.0100	1.61		Shallow Concentrated Flow,
_						Unpaved Kv= 16.1 fps
	9.6	145	Total			

Subcatchment 3S: Post Dev- Point B



Runoff 4.54 cfs @ 11.99 hrs, Volume= 0.232 af, Depth> 4.79"

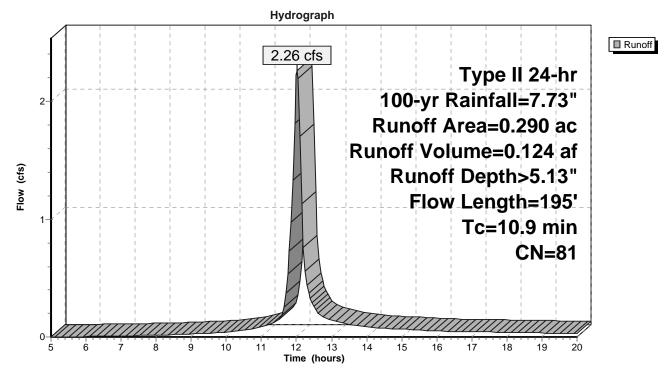
Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 50-yr Rainfall=6.86"

_	Area	(ac) C	N Dese	cription		
	0.	210 6	61 >759	% Grass co	over, Good	, HSG B
	0.	370 9	98 Pave	ed parking	, HSG B	
	0.	580 8	35 Weig	ghted Aver	age	
	0.	210	36.2	1% Pervio	us Area	
	0.	370	63.7	9% Imperv	/ious Area	
	_					
	Tc	Length	Slope	Velocity	Capacity	Description
	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	7.0	35	0.0150	0.08		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.09"
	1.5	180	0.0100	2.03		Shallow Concentrated Flow,
						Paved Kv= 20.3 fps
	8.5	215	Total			

Subcatchment 6S: Post Dev- Point C

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 2S: Post Dev- Point A	Runoff Area=0.290 ac 55.17% Impervious Runoff Depth>5.13" Flow Length=195' Tc=10.9 min CN=81 Runoff=2.26 cfs 0.124 af
Subcatchment 3S: Post Dev- Point B	Runoff Area=0.540 ac 75.93% Impervious Runoff Depth>6.01" Flow Length=145' Tc=9.6 min CN=89 Runoff=4.94 cfs 0.271 af
Subcatchment 6S: Post Dev- Point C	Runoff Area=0.580 ac 63.79% Impervious Runoff Depth>5.58" Flow Length=215' Tc=8.5 min CN=85 Runoff=5.24 cfs 0.270 af
Total Runoff Area = 1.410	0 ac Runoff Volume = 0.664 af Average Runoff Depth = 5.65" 33.33% Pervious = 0.470 ac 66.67% Impervious = 0.940 ac

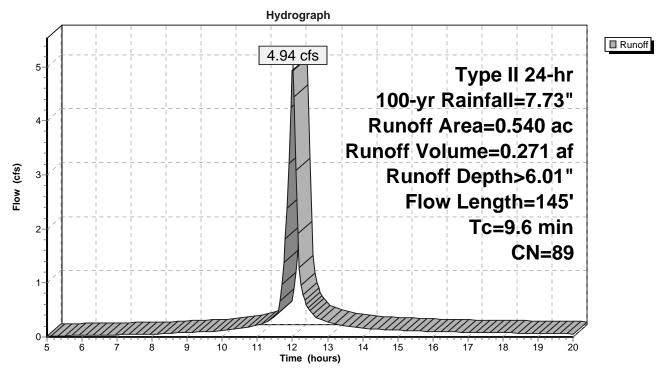

Summary for Subcatchment 2S: Post Dev- Point A

Runoff = 2.26 cfs @ 12.02 hrs, Volume= 0.124 af, Depth> 5.13"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=7.73"

_	Area	(ac) C	N Des	cription		
0.130 61 >75% Grass cover, Good, HSG B						
_	0.	160	98 Pav	ed parking,	, HSG B	
	0.	290	81 Wei	ghted Aver	age	
	0.	130	44.8	3% Pervio	us Area	
	0.	160	55.1	7% Imperv	vious Area	
	Тс	Length	Slope	Velocity	Capacity	Description
_	(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
	9.4	50	0.0150	0.09		Sheet Flow,
						Grass: Dense n= 0.240 P2= 3.09"
	1.5	145	0.0100	1.61		Shallow Concentrated Flow,
						Unpaved Kv= 16.1 fps
	10.9	195	Total			

Subcatchment 2S: Post Dev- Point A

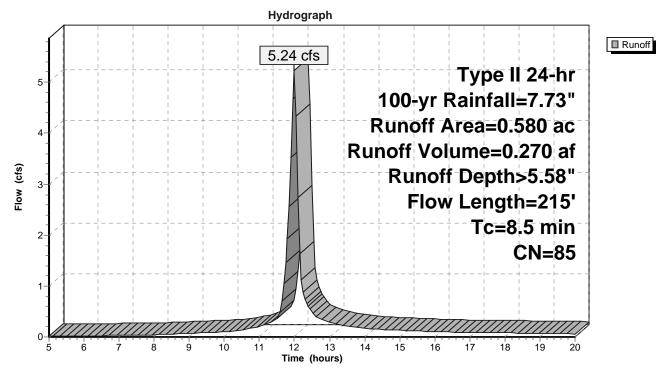

Summary for Subcatchment 3S: Post Dev- Point B

Runoff = 4.94 cfs @ 12.00 hrs, Volume= 0.271 af, Depth> 6.01"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=7.73"

Area	(ac) C	N Des	cription		
0	.130	61 >75'	% Grass co	over, Good	, HSG B
0	.410	98 Pav	ed parking,	, HSG B	
0	.540	89 Wei	ghted Aver	age	
0	.130	24.0	7% Pervio	us Area	
0	.410	75.9	3% Imperv	vious Area	
Тс	Length	Slope	Velocity	Capacity	Description
(min)	(feet)	(ft/ft)	(ft/sec)	(cfs)	
8.6	45	0.0150	0.09		Sheet Flow,
					Grass: Dense n= 0.240 P2= 3.09"
1.0	100	0.0100	1.61		Shallow Concentrated Flow,
					Unpaved Kv= 16.1 fps
9.6	145	Total			

Subcatchment 3S: Post Dev- Point B

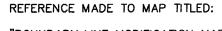

Summary for Subcatchment 6S: Post Dev- Point C

Runoff = 5.24 cfs @ 11.99 hrs, Volume= 0.270 af, Depth> 5.58"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Type II 24-hr 100-yr Rainfall=7.73"

 Area	(ac) C	N Des	cription			_
0.	210	61 >75	% Grass co	over, Good	, HSG B	
 0.	370	98 Pav	ed parking	, HSG B		_
0.	580	85 Wei	ghted Aver	age		
0.	210	36.2	1% Pervio	us Area		
0.	370	63.7	'9% Imperv	vious Area		
 Tc (min)	Length (feet)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description	_
7.0	35	0.0150	0.08		Sheet Flow,	
1.5	180	0.0100	2.03		Grass: Dense n= 0.240 P2= 3.09" Shallow Concentrated Flow, Paved Kv= 20.3 fps	_
8.5	215	Total				

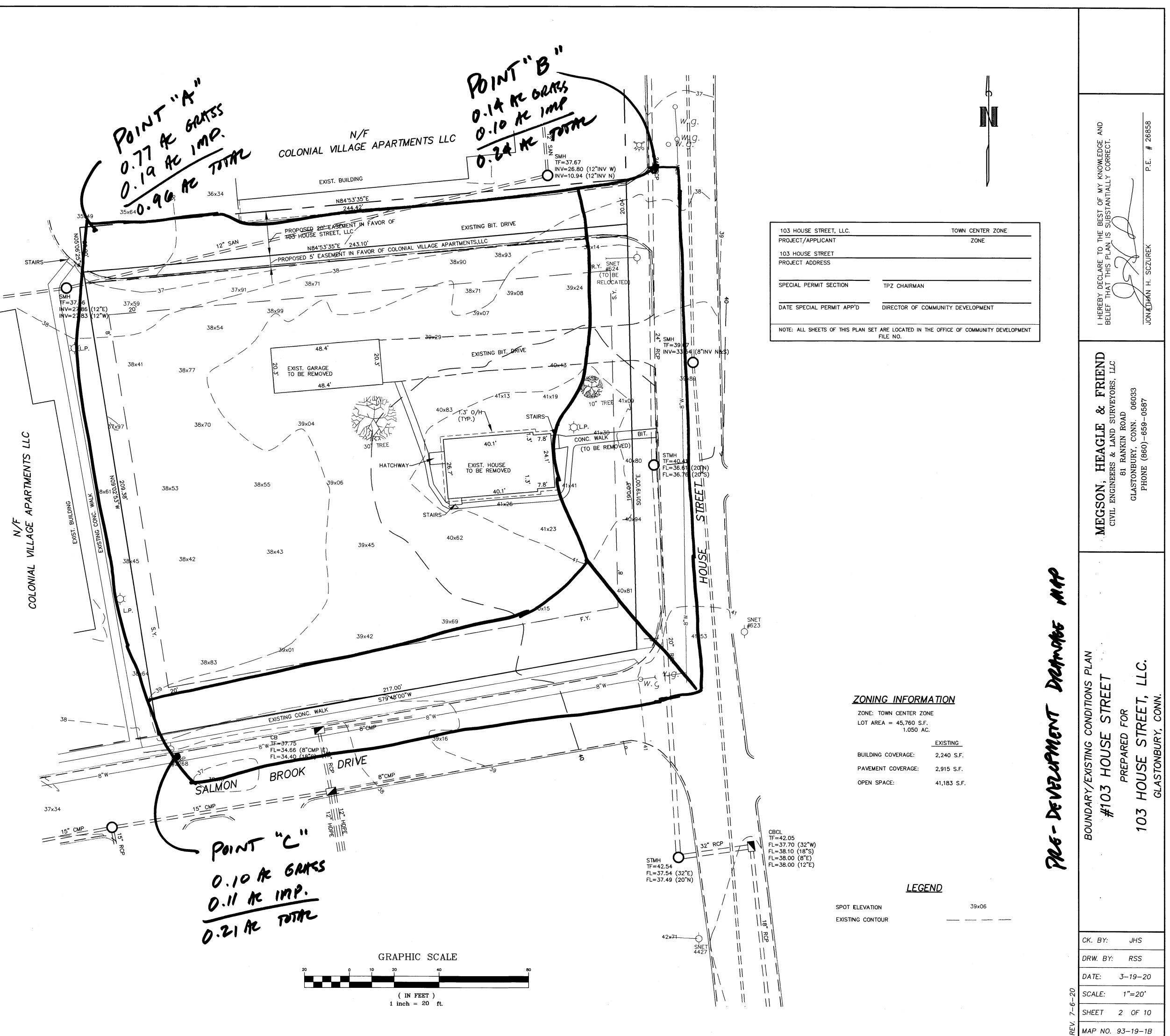
Subcatchment 6S: Post Dev- Point C



103 House Street, LLC 103 House St, Glastonbury, CT

APPENDIX B PRE-DEVELOPMENT DRAINAGE AREA MAP

SCALE: 1"=1,000'


JOHN L. HEAGLE

"BOUNDARY LINE MODIFICATION MAP #103 HOUSE STREET PREPARED FOR COLEMAN ASSOCIATES, LLC. GLASTONBURY, CONN." BY MEGSON, HEAGLE & FRIEND C.E. & L.S., LLC DATE: 11-12-19 SCALE: 1"=20' SHEET 1 OF 1 MAP NO. 93-19-1BLM

TO MY KNOWLEDGE AND BELIEF, THIS MAP IS SUBSTANTIALLY CORRECT AS NOTED HEREON. THIS SURVEY WAS PREPARED PURSUANT TO THE REGULATIONS OF CONNECTICUT STATE AGENCIES SECTION 20-300b-1 THROUGH 20-300b-20 AND THE "STANDARDS FOR SURVEYS AND MAPS IN THE STATE OF CONNECTICUT" AS ADOPTED BY THE CONNECTICUT ASSOCIATION OF LAND SURVEYORS, INC., ON SEPTEMBER 26, 1996. TYPE OF SURVEY: PROPERTY/BOUNDARY SURVEY BOUNDARY DETERMINATION CATEGORY: DEPENDENT RESURVEY CLASS OF ACCURACY A-2 CLASS OF ACCURACY: A-2

STAIRS-= == == \mathbf{C} A C F 0

L.S. **#** 9396

103 House Street, LLC 103 House St, Glastonbury, CT

APPENDIX C POST-DEVELOPMENT DRAINAGE AREA MAP

SITE LOCATION MAP

SOILS DATA

 TEST PIT:
 #1

 DATE:
 12-1

 DEPTH:
 78"

 GROUNDWATER:
 70"

 LEDGE:
 NONE

 MATERIAL:
 0-12
 12-13-19 NONE 0-12" TOPSOIL 12-32" FINE SANDY LOAM 32-60" MOD. COMPACT FINE SAND 60-78" COARSE SAND & GRAVEL

TEST PIT: #2 DATE: DEPTH: 82" GROUNDWATER: 64" LEDGE: MATERIAL:

12-13-19 NONE 0-22" TOPSOIL 22-36" FINE SANDY LOAM 36-60" COARSE SAND & GRAVEL 60-82" VERY FINE SAND & SILT

TEST PIT: #3 DATE: DEPTH: 12-13-19 87" GROUNDWATER: 73" LEDGE: NONE NONE MATERIAL: 0-15"

TEST PIT: DATE: DEPTH:

MATERIAL:

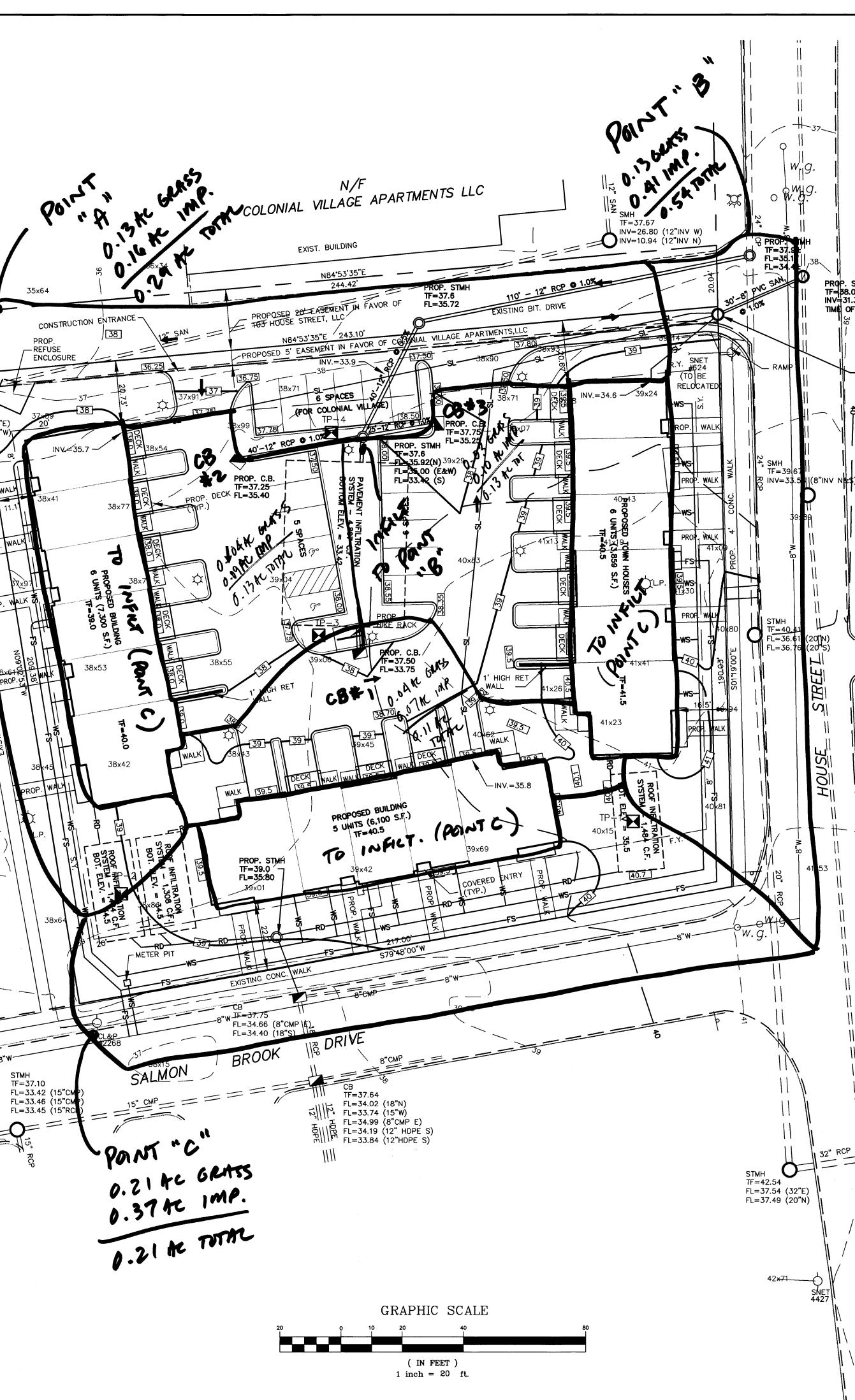
15-36" FINE SANDY LOAM 36-53" VERY FINE SAND 53-87" COMPACT COARSE SAND & GRAVEL 12-13-19

TOPSOIL

96" GROUNDWATER: NONE LEDGE: NONE 0-15" TOPSOIL 15–28" FINE SANDY LOAM 28–66" COARSE SAND & GRAVEL 66-96" COARSE SAND

STANDPIPE READINGS

1


		DEPT	H TO GROUN	IDWATER F	ROM GROU	ND SURFA	CE	
STANDPIPE #	12/18/2019	12/24/2019	12/31/2019	1/10/2020	1/24/2020	2/3/2020	2/17/2020	3/9/2020
TP-1	4.85'	5.37'	4.75'	5.25'	5.75' ·	5.75'	5.45'	5.75'
TP-2	4.37'	5.17'	5.02'	5.25'	5.97'	DRY	5.27'	5.87'
TP-3	5.23'	6.03'	6.03'	6.14'	6.93'	DRY	6.13'	6.73'
TP-4	7.43'	8.08'	8.18'(DRY)	DRY	DRY	DRY	DRY	DRY

STAIRS-----= == == ==1 PROP. DTT S ornp N A C E A C E \mathcal{S} 38____

35x49

37x34 rL=33.45 ,

REFERNCE MADE TO MAP TITLED: "BOUNDARY LINE MODIFICATION MAP #103 HOUSE STREET PREPARED FOR COLEMAN ASSOCIATES, LLC GLASTONBURY, CONN" BY MEGSON, HEAGLE & FRIEND, C.E. & L.S., LLC GLASTONBURY, CT DATE: 11-11-19 SCALE: 1"=20' MAP NO. 93-19-18LM

PROP. SMH TF=88.0± INV=31.3±(VERIFY AT TIME OF CONSTRUCTION)

> PROP. SM - TF=38.3 INV=31.60

> > SNET 1 #623

CBCL TF=42.05

N

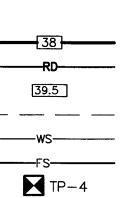
12"RCP 2243= 2543=

CB

zo" RCP

FL=37.70 (32"W) FL=38.10 (18"S) FL=38.00 (8"E)

FL=38.00 (12"E)


TOWN CENTER ZONE 103 HOUSE STREET, LLC. PROJECT/APPLICANT ZONE 103 HOUSE STREET PROJECT ADDRESS SPECIAL PERMIT SECTION TPZ CHAIRMAN DATE SPECIAL PERMIT APP'D DIRECTOR OF COMMUNITY DEVELOPMENT NOTE: ALL SHEETS OF THIS PLAN SET ARE LOCATED IN THE OFFICE OF COMMUNITY DEVELOPMENT FILE NO.

	ZONING TABLE	
TOWN CENTER ZONE	REQUIRED/ALLOWED	PROPOSED/PROVIDED
LOT AREA	40,000 S.F.	45,760 S.F. (1.050 AC)
LOT FRONTAGE	100 FT	217.52 FT
FRONT YARD SETBACK	20 FT	22.2 FT
SIDE YARD SETBACK	8 FT	11.1 FT
REAR YARD SETBACK	20 FT	20.6 FT
BUILDING HEIGHT	3 STORIES/38 FT	3 STORIES/32.8 FT
F.A.R.	0.5 (22,880 S.F.)	.47 (21,606 S.F.)

F	PARKING CHART	
	REQUIRED	PROVIDED
103 HOUSE STREET	2 SPACES/UNIT = 34	 GARAGE SPACES DRIVEWAY SPACES VISITOR SPACES TOTAL SPACES
119 HOUSE STREET	6 SPACES DISPLACED BY ACCESS DRIVE	6 SPACES REPLACED ON 103 HOUSE STREET
	·	51 SPACES TOTAL

<u>LEGEND</u>

DRODOCED CONTOUR	
PROPOSED CONTOUR	-
PROP 8" PVC ROOF DRAIN	
PROPOSED SPOT ELEVATIONS	
EXISTING CONTOUR	
PROPOSED 2" COPPER WATER SERVICE	
PROPOSED 6" D.I. FIRE SERVICE	
TEST PIT	

ώŃ

>

SHEET 3 OF 10

없었 MAP NO. 93-19-1SP

	I HEREBY DECLARE TO THE BEST OF MY KNOWLEDGE AND BELIEF THAT THIS PLAN IS SUBSTANTIALLY CORRECT. JONATHAN H. SCZUREK P.E. # 26858
	MEGSON, HEAGLE & FRIEND CIVIL ENGINEERS & LAND SURVEYORS, LLC B1 RANKIN ROAD GLASTONBURY, CONN. 06033 PHONE (860)-659-0587
st. Detruter then mys.	SITE PLAN – PROPOSED TOWN HOMES #103 HOUSE STREET PREPARED FOR 103 HOUSE STREET, LLC. GLASTONBURY, CONN.
C.	CK. BY: JHS DRW. BY: RSS
1-10-20 1-6-20	DATE: 3–19–20 SCALE: 1"=20'

TF=41.60 FL=38.48 (12"W)

CB

103 House Street, LLC 103 House St, Glastonbury, CT

APPENDIX C STORM SEWER DESIGN

	<u></u>			CIVIL	ENGINEER: 81 I GLASTON	DN & HI S & LAND S RANKIN RO. IBURY, COM IE: (860) 659	URVEYC AD N. 06033	DRS, LLC							
	Project 93 -	19						Designed by	JH	>	Dat	c C	3 · 2	20	
	Town Gutst	- ,						Checked by			Da	ate heet N	ło.	0	 ſ
	"n"	15	0.015												
	Headwater	14	انر		-9.	1.2.1									
m	Full Capacity	13	2.5 52	3.25	3.25	3.25									
mulals	S Average Velocity	12	L:2	2.8	8	5.4	2								
410	% Slope	Ξ	1.0	1.0	1.0	0/10.1									
10	Length of Pipe	10	ø	40	25'	18									
ign —	Pipe Size	6	.2		12"		XE THE								
er System Design	Q in System	8	0.60	0.75	0.75		100								
Storm Sewe	Rainfall Intensity	7	7.45	745	7.45	(11.6)	7								
S	Sum of AI in System		90. 2	01.	0.10	92.									
	AI Entering CB	5	90.0	010	0.10	0.70									
	Accumulated Time	4	У	S	5	Ś									
	🔨 Time in Pipe	3	~	14	6	12									
	Time to Inlet	2	γ	6	6										
	Line Segment	-	CB 1 TO INFILT	CB2 BINHUT	CB 3 TO INFIG	mH out st									

103 House Street, LLC 103 House St, Glastonbury, CT

APPENDIX C INFILTRATION CHAMBER DETAILS

PROJECT INFORMATION

ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

ADVANCED DRAINAGE SYSTEMS, INC.

103 HOUSE ST PAVEMENT GLASTONBURY, CT

SC-740 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH SC-740.
- CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE 2. COPOLYMERS.
- CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) 3. CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD 4 IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE 5. THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6. "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.

REQUIREMENTS FOR HANDLING AND INSTALLATION:

- TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
- TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2+
- TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73» F / 23» C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY. 9.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF THE SC-740 SYSTEM

- STORMTECH SC-740 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A 1 PRE-CONSTRUCTION MEETING WITH THE INSTALLERS.
- STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE". 2.
- CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. 3 STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED. ٠
 - BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 4.
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS. 6.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE 3/4-2" (20-50 mm) 7.
- 8 THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN ENGINEER.
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 9. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

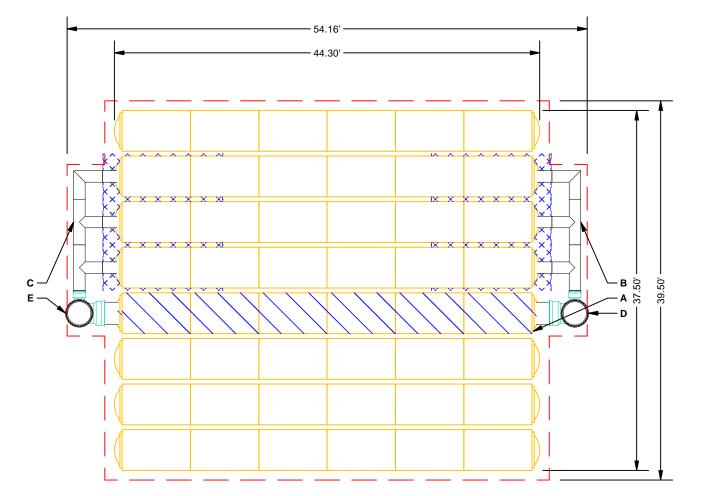
NOTES FOR CONSTRUCTION EQUIPMENT

- 1.
- 2. THE USE OF CONSTRUCTION EQUIPMENT OVER SC-740 CHAMBERS IS LIMITED
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.
 - WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE"
- 3. FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO THE CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

2013 ADS INC



STORMTECH SC-740 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE"

NO RUBBER TIRED LOADERS, DUMP TRUCKS, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE

WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH SC-310/SC-740/DC-780 CONSTRUCTION GUIDE".

		PROPOSED LAYOUT	CONCEPTUAL ELEVATIONS				
- I					PART TYPE	ITEM ON LAYOUT	DESCRIPTION
	48		MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	11.50			24" BOTTOM PREFABRICATED END CAP/TYP OF ALL 24" B
	16		MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC):	5.50	PREFABRICATED END CAP	Δ	ISOLATOR ROWS
	12	STONE ABOVE (in)	MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):	5.00	MANIFOLD		12" x 12" TOP MANIFOLD. ADS N-12
1	12	STONE BELOW (in)	MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT):	5.00			, -
ľ	40		MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	5.00	MANIFOLD MANIFOLD NYLOPLAST (INLET W/ ISO	C	12" x 12" TOP MANIFOLD, ADS N-12
ł						D	30" DIAMETER (24.00" SUMP MIN)
			TOP OF SC-740 CHAMBER:	3.50	ROW)		
	4869		12" x 12" TOP MANIFOLD INVERT:	2.04	NYLOPLAST (INLET W/ ISO		30" DIAMETER (24.00" SUMP MIN)
		(BASE STONE INCLUDED)	12" x 12" TOP MANIFOLD INVERT:	2.04	ROW)		
	1970	SYSTEM AREA (SF)	24" ISOLATOR ROW INVERT:	1.01			
	187.3	SYSTEM PERIMETER (ft)	24" ISOLATOR ROW INVERT:	1.01			
			BOTTOM OF SC-740 CHAMBER:	1.00			
			BOTTOM OF STONE:	0.00			

PLACE MINIMUM 12.50' OF ADS GEOSYNTHETICS 315WTK WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

<u>NOTES</u>

- MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND C
- COMPONENTS IN THE FIELD. THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIR THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE D THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASE PROVIDED.

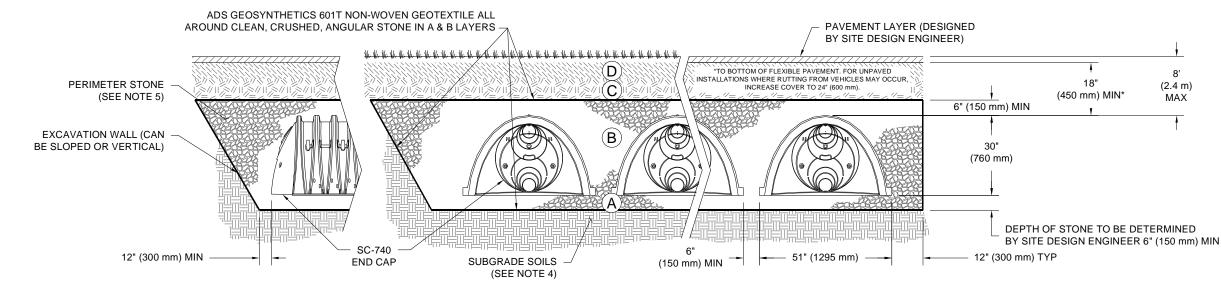
NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE

– – – BED LIMITS

*INVERT AI		OF CHAMBER					Ξ
BOTTOM CONNECTIONS AND	INVERT*	MAX FLOW					ILTIMA
	0.10" 12.50"		NT			₹	THE
	12.50"		ME	H	SL	Ż	I. IT IS
		5.7 CFS IN	103 HOUSE ST PAVEMENT	GLASTONBURY, CT	DRAWN: JS	CHECKED: N/A	UCTION
		5.7 CFS IN	ΤΡ	BUR	DRA	CHE	ONSTRI
			с Ш	10 T			R TO C
			SUC	LAS			PRIOF
			НО	ច			AWING
			103			H H	IIS DR/
					DATE:	PROJECT #:	EW TH
			-	<u> </u>		R R	L REVI
							R SHAL
			_				GINEEI NTS.
			TION				GN EN
			CRIP				E DESI
			DESCRIPTION				HE SIT OJECT
							ND PR
							SENTA ¹
			CHK				REPRE:
							UECT F VS. REC
			DRW	\square	\parallel		R PRO
			REV				CTHE
			щ				ER OR
			*	Stormer	Detention - Retention - Water Quality	520 CROMWELL AVENUE ROCKY HILL CT 06067 860-529-8188 888-892-2694	WWW NUMMEDIACUM D TO ADS UNDER THE DRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE PRODUCTIS) DEPICTED AND ALL ASSICIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.
	STANDARD	MANIFOLD	4640 TRUEMAN BLVD	HILLIARD, OH 43026 ADVANCED DRAWAGE SYSTEMS, INC. 1-800-733-7473	10' 20'		THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE REEPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCTIS DEPICTED AND ALL ASSOCIA
COUPLE ADDITIONAL PIPE TO S				ADVAN	C		THIS DI RESPO
	IBLE FOR I	DETERMINING TON IS		s			

ACCEPTABLE FILL MATERIALS: STORMTECH SC-740 CHAMBER SYSTEMS

	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	СОМРА
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER.	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARI INSTALL
с	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 18" (450 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 A-1, A-2-4, A-3 OR AASHTO M43 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMP THE CHAMBE 6" (150 mm) WELL GRA PROCES VEHICLE WE F(
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 3, 357, 4, 467, 5, 56, 57	
A	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 3, 357, 4, 467, 5, 56, 57	PLATE COM


PLEASE NOTE:

THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".

STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 6" (150 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR. 2

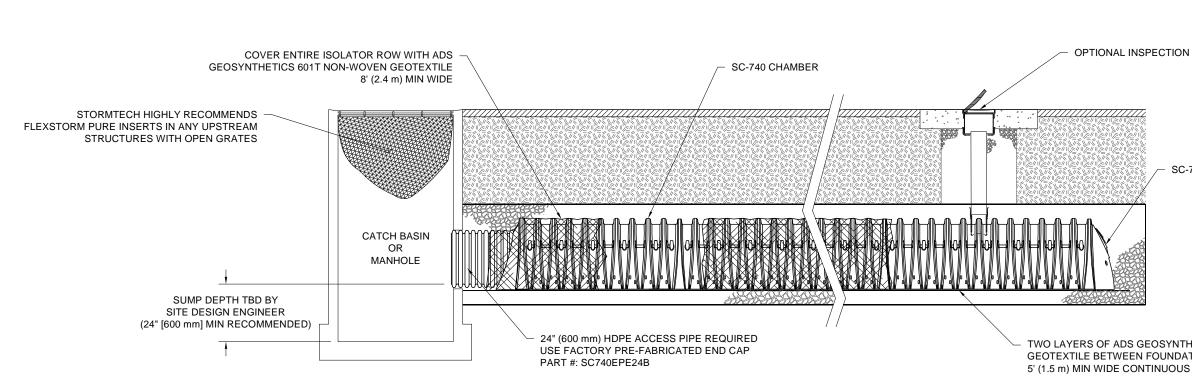
WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR 3. COMPACTION REQUIREMENTS.

ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION. 4

NOTES:

- CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 2. SC-740 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 2+.
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 550 • LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73» F / 23» C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

PACTION / DENSITY REQUIREMENT


ARE PER SITE DESIGN ENGINEER'S PLANS. PAVED LLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS.

MPACTIONS AFTER 12" (300 mm) OF MATERIAL OVER BERS IS REACHED. COMPACT ADDITIONAL LAYERS IN m) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR RADED MATERIAL AND 95% RELATIVE DENSITY FOR ESSED AGGREGATE MATERIALS. ROLLER GROSS WEIGHT NOT TO EXCEED 12,000 lbs (53 kN). DYNAMIC FORCE NOT TO EXCEED 20,000 lbs (89 kN).

NO COMPACTION REQUIRED.

COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.^{2,3}

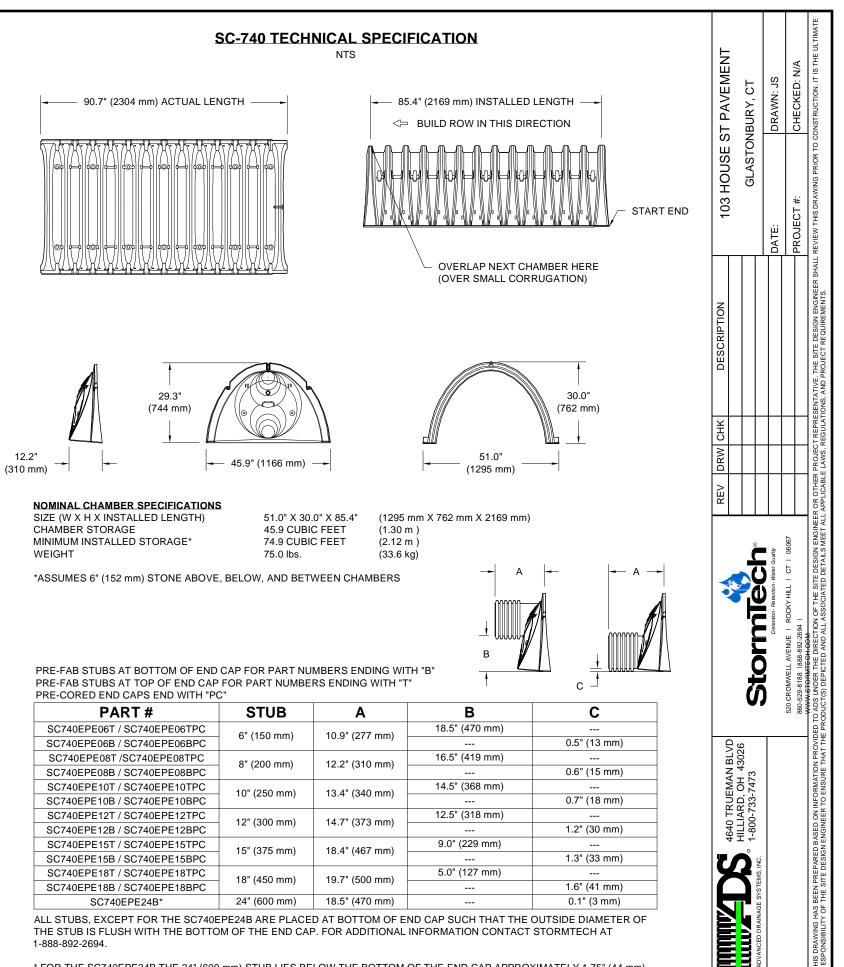
			REV C	REV DRW CHK		DESCRIPTION	103 HOUSE S	103 HOUSE ST PAVEMENT
3))))	
3	0						GLASTON	GLASTONBURY, CT
s⊦ (ADVANCED DRAINAGE SYSTEMS, INC.							
^{HEE}		Detention - Retention - Water Quality					DATE:	DRAWN: JS
T		520 CROMWELL AVENUE ROCKY HILL CT 06067						
6		860-529-818 1888-22694 1000000000000000000000000000000000000					PROJECT #:	CHECKED: N/A
	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ATTIVE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE STED DESIGN ENGINE RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	DED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEE E PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETALLS MEET ALL	R OR OTHER P APPLICABLE L	ROJECT REF AWS, REGUI	PRESENTATIVE. 1 LATIONS, AND PF	SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE TED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	REVIEW THIS DRAWING PRIOR TO C	CONSTRUCTION. IT IS THE ULTIMATE

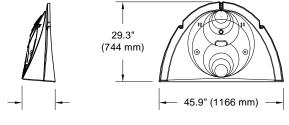
SC-740 ISOLATOR ROW DETAIL

NTS

INSPECTION & MAINTENANCE

INSPECT ISOLATOR ROW FOR SEDIMENT STEP 1)


- A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.2.
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG A.3.
 - LOWER A CAMERA INTO ISOLATOR ROW FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.4.
 - A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR ROWS
- B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW THROUGH OUTLET PIPE B.2.
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
- ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE B.3.
 - IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- STEP 2) CLEAN OUT ISOLATOR ROW USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN Β.
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS. STEP 3)
- STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

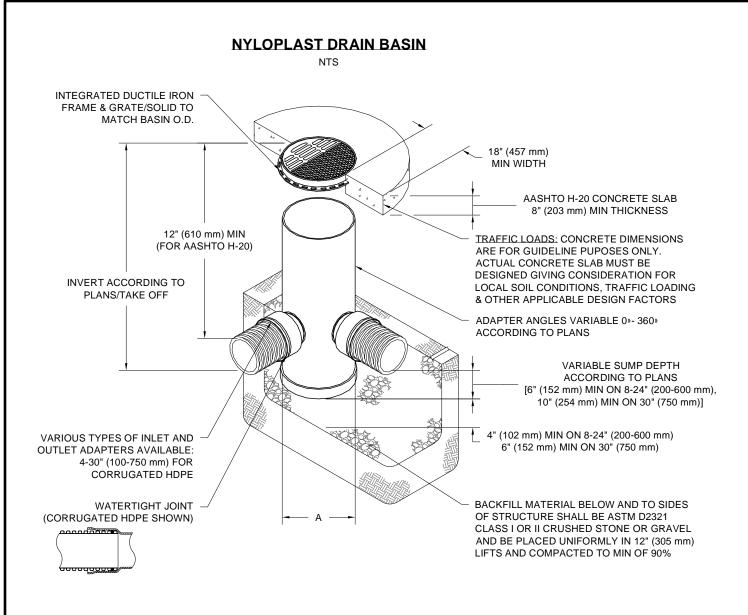

NOTES

- 1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.

NPORT	103 HOUSE ST PAVEMENT	GLASTONBURY, CT	DRAWN: JS	CHECKED: N/A	CONSTRUCTION. IT IS THE ULTIMATE
-740 END CAP	103 HOUSE S	GLASTON	DATE:	PROJECT #:	SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE TED DETALLS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.
	DESCRIPTION				IVE. THE SITE DESIGN ENGINEER SH ND PROJECT REQUIREMENTS.
HETICS 315WTK WOVEN ATION STONE AND CHAMBERS S FABRIC WITHOUT SEAMS	REV DRW CHK				SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINE TED DETALS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.
		Stormech	Detention - Retention - Water Oualty	520 CROMWELL AVENUE ROCKY HILL CT 06067 860-529-8188-892-2694	OVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINE OVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINE THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET A
		ADVANCED DRAINAGE SYSTEMS, INC. 1-800-733-7473			THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIA
			HEE" OF		

SC-

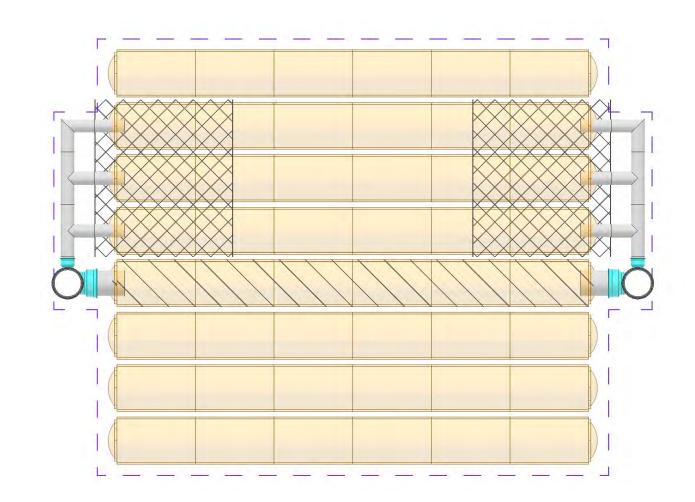
SIZE (W X H X INSTALLED LENGTH)
CHAMBER STORAGE
MINIMUM INSTALLED STORAGE*
WEIGHT


X 30.0" X 85.4"	(1295 mi
UBIC FEET	(1.30 m)
UBIC FEET	(2.12 m)
DS.	(33.6 kg)

THE CORED END ON CERE MITTER	.		
PART #	STUB	Α	
SC740EPE06T / SC740EPE06TPC	6" (150 mm)	10.9" (277 mm)	
SC740EPE06B / SC740EPE06BPC	0 (130 mm)	10.9 (277 1111)	
SC740EPE08T /SC740EPE08TPC	8" (200 mm)	12.2" (310 mm)	
SC740EPE08B / SC740EPE08BPC	0 (200 mm)	12.2 (310 1111)	
SC740EPE10T / SC740EPE10TPC	10" (250 mm)	13.4" (340 mm)	
SC740EPE10B / SC740EPE10BPC	10 (230 mm)	13.4 (340 1111)	
SC740EPE12T / SC740EPE12TPC	12" (300 mm)	14.7" (373 mm)	
SC740EPE12B / SC740EPE12BPC	12 (300 mm)	14.7 (373 1111)	
SC740EPE15T / SC740EPE15TPC	15" (375 mm)	18.4" (467 mm)	
SC740EPE15B / SC740EPE15BPC	13 (373 mm)	10.4 (407 1111)	
SC740EPE18T / SC740EPE18TPC	18" (450 mm)	19.7" (500 mm)	
SC740EPE18B / SC740EPE18BPC	10 (400 mm)	19.7 (300 mm)	
SC740EPE24B*	24" (600 mm)	18.5" (470 mm)	

* FOR THE SC740EPE24B THE 24" (600 mm) STUB LIES BELOW THE BOTTOM OF THE END CAP APPROXIMATELY 1.75" (44 mm). BACKFILL MATERIAL SHOULD BE REMOVED FROM BELOW THE N-12 STUB SO THAT THE FITTING SITS LEVEL.

SHEET 5 OF 6


NOTE: ALL DIMENSIONS ARE NOMINAL

- 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
- 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
 DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
- DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 4.
- FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC 5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
- 6. TO ORDER CALL: 800-821-6710

Α	PART #	GRATE/S	SOLID COVER (OPTIONS
8" (200 mm)	2808AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
10" (250 mm)	2810AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
12"	2812AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(300 mm)		AASHTO H-10	H-20	AASHTO H-20
15"	2815AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(375 mm)		AASHTO H-10	H-20	AASHTO H-20
18"	2818AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(450 mm)		AASHTO H-10	H-20	AASHTO H-20
24"	2824AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(600 mm)		AASHTO H-10	H-20	AASHTO H-20
30"	2830AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(750 mm)		AASHTO H-20	H-20	AASHTO H-20

					REV	REV DRW CHK	ΗK	DESCRIPTION	103 HOLISE	103 HOLISE ST DAVEMENT
6			(3130 VERONA AVE						
5		0 1-800-733-7473		BUFORD, GA 30518					GLASTC	GLASTONBURY, CT
SH (ADVANCED DRAINAGE SYSTEMS, INC.									
HEE DF			Nyloplast	* FAX (770) 932-2490 www.nyloplast-us.com					DATE:	DRAWN: JS
T			(-						
6							╞		PROJECT #:	CHECKED: N/A
;	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINE RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETALLS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	BASED ON INFORMATION PROVID ENGINEER TO ENSURE THAT THE	ED TO ADS UNDER THE DIRECTION PRODUCT(S) DEPICTED AND ALL A	I OF THE SITE DESIGN ENGINEE ASSOCIATED DETAILS MEET ALL	R OR OTHEF - APPLICABL	R PROJECT F E LAWS, REC	EPRESENT ⁴ SULATIONS,	SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE TED DETALS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	L REVIEW THIS DRAWING PRIOR TC	CONSTRUCTION. IT IS THE ULTIMA

PROJECT INFORMATION

ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

ADVANCED DRAINAGE SYSTEMS, INC.

COLEMAN ROOF 5 UNIT GLASTONBURY, CT

MC-3500 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH MC-3500.
- CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE 2 COPOLYMERS.
- CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) 3 CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD 4 IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING . STACKING LUGS
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3+
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73» F / 23» C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN 8 ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM

- STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A 1 PRE-CONSTRUCTION MEETING WITH THE INSTALLERS
- STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 2.
- CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. 3 STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED. ٠
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 4
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS. 6.
- INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS. 7.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE MEETING THE AASHTO M43 DESIGNATION OF #3 8. OR #4
- STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING. 9.
- THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN 10 ENGINEER
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 11. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

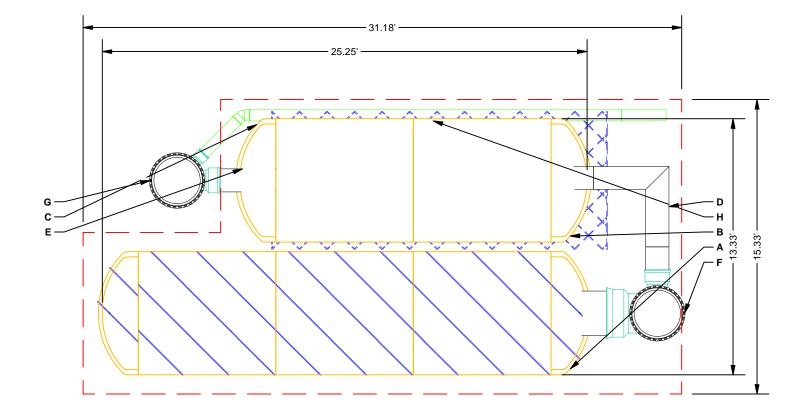
NOTES FOR CONSTRUCTION EQUIPMENT

- STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 1.
- 2 THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.

 - WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.



BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.

NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE

WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE"

	PROPOSED LAYOUT	CONCEPTUAL ELEVATIONS		PART TYPE	ITEM ON LAYOUT	DESCRIPTION
5	STORMTECH MC-3500 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	12.50			24" BOTTOM CORED END CAP/TYP OF ALL 24" BOTTOM CO
4	STORMTECH MC-3500 END CAPS	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC):		PREFABRICATED END CAP	A	ROWS
12	STONE ABOVE (in)	MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):	6.00	PREFABRICATED END CAP	P	12" TOP CORED END CAP/TYP OF ALL 12" TOP CONNECTI
9	STONE BELOW (in)	MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT):	6.00		B	
40	()	MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	6.00	PREFABRICATED END CAP	C	12" BOTTOM CORED END CAP/TYP OF ALL 12" BOTTOM C
	INSTALLED SYSTEM VOLUME (CF)	TOP OF STONE:	5.50	MANIFOLD	D	12" x 12" TOP MANIFOLD, ADS N-12
	(PERIMETER STONE INCLUDED)	TOP OF MC-3500 CHAMBER:	4.50	PIPE CONNECTION	E	12" BOTTOM CONNECTION
130	⁹ (COVER STONE INCLUDED)	12" x 12" TOP MANIFOLD INVERT:	2.95	NYLOPLAST (INLET W/ ISO	E	30" DIAMETER (24.00" SUMP MIN)
	(BASE STONE INCLUDED)	24" ISOLATOR ROW INVERT:	0.92	ROW)		, , ,
42	SYSTEM AREA (SF)	12" BOTTOM CONNECTION INVERT:	0.86	NYLOPLAST (OUTLET)	G	30" DIAMETER (DESIGN BY ENGINEER)
93.) SYSTEM PERIMETER (ft)	BOTTOM OF MC-3500 CHAMBER:	0.75	UNDERDRAIN	Н	6" ADS N-12 DUAL WALL PERFORATED HDPE UNDERDRAI
		UNDERDRAIN INVERT:	0.00			
		BOTTOM OF STONE:	0.00]		

PLACE MINIMUM 17.50' OF ADS GEOSYNTHETICS 315WTM WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

<u>NOTES</u>

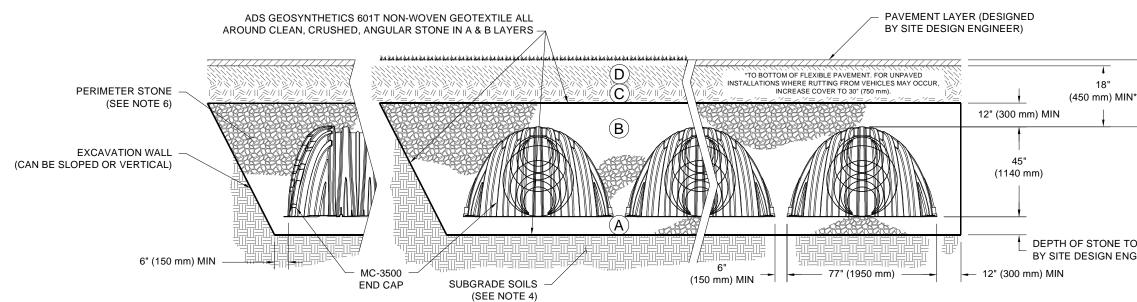
- MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND C COMPONENTS IN THE FIELD. THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIRE THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DE THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED PROVIDED. NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE Y

– – – BED LIMITS

		E OF CHAMBER					LTE
CONNECTIONS AND ISOLATOR	INVERT* 2.06"	MAX FLOW					ULTIM/
TIONS	2.06		F			\$	THE (
CONNECTIONS	1.35"		N	F	SU	CHECKED: N/A	I. IT IS
	26.36" 1.35"		2	ں ۲	DRAWN: JS	XEI KEI	CTION
	1.00	2.5 CFS IN	Ŋ Ŭ	UR	RAV	<u>뛰</u>	STRUG
		2.0 CFS OUT	RO	NB			CON
AIN		2.0 01 0 001	AZ	STO			OR TO
			COLEMAN ROOF 5 UNIT	GLASTONBURY, CT	DATE:	PROJECT #:	HALL REVIEW THIS DRAWING PRIC
			DESCRIPTION				SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE TED DETAILS MEET AIL ADDITORINE FLAMS REQUILIATIONS AND PROJECT REPORTBENDS.
			CHK	++	+	+	EPRESENT
			DRW C			+	PROJECT R
			REV				R OTHER F
				Stormech	D etention - Referition - Water Quality	520 CROMWELL AVENUE ROCKY HILL CT 06067 860-529-8188 888-892-2694	WWW.STORMTECH.COM O ADS UNDER THE DIRECTION OF THE SITE DESIG
			4640 TRUEMAN BLVD	HILLIARD, OH 43026 ° 1-800-733-7473	10,		THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE REPONSIBILITY OF THE SITE PRESIDENCINEED TO ENSUING THE PROVIDED THE DATA WAS AND ALL ASSOCIAT
COUPLE ADDITIONAL PIPE TO S IREMENTS ARE MET. DESIGN ENGINEER IS RESPONSI ED OR DECREASED ONCE THIS I	BLE FOR	DETERMINING		S ADVANCED DRAINAGE SYSTEMS, INC.		T	THIS DRAWING HAS BEEN PREPARE

ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS

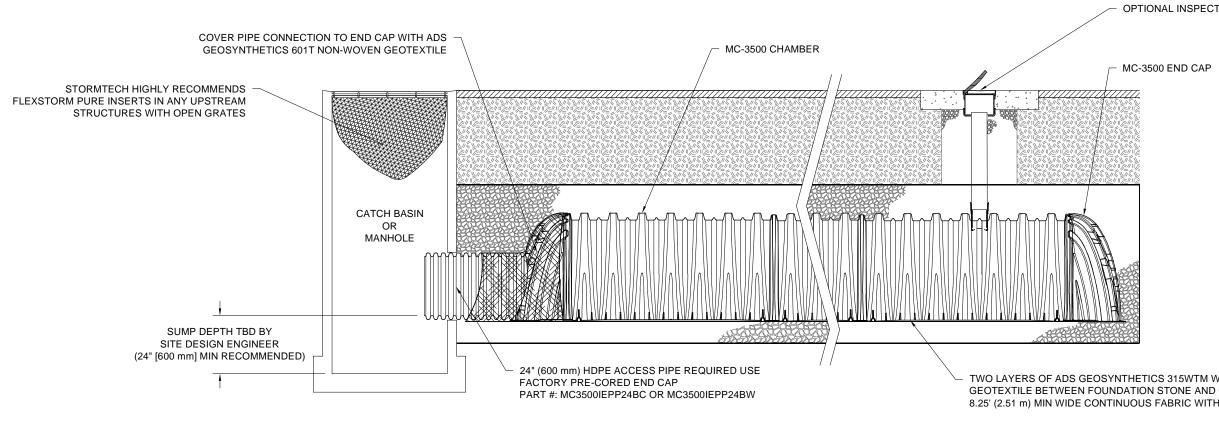
	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	СОМРА
D	FINAL FILL: FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPARI INSTALL
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 A-1, A-2-4, A-3 OR AASHTO M43 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COMI THE CHAMBE 12" (300 mm) WELL GRA
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 3, 4	
A	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 3, 4	PLATE CO


PLEASE NOTE:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".

2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.

3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.


4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.

NOTES:

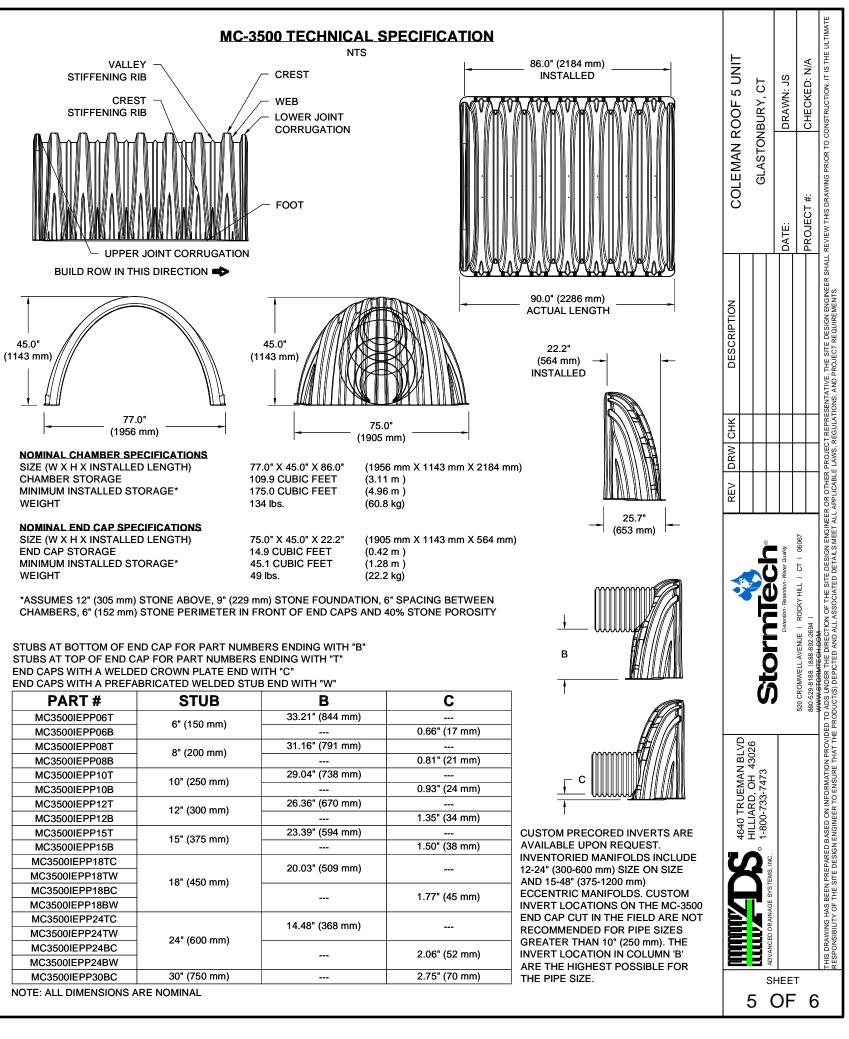
- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3+.
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73» F / 23» C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

UNIT DRAWN: JS PACTION / DENSITY REQUIREMENT С CHECKED: S ROOF GLASTONBURY, ARE PER SITE DESIGN ENGINEER'S PLANS. PAVED LLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS. COLEMAN MPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER BERS IS REACHED. COMPACT ADDITIONAL LAYERS IN m) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR PROJECT RADED MATERIAL AND 95% RELATIVE DENSITY FOR DATE: PROCESSED AGGREGATE MATERIALS. NO COMPACTION REQUIRED. COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.^{2,3} DESCRIPT DRW 8 (2.4 m) MAX Storm DEPTH OF STONE TO BE DETERMINED BY SITE DESIGN ENGINEER 9" (230 mm) MIN 4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473 SHEET 3 OF 6

MC-3500 ISOLATOR ROW DETAIL

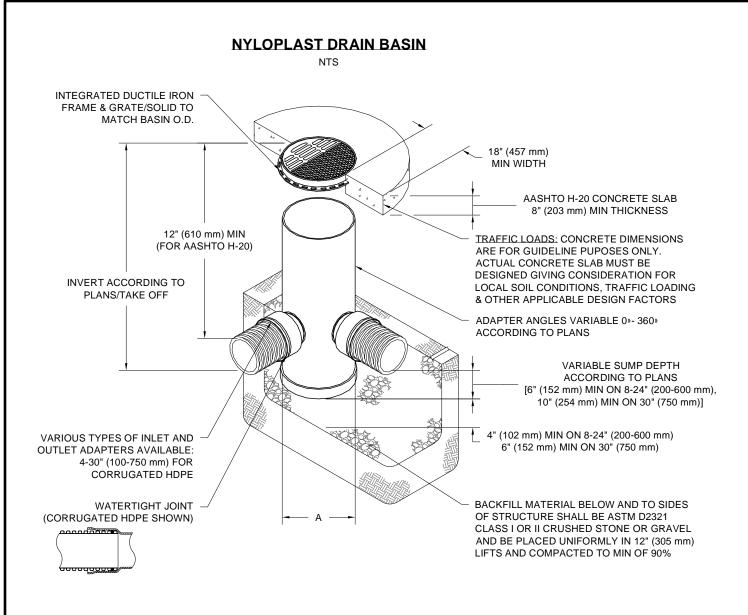
NTS


INSPECTION & MAINTENANCE

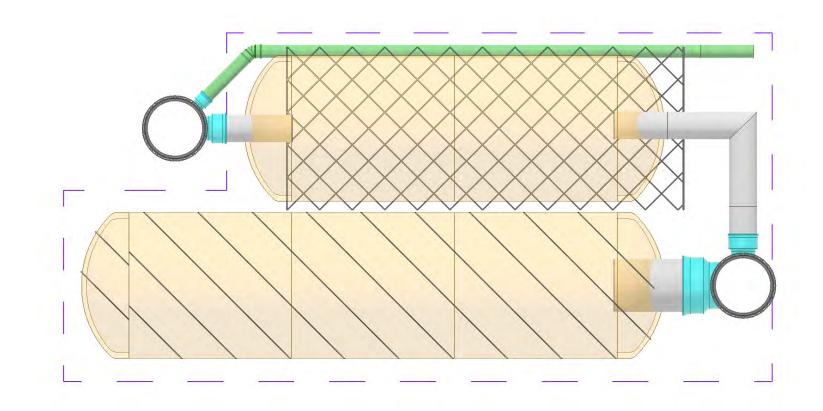

INSPECT ISOLATOR ROW FOR SEDIMENT STEP 1)

- A. INSPECTION PORTS (IF PRESENT)
 - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
 - REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.2.
 - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG A.3.
 - LOWER A CAMERA INTO ISOLATOR ROW FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.4.
 - A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR ROWS
- B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW THROUGH OUTLET PIPE B.2.
 - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
 - ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- STEP 2) CLEAN OUT ISOLATOR ROW USING THE JETVAC PROCESS
 - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
 - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN Β.
 - C. VACUUM STRUCTURE SUMP AS REQUIRED
- REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS. STEP 3)
- STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

- 1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.


TION PORT	COLEMAN ROOF 5 UNIT	GLASTONBURY, CT	DRAWN: JS	CHECKED: N/A	CONSTRUCTION. IT IS THE ULTIMATE
	COLEMAN F	GLASTON	DATE:	- PROJECT #:	L REVIEW THIS DRAWING PRIOR TO C
	DESCRIPTION				ATIVE. THE SITE DESIGN ENGINEER SHAL AND PROJECT REQUIREMENTS.
WOVEN O CHAMBERS HOUT SEAMS	REV DRW CHK				ER OR OTHER PROJECT REPRESENTA' L APPLICABLE LAWS, REGULATIONS, A
	~ ~	StormTech	D etention - Re tention - Water Quality	520 CROMWELL AVENUE ROCKY HILL CT 06067 860-529-8188 888-892-2694 www.stromatecu.com	D TO ADDITIONATION OF THE SITE DESIGN ENGINE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET AL
	1111111111111111111111111111111111111	ADVANCED DRAINAGE SYSTEMS, INC. 1-800-733-7473			THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADDIVENTIFUE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THE DIRECTION OF THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.
		S	L HEE DF		

STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A WELDED CROWN PLATE END WITH "C" END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W"


PART #	STUB	В			
MC3500IEPP06T	6" (150 mm)	33.21" (844 mm)			
MC3500IEPP06B	6" (150 mm)		0.66		
MC3500IEPP08T	8" (200 mm)	31.16" (791 mm)			
MC3500IEPP08B			0.81		
MC3500IEPP10T	10" (250 mm)	29.04" (738 mm)			
MC3500IEPP10B			0.93		
MC3500IEPP12T	12" (300 mm)	26.36" (670 mm)			
MC3500IEPP12B			1.35		
MC3500IEPP15T	15" (375 mm) —	23.39" (594 mm)			
MC3500IEPP15B			1.50		
MC3500IEPP18TC		20.03" (509 mm)			
MC3500IEPP18TW	18" (450 mm)	20.03 (309 mm)			
MC3500IEPP18BC			1.77		
MC3500IEPP18BW			1.77		
MC3500IEPP24TC		14.48" (368 mm)			
MC3500IEPP24TW	24" (600 mm)	14.48 (308 mm)			
MC3500IEPP24BC	24 (000 mm)		2.06		
MC3500IEPP24BW			2.00		
MC3500IEPP30BC	30" (750 mm)		2.75		
NOTE ALL DIMENSIONS A					

- 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
- 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
 DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
- DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 4.
- FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC 5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
- 6. TO ORDER CALL: 800-821-6710

Α	PART #	GRATE/S	SOLID COVER (OPTIONS
8" (200 mm)	2808AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
10" (250 mm)	2810AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
12"	2812AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(300 mm)		AASHTO H-10	H-20	AASHTO H-20
15"	2815AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(375 mm)		AASHTO H-10	H-20	AASHTO H-20
18"	2818AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(450 mm)		AASHTO H-10	H-20	AASHTO H-20
24"	2824AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(600 mm)		AASHTO H-10	H-20	AASHTO H-20
30"	2830AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(750 mm)		AASHTO H-20	H-20	AASHTO H-20

				REV	REV DRW CHK	НK	DESCRIPTION	COI FMAN	COLEMAN ROOF 5 UNIT
6		(3130 VERONA AVE)	
6	1-800-733-7473		BUFORD, GA 30518					GLASTO	GLASTONBURY, CT
SI (ADVANCED DRAINAGE SYSTEMS, INC.		PTIN (110) 332-2443						
HE DI			FAX (770) 932-2490			╞			DRAWN
F		Towed at C	www.nyiopiast-us.com			+		i	
Γ									
6									CHECKED: N/A
	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINE RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	PTO ADS UNDER THE DIRECTION (PRODUCT(S) DEPICTED AND ALL AS	DF THE SITE DESIGN ENGINEE SSOCIATED DETAILS MEET ALL	R OR OTHER - APPLICABLI	E LAWS, REC	EPRESENT#	SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE TED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	L REVIEW THIS DRAWING PRIOR TO	CONSTRUCTION. IT IS THE ULTIMA
ļ									

PROJECT INFORMATION

ENGINEERED PRODUCT MANAGER	
ADS SALES REP	
PROJECT NO.	

ADVANCED DRAINAGE SYSTEMS, INC.

COLEMAN ROOF 6 UNIT GLASTONBURY, CT

MC-3500 STORMTECH CHAMBER SPECIFICATIONS

- CHAMBERS SHALL BE STORMTECH MC-3500.
- CHAMBERS SHALL BE ARCH-SHAPED AND SHALL BE MANUFACTURED FROM VIRGIN, IMPACT-MODIFIED POLYPROPYLENE 2 COPOLYMERS.
- CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) 3 CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- CHAMBER ROWS SHALL PROVIDE CONTINUOUS, UNOBSTRUCTED INTERNAL SPACE WITH NO INTERNAL SUPPORTS THAT WOULD 4 IMPEDE FLOW OR LIMIT ACCESS FOR INSPECTION.
- 5. THE STRUCTURAL DESIGN OF THE CHAMBERS, THE STRUCTURAL BACKFILL, AND THE INSTALLATION REQUIREMENTS SHALL ENSURE THAT THE LOAD FACTORS SPECIFIED IN THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS, SECTION 12.12, ARE MET FOR: 1) LONG-DURATION DEAD LOADS AND 2) SHORT-DURATION LIVE LOADS, BASED ON THE AASHTO DESIGN TRUCK WITH CONSIDERATION FOR IMPACT AND MULTIPLE VEHICLE PRESENCES.
- CHAMBERS SHALL BE DESIGNED, TESTED AND ALLOWABLE LOAD CONFIGURATIONS DETERMINED IN ACCORDANCE WITH ASTM F2787, 6 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS". LOAD CONFIGURATIONS SHALL INCLUDE: 1) INSTANTANEOUS (<1 MIN) AASHTO DESIGN TRUCK LIVE LOAD ON MINIMUM COVER 2) MAXIMUM PERMANENT (75-YR) COVER LOAD AND 3) ALLOWABLE COVER WITH PARKED (1-WEEK) AASHTO DESIGN TRUCK.
- REQUIREMENTS FOR HANDLING AND INSTALLATION:
 - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS
 - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3+
 - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73» F / 23» C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.
- ONLY CHAMBERS THAT ARE APPROVED BY THE SITE DESIGN ENGINEER WILL BE ALLOWED. UPON REQUEST BY THE SITE DESIGN 8 ENGINEER OR OWNER, THE CHAMBER MANUFACTURER SHALL SUBMIT A STRUCTURAL EVALUATION FOR APPROVAL BEFORE DELIVERING CHAMBERS TO THE PROJECT SITE AS FOLLOWS:
 - THE STRUCTURAL EVALUATION SHALL BE SEALED BY A REGISTERED PROFESSIONAL ENGINEER.
 - THE STRUCTURAL EVALUATION SHALL DEMONSTRATE THAT THE SAFETY FACTORS ARE GREATER THAN OR EQUAL TO 1.95 FOR DEAD LOAD AND 1.75 FOR LIVE LOAD, THE MINIMUM REQUIRED BY ASTM F2787 AND BY SECTIONS 3 AND 12.12 OF THE AASHTO LRFD BRIDGE DESIGN SPECIFICATIONS FOR THERMOPLASTIC PIPE.
 - THE TEST DERIVED CREEP MODULUS AS SPECIFIED IN ASTM F2418 SHALL BE USED FOR PERMANENT DEAD LOAD DESIGN EXCEPT THAT IT SHALL BE THE 75-YEAR MODULUS USED FOR DESIGN.
- CHAMBERS AND END CAPS SHALL BE PRODUCED AT AN ISO 9001 CERTIFIED MANUFACTURING FACILITY.

IMPORTANT - NOTES FOR THE BIDDING AND INSTALLATION OF MC-3500 CHAMBER SYSTEM

- STORMTECH MC-3500 CHAMBERS SHALL NOT BE INSTALLED UNTIL THE MANUFACTURER'S REPRESENTATIVE HAS COMPLETED A 1 PRE-CONSTRUCTION MEETING WITH THE INSTALLERS
- STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 2.
- CHAMBERS ARE NOT TO BE BACKFILLED WITH A DOZER OR AN EXCAVATOR SITUATED OVER THE CHAMBERS. 3 STORMTECH RECOMMENDS 3 BACKFILL METHODS:
 - STONESHOOTER LOCATED OFF THE CHAMBER BED. ٠
 - BACKFILL FROM OUTSIDE THE EXCAVATION USING A LONG BOOM HOE OR EXCAVATOR.
- THE FOUNDATION STONE SHALL BE LEVELED AND COMPACTED PRIOR TO PLACING CHAMBERS. 4
- JOINTS BETWEEN CHAMBERS SHALL BE PROPERLY SEATED PRIOR TO PLACING STONE. 5.
- MAINTAIN MINIMUM 6" (150 mm) SPACING BETWEEN THE CHAMBER ROWS. 6.
- INLET AND OUTLET MANIFOLDS MUST BE INSERTED A MINIMUM OF 12" (300 mm) INTO CHAMBER END CAPS. 7.
- EMBEDMENT STONE SURROUNDING CHAMBERS MUST BE A CLEAN, CRUSHED, ANGULAR STONE MEETING THE AASHTO M43 DESIGNATION OF #3 8. OR #4
- STONE MUST BE PLACED ON THE TOP CENTER OF THE CHAMBER TO ANCHOR THE CHAMBERS IN PLACE AND PRESERVE ROW SPACING. 9.
- THE CONTRACTOR MUST REPORT ANY DISCREPANCIES WITH CHAMBER FOUNDATION MATERIALS BEARING CAPACITIES TO THE SITE DESIGN 10 ENGINEER
- ADS RECOMMENDS THE USE OF "FLEXSTORM CATCH IT" INSERTS DURING CONSTRUCTION FOR ALL INLETS TO PROTECT THE SUBSURFACE 11. STORMWATER MANAGEMENT SYSTEM FROM CONSTRUCTION SITE RUNOFF.

NOTES FOR CONSTRUCTION EQUIPMENT

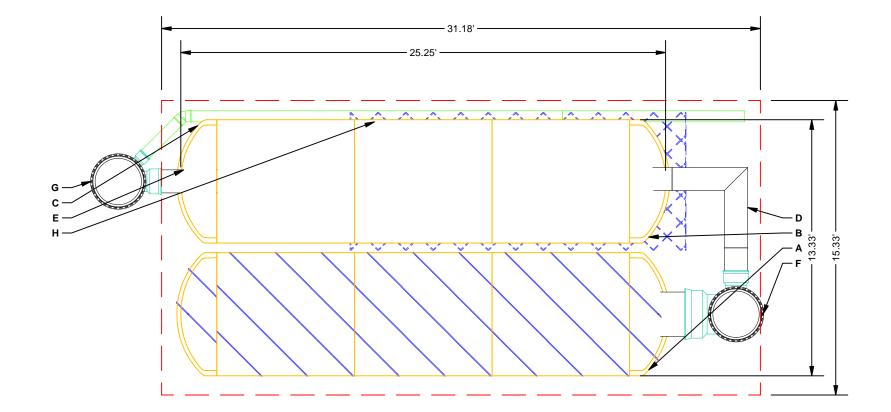
- STORMTECH MC-3500 CHAMBERS SHALL BE INSTALLED IN ACCORDANCE WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE". 1.
- 2 THE USE OF EQUIPMENT OVER MC-3500 CHAMBERS IS LIMITED:
 - NO EQUIPMENT IS ALLOWED ON BARE CHAMBERS.

 - WITH THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE".
- 3. FULL 36" (900 mm) OF STABILIZED COVER MATERIALS OVER THE CHAMBERS IS REQUIRED FOR DUMP TRUCK TRAVEL OR DUMPING.

USE OF A DOZER TO PUSH EMBEDMENT STONE BETWEEN THE ROWS OF CHAMBERS MAY CAUSE DAMAGE TO CHAMBERS AND IS NOT AN ACCEPTABLE BACKFILL METHOD. ANY CHAMBERS DAMAGED BY USING THE "DUMP AND PUSH" METHOD ARE NOT COVERED UNDER THE STORMTECH STANDARD WARRANTY.

CONTACT STORMTECH AT 1-888-892-2694 WITH ANY QUESTIONS ON INSTALLATION REQUIREMENTS OR WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT.

2013 ADS INC



BACKFILL AS ROWS ARE BUILT USING AN EXCAVATOR ON THE FOUNDATION STONE OR SUBGRADE.

NO RUBBER TIRED LOADER, DUMP TRUCK, OR EXCAVATORS ARE ALLOWED UNTIL PROPER FILL DEPTHS ARE REACHED IN ACCORDANCE

WEIGHT LIMITS FOR CONSTRUCTION EQUIPMENT CAN BE FOUND IN THE "STORMTECH MC-3500/MC-4500 CONSTRUCTION GUIDE"

	PROPOSED LAYOUT	CONCEPTUAL ELEVATIONS				
				PART TYPE	ITEM ON LAYOUT	DESCRIPTION
6	STORMTECH MC-3500 CHAMBERS	MAXIMUM ALLOWABLE GRADE (TOP OF PAVEMENT/UNPAVED):	12.50			24" BOTTOM CORED END CAP/TYP OF ALL 24" BOTTOM C
4	STORMTECH MC-3500 END CAPS	MINIMUM ALLOWABLE GRADE (UNPAVED WITH TRAFFIC):	1.00	PREFABRICATED END CAP	A	ROWS
12	STONE ABOVE (in)	MINIMUM ALLOWABLE GRADE (UNPAVED NO TRAFFIC):	6.00	PREFABRICATED END CAP	В	12" TOP CORED END CAP/TYP OF ALL 12" TOP CONNECT
9	STONE BELOW (in)	MINIMUM ALLOWABLE GRADE (TOP OF RIGID CONCRETE PAVEMENT):	6.00		C	12" BOTTOM CORED END CAP/TYP OF ALL 12" BOTTOM C
40	STONE VOID	MINIMUM ALLOWABLE GRADE (BASE OF FLEXIBLE PAVEMENT):	6.00		0	12" x 12" TOP MANIFOLD, ADS N-12
		TOP OF STONE:	5.50	MANIFOLD		
1484	(PERIMETER STONE INCLUDED)	TOP OF MC-3500 CHAMBER:	4.50	PIPE CONNECTION	E	12" BOTTOM CONNECTION
1404	(COVER STONE INCLUDED)	12" x 12" TOP MANIFOLD INVERT:		NYLOPLAST (INLET W/ ISO	F	30" DIAMETER (24.00" SUMP MIN)
	(BASE STONE INCLUDED)	24" ISOLATOR ROW INVERT:		ROW)	I	
478	SYSTEM AREA (SF)	12" BOTTOM CONNECTION INVERT:	0.86	NYLOPLAST (OUTLET)	G	30" DIAMETER (DESIGN BY ENGINEER)
93.0	SYSTEM PERIMETER (ft)	BOTTOM OF MC-3500 CHAMBER:	0.75	UNDERDRAIN	Н	6" ADS N-12 DUAL WALL PERFORATED HDPE UNDERDRA
		UNDERDRAIN INVERT:	0.00			
		BOTTOM OF STONE:	0.00			

PLACE MINIMUM 17.50' OF ADS GEOSYNTHETICS 315WTM WOVEN GEOTEXTILE OVER BEDDING STONE AND UNDERNEATH CHAMBER FEET FOR SCOUR PROTECTION AT ALL CHAMBER INLET ROWS

<u>NOTES</u>

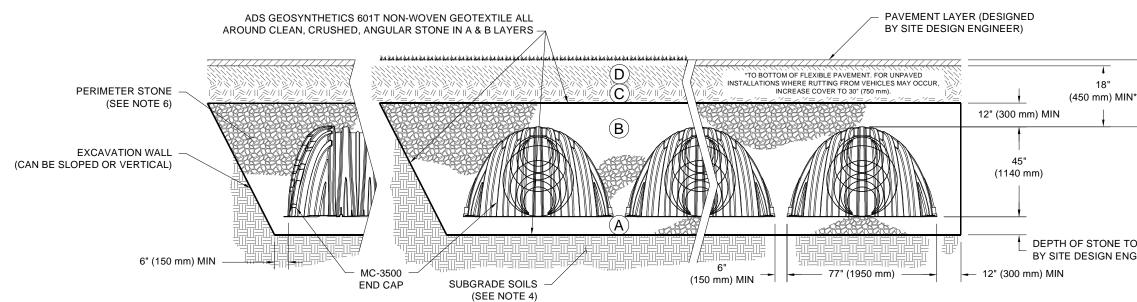
- MANIFOLD SIZE TO BE DETERMINED BY SITE DESIGN ENGINEER. SEE TECH NOTE #6.32 FOR MANIFOLD SIZING GUIDANCE. DUE TO THE ADAPTATION OF THIS CHAMBER SYSTEM TO SPECIFIC SITE AND DESIGN CONSTRAINTS, IT MAY BE NECESSARY TO CUT AND C COMPONENTS IN THE FIELD. THE SITE DESIGN ENGINEER MUST REVIEW ELEVATIONS AND IF NECESSARY ADJUST GRADING TO ENSURE THE CHAMBER COVER REQUIRI THIS CHAMBER SYSTEM WAS DESIGNED WITHOUT SITE-SPECIFIC INFORMATION ON SOIL CONDITIONS OR BEARING CAPACITY. THE SITE DE THE SUITABILITY OF THE SOIL AND PROVIDING THE BEARING CAPACITY OF THE INSITU SOILS. THE BASE STONE DEPTH MAY BE INCREASED PROVIDED. NOT FOR CONSTRUCTION: THIS LAYOUT IS FOR DIMENSIONAL PURPOSES ONLY TO PROVE CONCEPT & THE REQUIRED STORAGE

– – – BED LIMITS

	BOVE BASI	E OF CHAMBER	र				щ
CONNECTIONS AND ISOLATOR	INVERT*	MAX FLOW	_				LTIMAT
TIONS	2.06" 26.40"		- E			٨	THE U
CONNECTIONS	1.35"		S	F	SL	Ż	I. IT IS
	26.36" 1.35"		COLEMAN ROOF 6 UNIT	GLASTONBURY, CT	DRAWN: JS	CHECKED: N/A	ICTION
		2.5 CFS IN	0	зUR	DRA	CHE	NSTRL
		2.0 CFS OUT	- Å	ONE			0 00
AIN			MAN	AST			RIOR 1
			Ш	GL			VING P
			00			:# _	DRAV
					ш	PROJECT #:	W THIS
					DATE:	PRO	REVIE
							HALL
							LEER S
			No				ENGIN
			DESCRIPTION				ESIGN
			SCF				SITE D
			DE				E. THE
							TATIVE AND
					+		ATIONS
			CHK				T REPF
			DRW				NS. R
					+	_	HER PF
			REV				DR OTH
							ALL A
			~~~	Loon Loon	Detention-Retention-Water Quality	ROCKY HILL   CT   06067 4	OF THE SITE DESIGN
				Storme	ă	520 CROMWELL AVENUE   ROCKY HIL 860-529-8188 1888-892-2694   MMMM STORMITECH COM	TO ADS UNDER THE DIRECTION RODUCT(S) DEPICTED AND ALL A
COUPLE ADDITIONAL PIPE TO S	STANDARE	MANIFOLD	4640 TRUEMAN BLVD	HILLIARD, OH 43026 1-800-733-7473	ے 10 ا		3 DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION PONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCTRS IN PROFILED AND ALL A
IREMENTS ARE MET. DESIGN ENGINEER IS RESPONS	BLE FOR	DETERMINING	4640 TRUEMAN BLVD	AUXINGED DRAIMAGE SYSTEMS, INC. 1-800-733-7473	- 10, - 10,		THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDOCUMENTATION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER TO ENGINEER ON OF THE ULTIMATE RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENGINEER AND ALL ASSOCIATED DETAILS AFIL APPLICABLE LAWS REGULATIONS. AND PROJECT REQUIREMENTS.
IREMENTS ARE MET.	BLE FOR	DETERMINING		MILLIARD, OH 43026 MILLIARD, OH 43026 MONNEE DRAINGE FYSTENSING. 1-800-733-7473	10,		

# ACCEPTABLE FILL MATERIALS: STORMTECH MC-3500 CHAMBER SYSTEMS

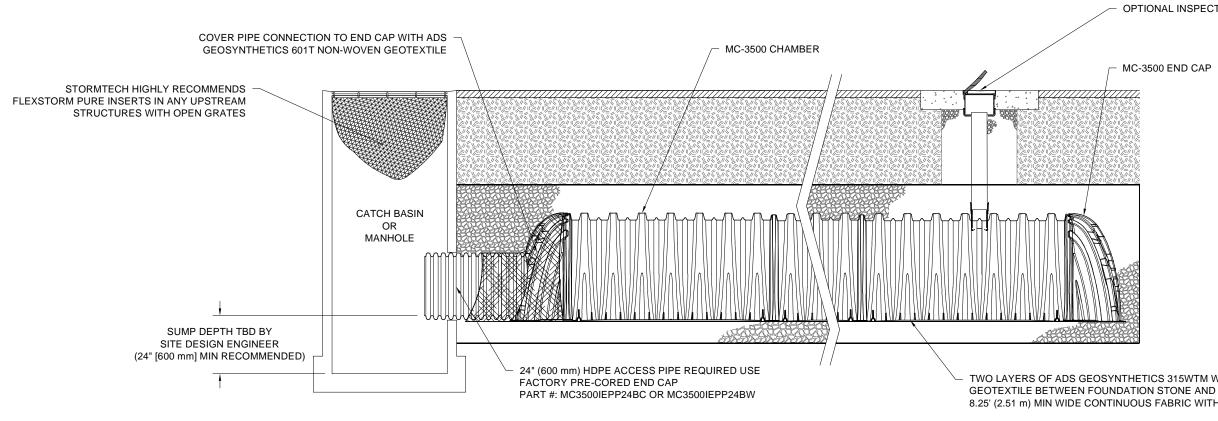
	MATERIAL LOCATION	DESCRIPTION	AASHTO MATERIAL CLASSIFICATIONS	СОМРА
LAYER TO THE	<b>FINAL FILL:</b> FILL MATERIAL FOR LAYER 'D' STARTS FROM THE TOP OF THE 'C' LAYER TO THE BOTTOM OF FLEXIBLE PAVEMENT OR UNPAVED FINISHED GRADE ABOVE. NOTE THAT PAVEMENT SUBBASE MAY BE PART OF THE 'D' LAYER	ANY SOIL/ROCK MATERIALS, NATIVE SOILS, OR PER ENGINEER'S PLANS. CHECK PLANS FOR PAVEMENT SUBGRADE REQUIREMENTS.	N/A	PREPAR INSTALL
С	INITIAL FILL: FILL MATERIAL FOR LAYER 'C' STARTS FROM THE TOP OF THE EMBEDMENT STONE ('B' LAYER) TO 24" (600 mm) ABOVE THE TOP OF THE CHAMBER. NOTE THAT PAVEMENT SUBBASE MAY BE A PART OF THE 'C' LAYER.	GRANULAR WELL-GRADED SOIL/AGGREGATE MIXTURES, <35% FINES OR PROCESSED AGGREGATE. MOST PAVEMENT SUBBASE MATERIALS CAN BE USED IN LIEU OF THIS LAYER.	AASHTO M145 A-1, A-2-4, A-3 OR AASHTO M43 3, 357, 4, 467, 5, 56, 57, 6, 67, 68, 7, 78, 8, 89, 9, 10	BEGIN COM THE CHAMBE 12" (300 mm) WELL GRA
В	EMBEDMENT STONE: FILL SURROUNDING THE CHAMBERS FROM THE FOUNDATION STONE ('A' LAYER) TO THE 'C' LAYER ABOVE.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 3, 4	
A	FOUNDATION STONE: FILL BELOW CHAMBERS FROM THE SUBGRADE UP TO THE FOOT (BOTTOM) OF THE CHAMBER.	CLEAN, CRUSHED, ANGULAR STONE	AASHTO M43 3, 4	PLATE CO


PLEASE NOTE:

1. THE LISTED AASHTO DESIGNATIONS ARE FOR GRADATIONS ONLY. THE STONE MUST ALSO BE CLEAN, CRUSHED, ANGULAR. FOR EXAMPLE, A SPECIFICATION FOR #4 STONE WOULD STATE: "CLEAN, CRUSHED, ANGULAR NO. 4 (AASHTO M43) STONE".

2. STORMTECH COMPACTION REQUIREMENTS ARE MET FOR 'A' LOCATION MATERIALS WHEN PLACED AND COMPACTED IN 9" (230 mm) (MAX) LIFTS USING TWO FULL COVERAGES WITH A VIBRATORY COMPACTOR.

3. WHERE INFILTRATION SURFACES MAY BE COMPROMISED BY COMPACTION, FOR STANDARD DESIGN LOAD CONDITIONS, A FLAT SURFACE MAY BE ACHIEVED BY RAKING OR DRAGGING WITHOUT COMPACTION EQUIPMENT. FOR SPECIAL LOAD DESIGNS, CONTACT STORMTECH FOR COMPACTION REQUIREMENTS.


4. ONCE LAYER 'C' IS PLACED, ANY SOIL/MATERIAL CAN BE PLACED IN LAYER 'D' UP TO THE FINISHED GRADE. MOST PAVEMENT SUBBASE SOILS CAN BE USED TO REPLACE THE MATERIAL REQUIREMENTS OF LAYER 'C' OR 'D' AT THE SITE DESIGN ENGINEER'S DISCRETION.



# NOTES:

- 1. CHAMBERS SHALL MEET THE REQUIREMENTS OF ASTM F2418-16a, "STANDARD SPECIFICATION FOR POLYPROPYLENE (PP) CORRUGATED WALL STORMWATER COLLECTION CHAMBERS" CHAMBER CLASSIFICATION 45x76 DESIGNATION SS.
- 2. MC-3500 CHAMBERS SHALL BE DESIGNED IN ACCORDANCE WITH ASTM F2787 "STANDARD PRACTICE FOR STRUCTURAL DESIGN OF THERMOPLASTIC CORRUGATED WALL STORMWATER COLLECTION CHAMBERS".
- 3. THE SITE DESIGN ENGINEER IS RESPONSIBLE FOR ASSESSING THE BEARING RESISTANCE (ALLOWABLE BEARING CAPACITY) OF THE SUBGRADE SOILS AND THE DEPTH OF FOUNDATION STONE WITH CONSIDERATION FOR THE RANGE OF EXPECTED SOIL MOISTURE CONDITIONS.
- 4. PERIMETER STONE MUST BE EXTENDED HORIZONTALLY TO THE EXCAVATION WALL FOR BOTH VERTICAL AND SLOPED EXCAVATION WALLS.
- 5. REQUIREMENTS FOR HANDLING AND INSTALLATION:
  - TO MAINTAIN THE WIDTH OF CHAMBERS DURING SHIPPING AND HANDLING, CHAMBERS SHALL HAVE INTEGRAL, INTERLOCKING STACKING LUGS.
  - TO ENSURE A SECURE JOINT DURING INSTALLATION AND BACKFILL, THE HEIGHT OF THE CHAMBER JOINT SHALL NOT BE LESS THAN 3+.
  - TO ENSURE THE INTEGRITY OF THE ARCH SHAPE DURING INSTALLATION, a) THE ARCH STIFFNESS CONSTANT AS DEFINED IN SECTION 6.2.8 OF ASTM F2418 SHALL BE GREATER THAN OR EQUAL TO 500 LBS/IN/IN. AND b) TO RESIST CHAMBER DEFORMATION DURING INSTALLATION AT ELEVATED TEMPERATURES (ABOVE 73» F / 23» C), CHAMBERS SHALL BE PRODUCED FROM REFLECTIVE GOLD OR YELLOW COLORS.

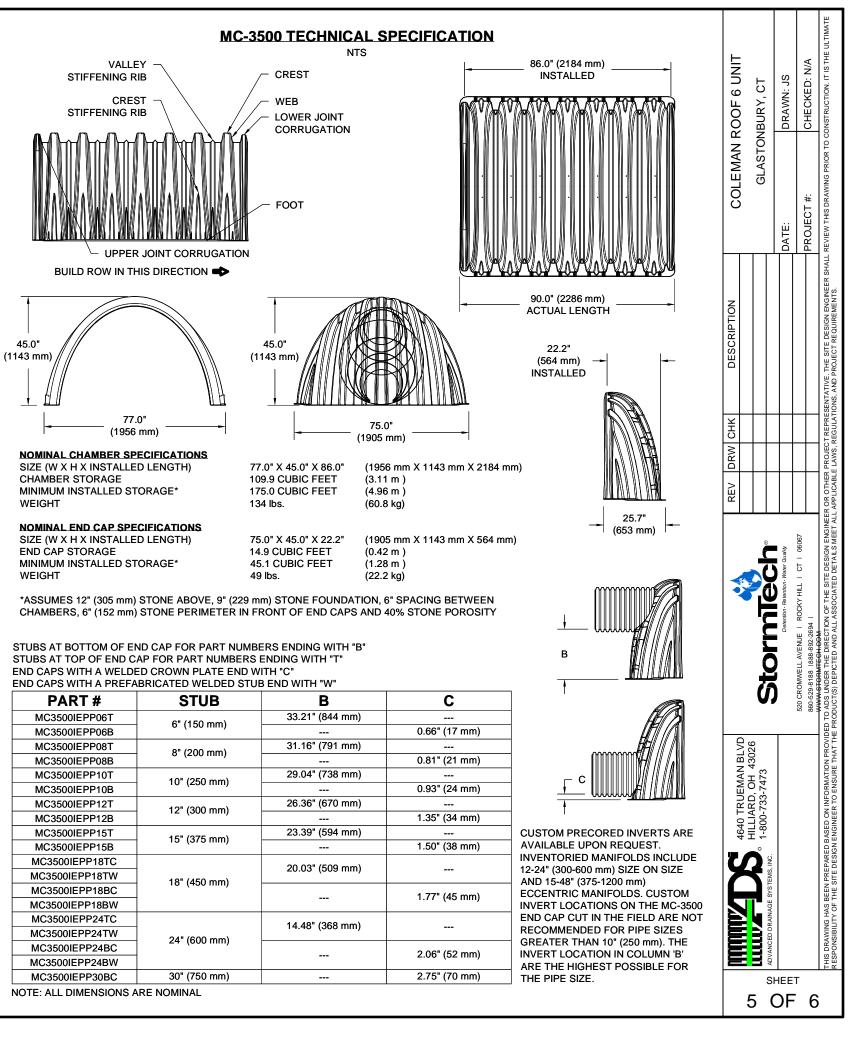
# UNIT DRAWN: JS PACTION / DENSITY REQUIREMENT С CHECKED: ဖ ROOF GLASTONBURY, ARE PER SITE DESIGN ENGINEER'S PLANS. PAVED LLATIONS MAY HAVE STRINGENT MATERIAL AND PREPARATION REQUIREMENTS. COLEMAN MPACTIONS AFTER 24" (600 mm) OF MATERIAL OVER BERS IS REACHED. COMPACT ADDITIONAL LAYERS IN m) MAX LIFTS TO A MIN. 95% PROCTOR DENSITY FOR PROJECT RADED MATERIAL AND 95% RELATIVE DENSITY FOR DATE: PROCESSED AGGREGATE MATERIALS. NO COMPACTION REQUIRED. COMPACT OR ROLL TO ACHIEVE A FLAT SURFACE.^{2,3} DESCRIPT DRW 8 (2.4 m) MAX Storm DEPTH OF STONE TO BE DETERMINED BY SITE DESIGN ENGINEER 9" (230 mm) MIN 4640 TRUEMAN BLVD HILLIARD, OH 43026 1-800-733-7473 SHEET 3 OF 6



## **MC-3500 ISOLATOR ROW DETAIL**

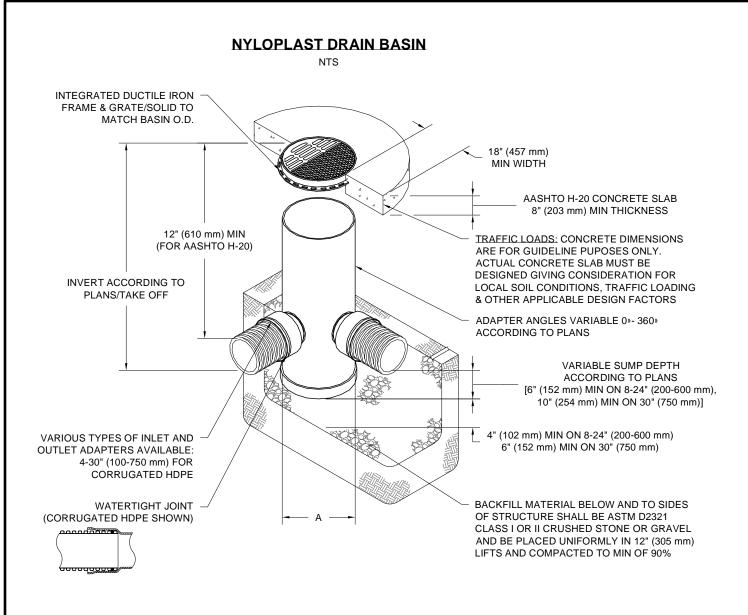
NTS


### **INSPECTION & MAINTENANCE**


#### INSPECT ISOLATOR ROW FOR SEDIMENT STEP 1)

- A. INSPECTION PORTS (IF PRESENT)
  - A.1. REMOVE/OPEN LID ON NYLOPLAST INLINE DRAIN
  - REMOVE AND CLEAN FLEXSTORM FILTER IF INSTALLED A.2.
  - USING A FLASHLIGHT AND STADIA ROD, MEASURE DEPTH OF SEDIMENT AND RECORD ON MAINTENANCE LOG A.3.
  - LOWER A CAMERA INTO ISOLATOR ROW FOR VISUAL INSPECTION OF SEDIMENT LEVELS (OPTIONAL) A.4.
  - A.5. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- B. ALL ISOLATOR ROWS
- B.1. REMOVE COVER FROM STRUCTURE AT UPSTREAM END OF ISOLATOR ROW
- USING A FLASHLIGHT, INSPECT DOWN THE ISOLATOR ROW THROUGH OUTLET PIPE B.2.
  - i) MIRRORS ON POLES OR CAMERAS MAY BE USED TO AVOID A CONFINED SPACE ENTRY
  - ii) FOLLOW OSHA REGULATIONS FOR CONFINED SPACE ENTRY IF ENTERING MANHOLE
- B.3. IF SEDIMENT IS AT, OR ABOVE, 3" (80 mm) PROCEED TO STEP 2. IF NOT, PROCEED TO STEP 3.
- STEP 2) CLEAN OUT ISOLATOR ROW USING THE JETVAC PROCESS
  - A. A FIXED CULVERT CLEANING NOZZLE WITH REAR FACING SPREAD OF 45" (1.1 m) OR MORE IS PREFERRED
  - APPLY MULTIPLE PASSES OF JETVAC UNTIL BACKFLUSH WATER IS CLEAN Β.
  - C. VACUUM STRUCTURE SUMP AS REQUIRED
- REPLACE ALL COVERS, GRATES, FILTERS, AND LIDS; RECORD OBSERVATIONS AND ACTIONS. STEP 3)
- STEP 4) INSPECT AND CLEAN BASINS AND MANHOLES UPSTREAM OF THE STORMTECH SYSTEM.

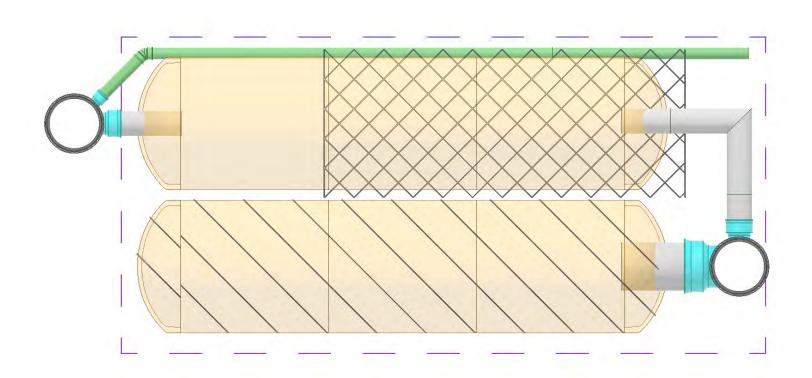
- 1. INSPECT EVERY 6 MONTHS DURING THE FIRST YEAR OF OPERATION. ADJUST THE INSPECTION INTERVAL BASED ON PREVIOUS OBSERVATIONS OF SEDIMENT ACCUMULATION AND HIGH WATER ELEVATIONS.
- 2. CONDUCT JETTING AND VACTORING ANNUALLY OR WHEN INSPECTION SHOWS THAT MAINTENANCE IS NECESSARY.


TION PORT	DF 6 UNIT	<b>к</b> Υ, СТ	DRAWN: JS	CHECKED: N/A	RUCTION. IT IS THE ULTIMATE
	COLEMAN ROOF 6 UNIT	GLASTONBURY, CT		PROJECT #: CHE	. REVIEW THIS DRAWING PRIOR TO CONSTI
	DESCRIPTION				ATIVE. THE SITE DESIGN ENGINEER SHALL AND PROJECT REQUIREMENTS.
WOVEN D CHAMBERS HOUT SEAMS	REV DRW CHK				ER OR OTHER PROJECT REPRESENTA L APPLICABLE LAWS, REGULATIONS,
	\$0 ⁷	Stormlech	D etention - Retention - Water Quality	520 CROMWELL AVENUE   ROCKY HILL   CT   06067 860-529-8181 8188-922-5994   MMMM-520-BMHTE-CU-COM	D TO ADDITE THE DIRECTION OF THE SITE DESIGN ENGINEE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET AL
		ADVANCED DRAINAGE SYSTEMS, I-800-733-7473			THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADSTRUCTION OF THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THE DIRECTION OF THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETALLS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.
		S	 HEE ^T DF		





STUBS AT TOP OF END CAP FOR PART NUMBERS ENDING WITH "T" END CAPS WITH A WELDED CROWN PLATE END WITH "C" END CAPS WITH A PREFABRICATED WELDED STUB END WITH "W"


PART #	STUB	В	
MC3500IEPP06T	6" (150 mm)	33.21" (844 mm)	
MC3500IEPP06B	6" (150 mm)		0.66
MC3500IEPP08T	8" (200 mm)	31.16" (791 mm)	
MC3500IEPP08B			0.81
MC3500IEPP10T	10" (250 mm)	29.04" (738 mm)	
MC3500IEPP10B			0.93
MC3500IEPP12T	12" (300 mm)	26.36" (670 mm)	
MC3500IEPP12B			1.35
MC3500IEPP15T	15" (375 mm)	23.39" (594 mm)	
MC3500IEPP15B			1.50
MC3500IEPP18TC		20.03" (509 mm)	
MC3500IEPP18TW	18" (450 mm)	20.03 (309 mm)	
MC3500IEPP18BC			1.77
MC3500IEPP18BW			1.77
MC3500IEPP24TC		14.48" (368 mm)	
MC3500IEPP24TW	24" (600 mm)	14.48 (308 mm)	
MC3500IEPP24BC	24 (000 mm)		2.06
MC3500IEPP24BW			2.00
MC3500IEPP30BC	30" (750 mm)		2.75
NOTE ALL DIMENSIONS A			



- 1. 8-30" (200-750 mm) GRATES/SOLID COVERS SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
- 12-30" (300-750 mm) FRAMES SHALL BE DUCTILE IRON PER ASTM A536 GRADE 70-50-05
   DRAIN BASIN TO BE CUSTOM MANUFACTURED ACCORDING TO PLAN DETAILS
- DRAINAGE CONNECTION STUB JOINT TIGHTNESS SHALL CONFORM TO ASTM D3212 4.
- FOR CORRUGATED HDPE (ADS & HANCOR DUAL WALL) & SDR 35 PVC 5. FOR COMPLETE DESIGN AND PRODUCT INFORMATION: WWW.NYLOPLAST-US.COM
- 6. TO ORDER CALL: 800-821-6710

Α	PART #	GRATE/S	SOLID COVER (	OPTIONS
8" (200 mm)	2808AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
10" (250 mm)	2810AG	PEDESTRIAN LIGHT DUTY	STANDARD LIGHT DUTY	SOLID LIGHT DUTY
12"	2812AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(300 mm)		AASHTO H-10	H-20	AASHTO H-20
15"	2815AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(375 mm)		AASHTO H-10	H-20	AASHTO H-20
18"	2818AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(450 mm)		AASHTO H-10	H-20	AASHTO H-20
24"	2824AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(600 mm)		AASHTO H-10	H-20	AASHTO H-20
30"	2830AG	PEDESTRIAN	STANDARD AASHTO	SOLID
(750 mm)		AASHTO H-20	H-20	AASHTO H-20

					REV	REV DRW CHK	¥	DESCRIPTION	COI FMAN	COLEMAN ROOF 6 UNIT
6			3130	) VERONA AVE						
5	1-800-733-7473		BUF	BUFORD, GA 30518					GLASTO	GLASTONBURY, CT
s⊦ (	ADVANCED DRAINAGE SYSTEM									
IEE DF		JAN	Vyloplast www	St rav (170) 332-2490					DATE:	DRAWN: JS
: I'		•	•							
6				1					PROJECT #:	CHECKED: N/A
5	THIS DRAWING HAS BEEN PREPARED BASED ON INFORMATION PROVIDED TO ADS UNDER THE DIRECTION OF THE SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINE RESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE THAT THE PRODUCT(S) DEPICTED AND ALL ASSOCIATED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	ON PROVIDED TO ADS UND E THAT THE PRODUCT(S) DE	FILE DIRECTION OF THE CEPICTED AND ALL ASSOCIAT	SITE DESIGN ENGINEER	R OR OTHER APPLICABLE	PROJECT R E LAWS, REG	EPRESENTA ULATIONS, /	SITE DESIGN ENGINEER OR OTHER PROJECT REPRESENTATIVE. THE SITE DESIGN ENGINEER SHALL REVIEW THIS DRAWING PRIOR TO CONSTRUCTION. IT IS THE ULTIMATE TED DETAILS MEET ALL APPLICABLE LAWS, REGULATIONS, AND PROJECT REQUIREMENTS.	L REVIEW THIS DRAWING PRIOR TO	CONSTRUCTION. IT IS THE ULTIMAT
	R ESPONSIBILITY OF THE SITE DESIGN ENGINEER TO ENSURE	E THAT THE PRODUCT(S) Di	EPICTED AND ALL ASSOCIAT	TED DETAILS MEET ALL	APPLICABLE	E LAWS, REG	ULATIONS, I	AND	PROJECT REQUIREMENTS.	PROJECT REQUIREMENTS.

