Phase II & III Field Investigation

95 Oak Street

Glastonbury, Connecticut 06033

Submitted to:

Mr. Dan Pennington Town of Glastonbury 2155 Main Street Glastonbury, CT 06033

Submitted by:

GEI Consultants, Inc. 455 Winding Brook Drive Glastonbury, CT 06033 860-368-5300

April 14, 2009

Project 083470-2-1000

Gary Iadarola, LEP, CPG Project Manager

Table of Contents

<u>Ex</u>	cecutive Su	ummar	Y		iv
1.	Introducti	on			1
	1.1	Purpos	se		1
	1.2	Scope	of Work		1
	1.3	Repor	t Organiza	tion	1
	1.4	Site Se	etting and	History	2
		1.4.1	Current I	Land Use	2
		1.4.2 1.4.3	Adjacent Site Histo	Land Use Dry	2 2
<u>2.</u>	Field Inve	stigati	ion		4
	2.1	Field I	Methods		4
		2.1.1	Subsurfa	ce Soil Borings/GW Monitoring Well Installation	4
			2.1.1.1	Soil Borings	5
			2.1.1.2	Monitoring Well Construction	6
		2.1.2	Groundw	ater Sampling	7
			2.1.2.1	Gauging	7
			2.1.2.2	Purging	7
			2.1.2.3	Groundwater Sampling	7
	2.2	Field I	Methods		8
		2.2.1	Subsurfa	ce Soil Borings & Temporary GW Micro Well Installation	18
			2.2.1.1	Soli Borings	8
		222	2.2.1.2	Monitoring Well Construction	9 10
		2.2.2	Groundw	Cousing	10
			2.2.2.1	Duraina	10
			2.2.2.2	ruigilig Croundwater Sempling	10
			2.2.2.3	Groundwater Sampling	10
<u>3.</u>	Physical (Charao	cteristics	of the Site	11
	3.1	Land	Use in the	Site Vicinity	11
	3.2	Local	Groundwa	ter Use	11
	3.3	Surfac	e Water H	ydrology	12
	2 4	3.3.1 Domini	Surface V	Vater	12
	5.4 25	Site S	nal Geolog	y and Site Stratigraphy	12
	5.5 3.6	Group	dwater Fl		12
	5.0	Groun		/ **	14

4. Nature and Extent of Contamination

<u>4.</u>	Nature a	nd Exte	ent of Co	ntamination	13
	4.1	Subsu	rface Soil	S	13
		4.1.1	Physical	Observations	13
		4.1.2	Chemica	ıl Analysis	13
			4.1.2.1	Phase II Field Investigation	13
			4.1.2.2	Phase III Field Investigation	14
	4.2	Groun	ndwater	-	14
		4.2.1	Chemica	ıl Analysis	14
			4.2.1.1	Phase II Field Investigation	14
			4.2.1.2	Phase III Field Investigation	15
5.	Discussi	on, Co	nclusion	s and Recommendations	16

Table of Contents (continued)

Tables

- 1 Phase II Soil Analytical Results
- 2 Phase III Soil Analytical Results
- 3 Groundwater Analytical Results

Figures

- 1 Site Location Map
- 2 Soil Boring and Monitoring Well Locations
- 3 Groundwater Contours February 2009

Appendices

- A Soil Boring Completion Logs
- B Laboratory Analytical Results and Chain-of-Custody Forms

H:\WPROC\Project\Glastonbury,Town of\PhII.III95 Oak Street\Ph II 95 Oak Street-GAI Comments.doc

Executive Summary

This Phase II & III Field Investigation (FI) was conducted for the Town of Glastonbury. The subject of this field investigation is located at 95 Oak Street in Glastonbury, Connecticut (the "Site" or "subject property"). The Site is an approximately 13.75 acre parcel with a 179,682 square foot industrial/commercial building that is currently occupied by Aero Med.

The Phase II portion of this report focuses on the areas of concern (AOC) at the subject property identified in the April 2008 Phase I Environmental Site Assessment report. These AOCs include the following:

- The single story building on site was constructed in 1949. The building was originally occupied by the Consolidated Cigar Company. The building is currently occupied by Aero Med and is used for dry storage.
- Four 2,000 gallon gasoline underground storage tanks (UST) that were removed.
- 20,000 gallon and 10,000 gallon fuel oil USTs that were abandoned in place.
- A slab mounted transformer located just west of the building on site.
- Fuel pumps located near the four gasoline USTs.
- The septic tank and associated leaching field located northwest of the building on site.
- Pesticides and herbicides used historically on site.

The Phase III portion of the FI focuses on delineation of the impacts encountered during the Phase II portion of the FI.

The Phase II/III FI included the advancement of soil borings, the installation of groundwater monitoring wells, and the collection and laboratory analysis of soil and groundwater samples.

The purpose of the FI Report is to document the results of the Phase II/III FI performed by GEI Consultants, Inc. (GEI).

Semi-VOCs and TPH were detected in several soil samples during the Phase II portion of this FI at concentrations below the applicable Connecticut Department of Environmental

Protection (CTDEP) Remediation Standard Regulations (RSR). The pesticide dieldrin was detected in shallow soil samples SS-1 and SS-3 at concentrations above the CTDEP GA Pollutant Mobility Criteria (GAPMC).

Several Semi-VOCs and lead were detected in groundwater sample GEI-MW-17 at concentrations above the CTDEP surface water protection criteria (SWPC).

Due to the concentrations of dieldrin in shallow soils west of the building on site (SS-1 and SS-3) and the concentrations of semi-VOCs and lead in the groundwater east of the building on site, GEI proposed a Phase III FI to delineate the extent of the soil and groundwater impact.

The concentration of dieldrin in the shallow soil samples (Phase II FI) was below the CTDEP residential direct exposure criteria (RESDEC) but above the GA pollutant mobility criteria (GAPMC). Therefore, as part of the Phase III FI, GEI resampled the soil at the SS-1 and SS-3 sample locations at six inches below grade (the original sample depth) and at two fbg and analyzed the samples for pesticides by the SPLP Method. In addition, GEI collected shallow (six inches below grade) soil samples in a grid pattern to the west of the building on site and submitted these samples for analysis. The results of the SPLP analysis indicated that the dieldrin in the soil on site is statistically insignificant.

GEI installed groundwater monitoring well GEI-MW-18 at the location of the highest soil concentration of dieldrin (SS-3). A groundwater sample from this well was analyzed for pesticides and the results indicated no detectable dieldrin in the groundwater sample.

Therefore, GEI recommends no additional investigation or remediation regarding dieldrin on site. We do however recommend that the soil be handled appropriately during any future excavation or redevelopment of the property.

To assess the extent of semi-VOC impacted groundwater, GEI advanced seven borings in the area of GEI-MW-17. Groundwater samples were collected from seven temporary micro wells installed in the seven borings and from GEI-MW-15. The results of the laboratory analysis indicated no detectable concentrations of semi-VOCs. GEI recommends that the limited semi-VOC impacted soil in the area of GEI-MW-17 be excavated and removed during the planned construction activities. Confirmation soil samples should be collected and analyzed for semi-VOCs at the conclusion of the excavation activities.

To assess the extent of lead impacted groundwater, GEI had the eight groundwater samples mentioned above analyzed for lead. The results of the analysis indicated concentrations of lead in two of the wells above the SWPC. Due to the locations of the impacted groundwater

PHASE II & III FIELD INVESTIGATION TOWN OF GLASTONBURY 95 OAK STREET GLASTONBURY, CONNECTICUT APRIL 14, 2009

samples TW-1 and TW-3, the excavation of the soil mentioned above should include much of the lead impacted media. Since the original source of the lead (two 2,000-gallon gasoline USTs) has been removed, GEI does not recommend any additional remediation beyond the planned excavation.

GEI recommends the proper handling of soils, in the area of well GEI-MW-17 and the area of pesticide impacted soil to the west of the building on site, during any excavation activities in those areas.

1. Introduction

1.1 Purpose

The purpose of this report is to document the results of the Phase II & III Field Investigation (FI) performed by GEI Consultants, Inc. (GEI) at the Aero Med facility located at 95 Oak Street in Glastonbury, Connecticut. The subject property is occupied by an industrial/ commercial building that is currently used for dry storage. The site location map is provided as Figure 1, and a site layout and sample location map is provided as Figure 2. The scope of work for this Phase II/III FI was based on the proposals submitted on February 10, 2009 (Phase II FI) and March 10, 2009 (Phase III FI). Complete details regarding the subject property description, the Site history, and the recognized environmental conditions are presented in the April 2008 Phase I ESA report. A summary of the Site description and Site history is provided in subsection 1.4 of this report. The Phase II portion of the FI was conducted to delineate the extent of impacted soil and groundwater in the areas of concern (AOC) identified in the Phase I ESA report. The Phase III portion of this FI was conducted to delineate the extent of impacted soil and groundwater identified in the Phase II portion of the FI. The results of this Phase II/III FI are discussed in detail in Section 4 of this report.

1.2 Scope of Work

The scope of work for this Phase II/III FI included the following tasks:

- Soil boring advancement and subsurface-soil sampling
- Groundwater monitoring well installation
- Groundwater gauging and sampling
- Soil and groundwater laboratory analysis
- Phase II/III FI Report composition

1.3 Report Organization

This report presents the results of the Phase II & III FI and is organized into five sections. Section 2 provides a description of the methods and materials for conducting the Phase II FI. Section 3 presents the physical characteristics of the study area. Section 4 discusses the nature and extent of contamination. Section 5 presents a discussion, the conclusions of this investigation, and recommendations for any additional work warranted.

Soil boring completion logs are included as Appendix A. Analytical results and chain-ofcustody forms are included as Appendix B.

1.4 Site Setting and History

This subsection of the report presents information from the Phase I ESA relating to the current Site use, surrounding land use, Site history, previous investigations, and environmental setting.

1.4.1 Current Land Use

The Site is an approximately 13.75 acre parcel with an industrial/commercial building on it. The building is currently occupied by Aero Med and is used for dry storage.

1.4.2 Adjacent Land Use

The subject property is located in an industrial and residential portion of Glastonbury. Adjacent land use is as follows.

- South: Stop and Shop Grocery
- East: Bagel Boys, Inc. (a bakery), and to the northeast is Kindercare (a child daycare facility)
- West: Commercial, Sheet Metal Works, Inc. and Harco Inc. Northeast is the Glastonbury Citizen (local newspaper)
- North: Vacant land, Wetlands

1.4.3 Site History

Certified Sanborn[®] maps are not available for the Site and surrounding area.

The 1957 aerial photograph shows the subject property as it appears today. Vacant land, farm land, and residential properties are adjacent to the subject property. The road currently known as Oak Street is located to the east of the property. The road currently known as Commerce Street did not exist at the time of this photograph. The subject property appears unchanged in the 1977, 1989, and 1997 aerial photographs. The surrounding areas appear to be a mix of commercial and residential properties.

PHASE II & III FIELD INVESTIGATION TOWN OF GLASTONBURY 95 OAK STREET GLASTONBURY, CONNECTICUT APRIL 14, 2009

The 1893, 1906, and 1948 topographic maps show the subject property and adjacent properties as vacant land. The 1953 topographic map shows the subject property with a building that appears to be approximately one-half the size of the current building. The 1964, 1972, and 1984 topographic maps show the subject property with the building as it appears today.

No City Directories, for the subject property and surrounding area, were available for review. However, a copy of the 1958 Factory Mutual Insurance plan was available from the Glastonbury town records. This plan shows the building constructed in 1949 was used by the Consolidated Cigar Company as barracks and a cafeteria. The existing barn is shown as a shed and a 5,000 gallon fuel oil tank is shown, off the north east corner of the building.

The Town of Glastonbury Assessor's card for the subject property confirmed that the current building was constructed in 1949.

2. Field Investigation

Phase II Field Investigation

The Phase II portion of the FI was designed to assess the potential presence of contamination at the Site based on AOCs identified in the April 2008 Phase I ESA report. The Phase I ESA identified the following recognized environmental conditions at the subject property:

- The single story building on site was constructed in 1949. The building was originally occupied by the Consolidated Cigar Company. The building is currently occupied by Aero Med and is used for dry storage.
- Four 2,000 gallon gasoline USTs that were removed.
- 20,000 gallon and 10,000 gallon fuel oil USTs that were abandoned in place.
- A slab mounted transformer located just west of the building on site.
- Fuel pumps located near the four gasoline USTs.
- The septic tank and associated leaching field located northwest of the building on site.
- Pesticides and herbicides used historically on site.

All Phase II FI activities were conducted according to the GEI Phase II Environmental Site Assessment proposal dated February 10, 2009.

Laboratory analysis was performed by Connecticut Testing Laboratories, Inc. (CTL) of Meriden, Connecticut. CTL is a State of Connecticut licensed analytical laboratory.

2.1 Field Methods

2.1.1 Subsurface Soil Borings/GW Monitoring Well Installation

Columbia Environmental Drilling was subcontracted to advance soil borings and install groundwater monitoring wells. Twelve soil borings were advanced to the groundwater table using a GeoProbeTM type hydraulic drill rig. Soil samples were collected from four foot long two inch diameter macrocore sampling tubes equipped with an acetate liner. Six soil borings

PHASE II & III FIELD INVESTIGATION TOWN OF GLASTONBURY 95 OAK STREET GLASTONBURY, CONNECTICUT APRIL 14, 2009

were advanced with a hollow-stem auger drill rig. These six borings were completed as groundwater monitoring wells. Three surface soil hand borings were advanced using a hand auger. The following table outlines the constituents of concern (COC) and sampling locations associated with each AOC.

Area of Concern	Constituents of Concern	Sample Locations
Historical use of the	Volatile Organic Compounds	GEI-MW-15, GEI-MW-
building on site	(VOCs), lead, TPH and Semi-	16, GEI-MW-13
	VOCs.	
Four 2,000-gallon UST	VOCs and Lead. TPH on	SB-6, SB-7, SB-10, SB-
graves	GEI-MW-15 only.	11, MW-2, GEI-MW-15,
		and GEI-MW-16
Abandoned 10,000-	VOCs, TPH, and Semi-VOCs.	SB-1, SB-10, SB-11,
gallon and 20,000-gallon	RCRA 8 Metals on GEI-MW-	SB-12. GEI-MW-15,
fuel oil USTs	16 only. Lead on GEI-MW-15	GEI-MW-16, and GEI-
	and GEI-MW-17 only. No	MW-17
	Semi-VOCs on GEI-MW-15.	
Transformer	, TPH, Semi-VOCs, and	SB-8 and SB-9
	PCBs	
Fuel pumps in the area of	VOC and Lead. ETPH on	MW-1, SB-4 and SB-5
the former gasoline	MW-1 only.	
USTs		
Septic tank and leeching	VOCs, TPH, and RCRA 8	SB-14 and GEI-MW-13
field	metals. Semi-VOCs for SB-14	
	only.	
Pesticides and	Pesticides and Herbicides	SS-1, SS-2, and SS-3
Herbicides application.		

2.1.1.1 Soil Borings

The objective of these borings is to assess if the soil in the AOCs have been impacted by current or historic activities on site. In addition, the borings provide information regarding the subsurface geology at the subject property.

A GeoProbeTM type hydraulic drill rig was used to advance borings SB-1 through SB-12 and SB-14. Soil samples were collected using a four foot long, two inch diameter steel macrocore sampler with an acetate liner. Continuous macrocore soil samples were collected from the ground surface to bottom of boring. The borings ranged in total depth from 8 feet below grade (fbg) to approximately 13 fbg. After each sample was retrieved, the macrocore samplers were decontaminated using an Alconox bath, nitric acid rinse, methanol rinse, and a deionized water rinse. Soil samples collected were visually examined and logged in the field by GEI personnel. The soil samples were screened for the presence of total VOCs using a photoionization detector (PID) equipped with a 10.8 eV lamp.

The soil samples were also assessed for any visual and olfactory evidence of contamination, and the results were recorded. The PID was calibrated prior to the start of work. The boring logs are included in Appendix A.

A hollow-stem auger drill rig with a 4.25-inch inside diameter auger was used to advance borings and install monitoring wells (GEI-MW-13, GEI-MW-15, GEI-MW-16, and GEI-MW-17). Continuous split-spoon samples were collected from the ground surface to the bottom of the boring in all four exterior boring locations. Samples were collected in advance of the auger using a 2-inch, 2-foot-long, split spoon sampler. After each sample was retrieved, the split spoons were decontaminated using an Alconox bath, nitric acid rinse, methanol rinse, and a deionized water rinse.

As with the GeoProbe sampling, soil samples collected were visually examined and logged in the field by GEI personnel. The soil samples were screened with the PID. The soil samples were also assessed for any visual and olfactory evidence of contamination, and the results were recorded. The boring logs are included in Appendix A.

One soil sample from each of the borings (SB-1 through SB-12, SB-14, and GEI-MW-13) was placed in laboratory-supplied glassware, maintained at approximately 4° Celsius, and submitted for laboratory analyses. A chain of custody was maintained for all of the soil samples.

2.1.1.2 Monitoring Well Construction

Four soil borings were completed as groundwater monitoring wells GEI-MW-13, GEI-MW-15, GEI-MW-16 and GEI-MW-17. The monitoring wells were constructed of 2-inch inside diameter, flush-threaded polyvinyl chloride (PVC) screen and solid PVC riser. These wells were installed using the hollow-stem auger drill rig. The wells were installed with 10 feet of #10 slot screen at depths ranging from 11.4 to 14.3 feet below grade, where the screen was set to straddle the water table. The annular space between the well screen and borehole wall, from the bottom of the boring to approximately 1 foot above the top of the screen, was filled with chemically inert filter sand to promote sufficient groundwater flow to the wells and to minimize the passage of any fine-grained formational material into the wells. An approximately 2-foot-thick bentonite clay seal was placed directly above the sand pack. The remaining annular space was filled to grade with native material. A concrete pad was constructed around each well at the ground surface and fitted with a flush-mounted curb box, locking cap, and lock. Well construction details are provided in the boring logs (Appendix A).

2.1.2 Groundwater Sampling

The four groundwater monitoring wells, discussed in subsection 2.1.1.2 of this report and two previously existing groundwater monitoring wells (MW-1 and MW-2), were sampled on February 27, 2009 as described below.

2.1.2.1 Gauging

Prior to groundwater purging and sampling, the monitoring wells were gauged for depth to groundwater. GEI personnel used an electronic interface probe (EIP) to measure the distance from the highest point on the PVC riser to the groundwater table within each well.

2.1.2.2 Purging

Prior to groundwater sampling, the monitoring wells were purged at rates that minimize or eliminate significant drawdown in accordance with the guidelines set forth in *Low Stress* (*low flow*) *Purging and Sampling Procedure for the Collection of Groundwater Samples* from Monitoring Wells (EPA Region I, 1996). A peristaltic pump with dedicated polyethylene and silicone tubing was used to purge one tubing volume of groundwater from each well. Upon removal of one tubing volume, water quality was monitored and recorded with a Horiba U-22 meter for pH, temperature, specific conductivity, oxidation-reduction potential (Eh), dissolved oxygen, and turbidity at five-minute intervals to determine well stability. When stability was reached (pH was within 0.1 standard units, temperature was within 0.5°C, Eh and specific conductivity were within 10% for three consecutive readings) the groundwater was sampled.

2.1.2.3 Groundwater Sampling

After each well was purged, groundwater samples were collected and contained in glassware provided by the laboratory and maintained at approximately 4° Celsius. Samples were collected using dedicated tubing and a peristaltic pump (approximate pumping rate: 100 milliliters per minute [mL/min]). A chain of custody was maintained for the groundwater samples.

Phase III Field Investigation

The Phase III portion of the field investigation was designed to delineate the extent of impacted soil and groundwater encountered during the Phase II field investigation. The Phase II field investigation identified the following impacts at the subject property:

• The concentrations of dieldrin in soil samples SS-1 and SS-3 were above the GA Pollutant Mobility Criteria (PMC).

• The concentrations of lead and several semi-VOCs (polycyclic aromatic hydrocarbons [PAHs]) in groundwater at well GEI-MW-17 were above the CTDEP surface water protection criteria (SWPC).

2.2 Field Methods

2.2.1 Subsurface Soil Borings & Temporary GW Micro Well Installation

Columbia Environmental Drilling was subcontracted to advance soil borings and install temporary groundwater micro wells. Seven soil borings were advanced to the groundwater table using a GeoProbeTM type hydraulic drill rig. Soil samples were screened for signs of impact from the four foot long two inch diameter macrocore sampling tubes equipped with an acetate liner. One inch diameter PVC micro wells were installed in these seven borings. A rotary auger drill rig was used to install one two inch diameter PVC groundwater monitoring well (GEI-MW-18). Twenty seven surface soil hand borings were advanced using a hand auger. The following table outlines the constituents of concern (COC) and sampling locations associated with each Phase III AOC.

Area of Concern	Constituents of Concern	Sample Locations
Two 2,000-gallon UST	Lead	TW-1 through TW-7 and
graves located east of the		GEI-MW-15
building on site		
Abandoned 10,000-	Semi-VOCs (PAHs)	TW-1 through TW-7 and
gallon fuel oil USTs		GEI-MW-15
Pesticides in shallow	Pesticides	SS-1, SS-3 at six inches
soils		and two fbg. SS-2, SS-4
		through SS-22 and SS-
		24 through SS-27 at six
		inches below grade. Also
		MW-18.

2.2.1.1 Soil Borings

The objective of these borings is to assess the extent of PAH, lead, and pesticide impacted soil and to assess if these impacts present a threat to the groundwater on site.

On March 19, 2009 a hollow-stem auger drill rig was used to advance a boring and install monitoring well GEI-MW-18. The boring was advanced to a depth of 16 fbg. The well was constructed of 10 feet of two inch diameter PVC well screen and six feet of two inch diameter PVC riser. The screen was set to straddle the groundwater table.

Soil samples were collected on March 19, 2009 from the previous locations of (Phase II) SS-1 and SS-3. Soil samples were collected from six inches below grade and from two fbg.

Soil samples were collected from SS-2, SS-4 through SS-22, and SS-24 through SS-27 from a depth of six inches below grade.

On March 20, 2009 a GeoProbeTM type hydraulic drill rig was used to advance borings TW-1 through TW-7. Soil samples were collected using a four foot long, two inch diameter steel macrocore sampler with an acetate liner. Continuous macrocore soil samples were collected from the ground surface to bottom of boring. The borings ranged in total depth from approximately 8 fbg to approximately 12 fbg. Soil samples collected were visually examined, screened with the PID, and logged in the field by GEI personnel.

One soil sample from each of the borings (SS-2, SS-4 through SS-22, and SS-24 through SS-27) and two soil samples from SS-1 and SS-3 were placed in laboratory-supplied glassware, maintained at approximately 4° Celsius, and submitted for laboratory analyses. A chain of custody was maintained for all of the soil samples.

2.2.1.2 Monitoring Well Construction

One soil boring was completed as groundwater monitoring well GEI-MW-18. The monitoring well was constructed of 2-inch inside diameter, flush-threaded PVC screen and solid PVC riser. This well was installed using the hollow-stem auger drill rig. The well was installed with 10 feet of #10 slot screen at a depth 16fbg, where the screen was set to straddle the water table. The annular space between the well screen and borehole wall, from the bottom of the boring to approximately 1 foot above the top of the screen, was filled with chemically inert filter sand to promote sufficient groundwater flow to the well and to minimize the passage of any fine-grained formational material into the well. An approximately 2-foot-thick bentonite clay seal was placed directly above the sand pack. The remaining annular space was filled to grade with native material. A concrete pad was constructed around the well at the ground surface and fitted with a flush-mounted curb box, locking cap, and lock.

Seven soil borings were completed as temporary groundwater micro wells (TW-1 through TW-7). The micro wells were constructed of 1-inch diameter, flush-threaded PVC screen and solid PVC riser. These wells were installed using a GeoProbeTM type drill rig. The wells were installed with 10 feet of #10 slot screen at a depth that ranged between 8 and 12 fbg, where the screen was set to straddle the water table. The well screens in these wells were installed for the purpose of collecting a one-time grab sample of groundwater. The well screens were removed upon completion of the groundwater sampling activities.

2.2.2 Groundwater Sampling

The seven micro wells, discussed in subsection 2.2.1.2 of this report, and one groundwater monitoring wells GEI-MW-15 (that was installed during the Phase II portion of this FI), were sampled on March 20, 2009 as described below. The one groundwater monitoring well, discussed in subsection 2.2.1.2 of this report, was sampled on March 24, 2009 as described below.

2.2.2.1 Gauging

Prior to groundwater purging and sampling, the monitoring/micro wells were gauged for depth to groundwater. GEI personnel used an EIP to measure the distance from the highest point on the PVC riser to the groundwater table within each well.

2.2.2.2 Purging

Prior to groundwater sampling, the monitoring/micro wells were purged at rates that minimize or eliminate significant drawdown in accordance with the guidelines set forth in *Low Stress (low flow) Purging and Sampling Procedure for the Collection of Groundwater Samples from Monitoring Wells* (EPA Region I, 1996). A peristaltic pump with dedicated polyethylene and silicone tubing was used to purge one tubing volume of groundwater from each well. Upon removal of one tubing volume, water quality was monitored and recorded with a Horiba U-22 meter for pH, temperature, specific conductivity, oxidation-reduction potential (Eh), dissolved oxygen, and turbidity at five-minute intervals to determine well stability. When stability was reached (pH was within 0.1 standard units, temperature was within 0.5°C, Eh and specific conductivity were within 10% for three consecutive readings) the groundwater was sampled.

2.2.2.3 Groundwater Sampling

After each well was purged, groundwater samples were collected and contained in glassware provided by the laboratory and maintained at approximately 4° Celsius. Samples were collected using dedicated tubing and a peristaltic pump (approximate pumping rate: 100 mL/min). A chain of custody was maintained for the groundwater samples.

3. Physical Characteristics of the Site

This section of the report discusses the physical characteristics of the study area from both regional and Site-specific perspectives.

3.1 Land Use in the Site Vicinity

The following is a description of land use in the area of the Site:

- South: Vacant land, Town property.
- East: Residential buildings, except for a warehouse at 100, Oak Street.
- North: Commercial, Service Garage Monaco & Sons Motor Sales Inc.
- West: Wooded and then a Light Industrial building.

The exterior portion of the site is predominately paved. Some unpaved areas exist to the east of the building on site and there is a grass covered and partially wooded area to the west of the building.

The subject property is located in an industrial and residential portion of Glastonbury. Beyond the adjacent land uses discussed above, the following other environmentally significant land use data was found within ½ mile of the Site: there are six sites that are known to have had leaking underground storage tank (LUST) incidents. Based on the distance and location of the LUST sites listed, the potential for the sites to have impacted the subject property is considered low.

3.2 Local Groundwater Use

The subject property and vicinity are supplied potable water by the Metropolitan District Commission (MDC).

There are two public water supply sources approximately 1 mile west of the site. These water supply sources are distant from the site and would not be influenced by any release onsite. Groundwater below and near the Site is classified by the CTDEP as a GA groundwater area (CTDEP, 1993). The GA classification indicates groundwater within a public water supply watershed or within the area of influence of public water supply wells.

This CTDEP designation indicates groundwater that is suitable for direct human consumption without treatment (CTDEP 1996).

3.3 Surface Water Hydrology

Based on the topography of the site and vicinity, local groundwater flow is inferred to be toward the west/southwest toward Hubbard Brook.

3.3.1 Surface Water

This surface water is classified by the CTDEP as "BA." An "A" classification is suitable to be used as a potential drinking water supply, fish and wildlife habitat, recreational use, agricultural supply, industrial supply, and other legitimate uses, including navigation. Surface water within a "BA" classification may not be meeting criteria or one or more designated uses. The water quality goal is achievement of class "A" criteria and attainment of class "A" designated uses. The closest mapped surface water body is Hubbard Brook and its impoundments, Williams Pond and Roser Ponds approximately 1,000 feet to the south.

3.4 Regional Geology and Site Stratigraphy

According to the 1964 USGS Map of the Surficial Geology of the Glastonbury Quadrangle, Connecticut, the subject property is underlain by Glacial Lake Hitchcock Deposits. These deposits are made up of lacustrine sands overlying very fine sand, silt and clay.

3.5 Site-Specific Geology and Site Stratigraphy

Site geology, as determined through direct logging of split-spoon samples, is provided in this subsection. Complete details are presented within the boring logs in Appendix A.

A layer of fill material consisting of poorly sorted red sandy soil including approximately 5 percent gravel and approximately 15 percent silt makes up the uppermost stratigraphic unit at the Site. The deepest boring was advanced to approximately 15 fbg. Groundwater was encountered at depths ranging from 2.5 to 11 feet below grade. No bedrock was encountered in any of the borings.

3.6 Groundwater Flow

The direction of groundwater flow is controlled mainly by topography. However, flow is also influenced by aquifer type, depth to bedrock, watercourses near the Site, groundwater use, and subsurface structures. Generally, groundwater flows from topographic high points to low points. Based on the observed topography and the site specific groundwater elevation measurements, groundwater on Site flows to the west/northwest toward Hubbard Brook. Groundwater contours are included in Figure 3.

4. Nature and Extent of Contamination

This section of the report presents the physical observations made during the field investigation, the analytical results, and an assessment of the contamination at the Site. The sample locations from the Phase II/III FI are included on Figure 2. The various media and the potential impacts to each media are discussed separately in the following subsections.

4.1 Subsurface Soils

This subsection describes and discusses the findings of subsurface-soil investigations at the Site. Subsurface soils at the Site were evaluated through observations made during the installation of soil borings, and through the chemical analysis of subsurface-soil samples. Soil boring logs are provided in Appendix A.

4.1.1 Physical Observations

No evidence of soil staining or chemical/petroleum odors were observed in the subsurfacesoil samples collected on site. The headspace PID readings indicated no concentrations of VOCs in any of the soil samples collected.

4.1.2 Chemical Analysis

4.1.2.1 Phase II Field Investigation

The soil samples collected from SB-1 through SB-7, SB-10, GEI-MW-13, SB-14 and SB-101 (the duplicate of SB-10) were analyzed for VOCs by EPA Method 8260B. Soil samples collected from SB-1, SB-8 through 12, GEI-MW-13, SB-14, and SB-101 were analyzed for total petroleum hydrocarbons (TPH) by the Connecticut extractable TPH (ETPH) Method. The soil samples collected from SB-2 through SB-7 were analyzed for lead by the synthetic precipitation leaching procedure (SPLP) Method. The soil samples collected from GEI-MW-13 and SB-14 were analyzed for the 8 RCRA metals by EPA Method 3050B. The soil samples collected from SB-1, SB-8 through SB-12, GEI-MW-13, SB-14, and SB-101were analyzed for semi-VOCs by EPA Method 8270. The soil samples collected from SB-8 and SB-9 were analyzed for polychlorinated biphenyls (PCB) by EPA Method 8082. The soil samples collected from SS-1, SS-2, and SS-3 were analyzed for Herbicides and pesticides by EPA Methods 8051A and 8081A, respectively.

The locations of the samples are presented in Figure 2 and a summary of the soil analytical data is presented in Table 1. Detailed results are presented in the laboratory analytical reports included in Appendix B.

Semi-VOCs were detected in the soil samples collected from borings SB-1, SB-9, SB-11, and SB-14 at concentrations below the applicable CTDEP RSRs.

Several of the 8 RCRA metals were detected in soil samples GEI-MW-13 and SB-14 at concentrations below the applicable CTDEP RSRs.

ETPH was detected in soil samples SB-1 and SB-14 at concentrations below the applicable CTDEP RSRs.

The pesticide dieldrin was detected at a concentration above the CTDEP GA Pollutant Mobility Criteria (GAPMC), but below the CTDEP Residential Direct Exposure Criteria (RESDEC) in soil samples SS-1 and SS-3.

None of the other parameters analyzed were detected in any of the soil samples.

4.1.2.2 Phase III Field Investigation

Due to the results of the pesticide analysis on soil samples collected as part of the Phase II FI, on March 19, 2009, the soil samples from SS-1, SS-3 through SS-22, and SS-24 through SS-27 were analyzed for pesticides by the SPLP Method. Dieldrin was detected in soil samples SS-4 through SS-8 and SS-27 at concentrations below the applicable CTDEP RSRs. None of the other parameters analyzed were detected in any of the soil samples. The concentrations of dieldrin in these soil samples do not warrant additional investigation or remediation.

4.2 Groundwater

This subsection describes and discusses the findings of groundwater investigations at the Site. Groundwater at the Site was evaluated through the chemical analysis of groundwater samples.

4.2.1 Chemical Analysis

4.2.1.1 Phase II Field Investigation

On February 27, 2009, groundwater samples were collected from monitoring wells MW-1, MW-2, GEI-MW-13, GEI-MW-15, GEI-MW-16, and GEI-MW-17 during the Phase II FI. All six groundwater samples were analyzed for VOCs by EPA Method 8260. Groundwater samples MW-1, MW-2, GEI-MW-13, GEI-MW-15, and GEI-MW-16 were analyzed for

PHASE II & III FIELD INVESTIGATION TOWN OF GLASTONBURY 95 OAK STREET GLASTONBURY, CONNECTICUT APRIL 14, 2009

TPH by the ETPH Method. Groundwater samples GEI-MW-16 and GEI-MW-17 were analyzed for Semi-VOCs by EPA Method 8270. Groundwater samples GEI-MW-13 and GEI-MW-16 were analyzed for the 8 RCRA total metals by the 6000/7000 series. Groundwater samples GEI-MW-15 and GEI-MW-17 were analyzed for lead by the 6000/7000 series.

The locations of the samples are presented in Figure 2 and a summary of the groundwater analytical data is presented in Table 3. Detailed results are presented in the laboratory analytical reports included in Appendix B.

Several PAHs and lead were detected in groundwater sample GEI-MW-17 at concentrations above the SWPC. No other concentrations of PAHs or lead were detected above the applicable CTDEP RSRs in any of the samples.

No VOCs, ETPH, or the remainder of the 8 RCRA metals were detected at concentrations above the CTDEP RSRs.

The concentrations of some of the PAHs and lead in sample GEI-MW-17 do warrant some type of remediation.

4.2.1.2 Phase III Field Investigation

On March 20, 2009, Groundwater samples were collected from temporary micro wells TW-1 through TW-7 and groundwater monitoring well GEI-MW-15 during the Phase III FI. All eight samples were analyzed for semi-VOCs (PAHs) by EPA Method 8270 and for lead by the 6000/7000 series. The concentrations of PAHs in all eight groundwater samples were below the laboratory detection limits. The concentration of lead in groundwater samples TW-1 and TW-3 were above the SWPC. The concentration of lead in TW-4 was above the laboratory detection limit but below the applicable CTDEP RSRs. There were no other detections of lead in the remaining groundwater samples. The concentration of lead in TW-1 and TW-3 warrant some type of remediation.

On March 24, 2009, a groundwater sample was collected from groundwater monitoring well GEI-MW-18. The groundwater sample was analyzed for pesticides by EPA Method 8081A. The concentrations of pesticides in groundwater sample GEI-MW-18 were below the laboratory detection limits. The concentration of pesticides in this groundwater sample does not warrant further investigation or remediation.

5. Discussion, Conclusions and Recommendations

A Phase II/III FI was conducted at the Aero Med facility located at 95 Oak Street in Glastonbury, Connecticut. The purpose of the Phase II portion of the FI was to assess if the subsurface environment on site has been impacted by current or previous activities in the areas of concern identified in the April 2008 GEI Phase I ESA report.

Semi-VOCs and TPH were detected in several soil samples during the Phase II portion of this FI at concentrations below the applicable CTDEP RSRs. The pesticide dieldrin was detected in shallow soil samples SS-1 and SS-3 at concentrations above the CTDEP GAPMC.

Several Semi-VOCs and lead were detected in groundwater sample GEI-MW-17 at concentrations above the SWPC.

Due to the concentrations of dieldrin in shallow soils west of the building on site and the concentrations of semi-VOCs and lead in the groundwater east of the building on site, GEI proposed a Phase III FI to delineate the extent of the soil and groundwater impact.

The concentration of dieldrin in the shallow soil samples (Phase II FI) was below the CTDEP RESDEC but above the GAPMC. Therefore, the Phase III FI focused on potential dieldrin impact to the groundwater not to direct exposure. GEI collected soil samples at the SS-1 and SS-3 sample locations at six inches below grade (the original sample depth) and at two fbg and analyzed the samples for pesticides by the SPLP Method. In addition, GEI collected shallow (six inches below grade) soil samples in a grid pattern to the west of the building on site. The results of the SPLP analysis indicated that the dieldrin on site is statistically insignificant.

GEI installed groundwater monitoring well GEI-MW-18 at the location of the highest soil concentration of dieldrin (SS-3). A groundwater sample from this well was analyzed for pesticides and the results indicated no detectable dieldrin in the groundwater sample. Therefore, GEI recommends no additional investigation or remediation regarding dieldrin on site. We do however recommend that the soil be handled appropriately during any future excavation or redevelopment of the property.

To assess the extent of PAH impacted groundwater, GEI advanced seven borings in the area of GEI-MW-17 and the 10,000 gallon abandoned fuel oil UST (the suspected source of the PAHs).

PHASE II & III FIELD INVESTIGATION TOWN OF GLASTONBURY 95 OAK STREET GLASTONBURY, CONNECTICUT APRIL 14, 2009

Groundwater samples were collected from seven temporary micro wells installed in the seven borings and from GEI-MW-15. The results of the laboratory analysis indicated no detectable concentrations of PAHs. GEI recommends that the limited PAH impacted soil in the area of GEI-MW-17 be excavated and removed during the planned construction activities on site. Confirmation soil samples should be collected and analyzed for semi-VOCs at the conclusion of the excavation activities.

To assess the extent of lead impacted groundwater, GEI had the eight groundwater samples mentioned above analyzed for lead. The results of the analysis indicated concentrations of lead in two of the wells above the SWPC. Due to the locations of the impacted groundwater samples TW-1 and TW-3, the excavation of the soil mentioned above should include much of the lead impacted media. Since the original source of the lead (two 2,000-gallon gasoline USTs) has been removed, GEI does not recommend any additional remediation beyond the planned excavation.

GEI recommends the proper handling of soils, in the area of well GEI-MW-17 and the area of pesticide impacted soil to the west of the building on site, during any excavation activities in those areas.

PHASE II & III FIELD INVESTIGATION TOWN OF GLASTONBURY 95 OAK STREET GLASTONBURY, CONNECTICUT APRIL 14, 2009

Tables

Table 1Phase II Soil Analytical Results95 Oak StreetSampling Date:2-20-09

Sample Name:		GA/GA	SB-1	SB-1	SB-8	SB-9	SB-10	SB-101	SB-11	SB-12	GEI-MW-13	SB-14	SS-1	SS-2	SS-3
Sample Interval:	RES	Α	(30")	(30")	(11)	(10-11)	(9-10)	(9-10)	(3.5-4)	(3-4)					
Sample Date:	DEC	PMC	2/20/2009	2/20/2009	2/20/2009	2/20/2009	2/20/2009	2/20/2009	2/20/2009	2/20/2009	2/20/2009	2/20/2009	2/20/2009	2/20/2009	2/20/2009
SVOCs (mg/kg)														•	•
Acenaphthene	1000	8.4	0.368	0.368	ND< 0.10	0.209	ND< 0.10	NA	NA	NA					
Anthracene	1000	40	0.435	0.435	ND< 0.10	0.262	ND< 0.10	NA	NA	NA					
Benzo(a)anthracene	1	1	0.896	0.896	ND< 0.10	0.470	ND< 0.10	ND< 0.10	0.130	ND< 0.10	ND< 0.10	0.105	NA	NA	NA
Benzo(b)fluoranthene	1	1	0.950	0.95	ND< 0.10	0.193	ND< 0.10	NA	NA	NA					
Benzo(k)fluoranthene	8.4	1	0.844	0.844	ND< 0.10	0.286	ND< 0.10	NA	NA	NA					
Benzo(g,h,i)perylene	1,00	4.2	0.556	0.556	ND< 0.50	NA	NA	NA							
Benzo(a)pyrene	1	1	0.869	0.869	ND< 0.10	0.355	ND< 0.10	ND< 0.10	0.144	ND< 0.10	ND< 0.10	ND< 0.10	NA	NA	NA
Carbazole	NE	NE	0.319	0.319	ND< 0.10	0.125	ND< 0.10	NA	NA	NA					
Chrysene	84	1	0.911	0.911	ND< 0.10	0.406	ND< 0.10	ND< 0.10	0.118	ND< 0.10	ND< 0.10	0.109	NA	NA	NA
Fluoranthene	1000	5.6	2.790	2.79	ND< 0.10	1.130	ND< 0.10	ND< 0.10	0.207	ND< 0.10	ND< 0.10	0.221	NA	NA	NA
Fluorene	1000	5.6	0.229	0.229	ND< 0.10	0.128	ND< 0.10	NA	NA	NA					
Naphthalene	1000	5.6	0.151	0.151	ND< 0.10	0.124	ND< 0.10	NA	NA	NA					
Phenanthrene	1000	4	1.830	1.83	ND< 0.10	0.921	ND< 0.10	0.119	NA	NA	NA				
Pyrene	1000	4	2.120	2.12	ND< 0.10	0.938	ND< 0.10	ND< 0.10	0.193	ND< 0.10	ND< 0.10	0.201	NA	NA	NA
Pesticides (mg/kg)															
4,4'-DDT	1.8	NE	NA	ND< 50	ND< 50	0.113									
Dieldrin	0.038	0.007	NA	0.010	ND< 5	0.019									
Metals (mg/kg)															
Arsenic	10	NA	NA	NA	NA	NA	NA	NA	NA	NA	1.9	2.4	NA	NA	NA
Barium	4,700	NA	NA	NA	NA	NA	NA	NA	NA	NA	37	39	NA	NA	NA
Chromium, Total	NE	NA	NA	NA	NA	NA	NA	NA	NA	NA	6.5	12.2	NA	NA	NA
Lead	400 ⁽⁴⁾	NA	NA	NA	NA	NA	NA	NA	NA	NA	2.3	4.5	NA	NA	NA
Mercury	20	NA	NA	NA	NA	NA	NA	NA	NA	NA	ND< 0.02	0.03	NA	NA	NA
Other (mg/kg)															
ETPH	500	500	87	87	ND< 50	96	NA	NA	NA						

Table 1 Phase II Soil Analytical Results 95 Oak Street Glastonbury, CT

Notes:

Data for these sampling events have not been validated. Qualifiers are Lab Qualifiers.

mg/kg - milligrams/kilogram or parts per million (ppm) SVOCs - semivolatile organic compounds

GA/GAA - means an area where the ground-water classification is GA/GAA

Res DEC - Residential direct exposure criteria means the concentrations identified as residential direct exposure criteria in Appendix A to sections 22a-133k-1 through 22a-133k-3 of the Regulations of Connecticut State Agencies.

PMC - Pollutant mobility criteria means the concentrations identified in Appendix B to sections 22a-133k-1through 22a-133k-3 of the Regulations of Connecticut State Agencies or any alternative pollutant mobility criteria approved by the Commissioner pursuant to subsection 22a-133k-2(d) of the Regulations of Connecticut State Agencies.

- Criteria based on detection limits

⁽⁴⁾ - Codified criterion for Lead RDEC is 500 ppm, but the recommended cleanup criterion is 400 ppm to be protective of human health")

NA - not applicable

NE - not established

ND - Not Detected

Bolding indicates a detected result value Shading and bolding indicates that the detected result value exceeds the Remediation Standard it was compared to

	Sample Name:		SS-1	SS-1	SS-3	SS-3	SS-4	SS-5	SS-6
	Sample Interval (feet):		(2)	(6)	(2)	(6)	(6)	(6)	(6)
	Sample Date:	GWPC	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009
SPLP Pesticides (mg/L)									
Dieldrin		0.02	0.00002 U	0.00002 U	0.00002 U	0.00002 U	0.00006	0.00008	0.00011

Notes:

mg/L - miligrams per liter or ppm

SPLP - Synthetic Precipitate Leaching Procedure GWPC - Ground-water Protection Criteria

Bolding indicates a detected result value

Laboratory Qualifiers:

U - indicates not detected to the reporting limit

Unvalidated

Sample Name:		SS-7	SS-8	SS-9	SS-10	SS-11	SS-12	SS-13	SS-14
Sample Interval (feet):		(6)	(6)	(6)	(6)	(6)	(6)	(6)	(6)
Sample Date:	GWPC	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009
SPLP Pesticides (mg/L)									
Dieldrin	0.02	0.00018	0.00005	0.00002 U					

Notes:

mg/L - miligrams per liter or ppm

SPLP - Synthetic Precipitate Leaching Procedure GWPC - Ground-water Protection Criteria

Bolding indicates a detected result value

Laboratory Qualifiers:

Sample Name	:	SS-15	SS-16	SS-17	SS-18	SS-19	SS-20	SS-21	SS-22
Sample Interval (feet)	:	(6)	(6)	(6)	(6)	(6)	(6)	(6)	(6)
Sample Date	: GWPC	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009	3/19/2009
SPLP Pesticides (mg/L)									
Dieldrin	0.02	0.00002 U							

Notes:

mg/L - miligrams per liter or ppm

SPLP - Synthetic Precipitate Leaching Procedure GWPC - Ground-water Protection Criteria

Bolding indicates a detected result value

Laboratory Qualifiers:

	Sample Name:		SS-24	SS-25	SS-26	SS-27
	Sample Interval (feet):		(6)	(6)	(6)	(6)
	Sample Date:	GWPC	3/19/2009	3/19/2009	3/19/2009	3/19/2009
SPLP Pesticides (mg/L)						
Dieldrin		0.02	0.00002 U	0.00002 U	0.00002 U	0.00003

Notes:

mg/L - miligrams per liter or ppm

SPLP - Synthetic Precipitate Leaching Procedure GWPC - Ground-water Protection Criteria

Bolding indicates a detected result value

Laboratory Qualifiers:

Table 3 Groundwater Analytical Results Town of Glastonbury 95 Oak Street Sampling Dates: 2/27/09, 3/20/09 and 3/24/09

Sample Name: Sample Date:	SWPC	Proposed RES GWVC	GEI-MW-13 2/27/2009	GEI-MW-15 2/27/2009	GEI-MW-16 2/27/2009	GEI-MW-17 2/27/2009	GEI-MW-1 2/27/2009	MW-2 2/27/2009	MW-15 3/20/2009				
Non-carcinogenic PAHs (ug/L)													
Fluoranthene	3700	NE	NA	NA	5 U	6.0	NA	NA	5 U				
Phenanthrene	0.077	NE	NA	NA	0.07 U	2.81	NA	NA	0.07 U				
Pyrene	110000	NE	NA	NA	5 U	5.0	NA	NA	5 U				
Carcinogenic PAHs (ug/L)													
Benz[a]anthracene	0.3	NE	NA	NA	0.06 U	2.87	NA	NA	0.06 U				
Benzo[a]pyrene	0.3	NE	NA	NA	0.2 U	2.9	NA	NA	0.2 U				
Benzo[b]fluoranthene	0.3	NE	NA	NA	0.08 U	3.69	NA	NA	0.08 U				
Benzo[k]fluoranthene	0.3	NE	NA	NA	0.3 U	1.2	NA	NA	0.3 U				
Indeno[1,2,3-cd]pyrene	SS-0.49	NE	NA	NA	1 U	5.0	NA	NA	1 U				
Total Metals (ug/L)													
Barium	SS-4540	NE	100	NA	100 U	NA	NA	NA	NA				
Lead (method 6010)	13	NE	5 U	5 U	5 U	62	NA	NA	NA				
Lead (method 200.7)	13	NE	NA	NA	NA	NA	NA	NA	5 U				

Table 3 Groundwater Analytical Results Town of Glastonbury 95 Oak Street Sampling Dates: 2/27/09, 3/20/09 and 3/24/09

Sample Name: Sample Date:	SWPC	Proposed RES GWVC	MW-18 3/24/2009	TW-1 3/20/2009	TW-2 3/20/2009	TW-3 3/20/2009	TW-4 3/20/2009	TW-5 3/20/2009	TW-6 3/20/2009	TW-7 3/20/2009					
Non-carcinogenic PAHs (ug/L	Non-carcinogenic PAHs (ug/L)														
Fluoranthene	3700	NE	NA	5 U	5 U	5 U	5 U	5 U	5 U	5 U					
Phenanthrene	0.077	NE	NA	0.07 U											
Pyrene	110000	NE	NA	5 U	5 U	5 U	5 U	5 U	5 U	5 U					
Carcinogenic PAHs (ug/L)															
Benz[a]anthracene	0.3	NE	NA	0.06 U											
Benzo[a]pyrene	0.3	NE	NA	0.2 U											
Benzo[b]fluoranthene	0.3	NE	NA	0.08 U											
Benzo[k]fluoranthene	0.3	NE	NA	0.3 U											
Indeno[1,2,3-cd]pyrene	SS-0.49	NE	NA	1 U	1 U	1 U	1 U	1 U	1 U	1 U					
Total Metals (ug/L)															
Barium	SS-4540	NE	NA	NA	NA	NA	NA	NA	NA	NA					
Lead (method 6010)	13	NE	NA	NA	NA	NA	NA	NA	NA	NA					
Lead (method 200.7)	13	NE	NA	24	5 U	32	11	5 U	5 U	5 U					

Notes:

ug/L - micrograms per liter PAHs - polycyclic aromatic hydrocarbons

SWPC: Surface Water Protection Criteria

Res GWVC - Residential volatilization criteria means the concentrations identified as residential volatilization criteria in Appendices E and F to sections 22a-133k-1 through 22a-133k-3 of the Regulations of Connecticut State Agencies.

NA - not applicable

NE - not established

SS - if statewide criteria have not been established, but site specific criteria are available, this is denoted by the prefix "SS" and the most conservative site specific value are listed.

Bolding indicates a detected result value

Shading and bolding indicates that the detected result value exceeds the Remediation Standard it was compared to

Laboratory Qualifiers:

PHASE II & III FIELD INVESTIGATION TOWN OF GLASTONBURY 95 OAK STREET GLASTONBURY, CONNECTICUT APRIL 14, 2009

Figures

I:\GEI\Glastonbury-Town of\090500\Phase 2-3 FI\95 Oak St-location Map.cdr

7/ >

Appendix A

Soil Boring Completion Logs

ſ		1	P 62	GELO	onsultants	Inc	CLIENT	· Town of Glaston	hurv		BORING LOG
		[(@	S)//	455 W	/inding Bro	ok Roa		CT NARMESe II 95 Oa	k Street, Glastonbur	LCI_	
	CC			(860)	368-5300	06033	CITY/ST	ATE: Glastont	ury, Connecticut	PAGE 1 of 1	SB-1
	<u>UC</u>	Cons	ultants				GEI PR	OJECT NUMBER:	090500		· · · · · · · · · · · · · · · · · · ·
ſ	GROUN		ACE	ELEV	ATION (F	T):		LOCATIO)N:		· · · · · · · · · · · · · · · · · · ·
	NORTHI	NG:			EAS	TING		TOTAL D	EPTH (FT): 10.00		
	DRILLEI	DBY:	Colu	mbia E	Environm	ental	Drilling / Ch	ris McKin DAyTUM	/ERT. / HORZ.:		
	LOGGEI	DBY:	Jessi	e McC	usker			DATE ST	ART / END: _2/19/20	09 - 2/1	9/2009
	DRILLIN	G DET.	AILS:	Geo FUS (E	orobe	50					
	WATER		DEF	пэ (г 	1). <u>+</u> 2.3						
			SAM	PLE I	NFO	A					
	DEPTH	TYPE				AT.			SOIL / BEE	ROCK	
	FT.	and	PEN FT.	REC IN.	DI9 (ppm)	H H	ID		DESCRIP	TION	
		NO.			(PP:1)	0,					
F	- 0					14		0 - 0,5 Topsoil.			
l	-							0.5 - 2.4 POORLY	GRADED SAND WIT	TH SILT	AND GRAVEL; ~80%
								sand, ~5% gravel;	~15% silt, dry, reddis	h brown	x
k			1.0		0		SB-1 (30")				
ļ	-	L			-		= - (/	2.4 - 2.5 POORLY sand ~5% gravel	GRADED SAND WIT	H SILT	AND GRAVEL; ~80%
								2.5 - 4 POORLY (RADED SAND WITH	I SILT A	ND GRAVEL; ~80% sand,
Ī	-							~5% gravel; ~15%	silt, damp, reddish bi	IOWN.	D GRAVEL: ~15% sand
╞	- 5							~5% gravel; ~80%	silt, moist, reddish br	own.	B Growen, Toyo duna,
	_										
ł	-										
								8 - 10 POORLY G ~5% gravel: ~80%	RADED SAND WITH silt. wet. reddish brov	SILTAI vn.	ND GRAVEL; ~15% sand,
ŀ	-							of grately con	ong		
┟	- 10							Bottom of borehol	at 10.0 feet		
								2010111 01 20101101			
g											
4											
5											
S.											
Ā											
ŝ											
Ч											
3											
ž											
Ĭ											
2											
Ϋ́Η											
ξľ	NOTES:										· · · · · · · · · · · · · · · · · · ·
	PEN = PENI	ETRATIO	N LENG	TH OF S	AMPLER OF	CORE	BARREL ppm	= PARTS PER MILLION	NLO = NAPHTHALENE LIK	E ODOR	C/LO= CREOSOTE LIKE ODOR
	rec = rec Pid = Pho	OVERY LI TOIONIZA	ENGTH	OF SAM	PLE OR READING) (JAR	IN. FT.	= INCHES = FEET	PLO = PETROLEUM LIKE TLO = TAR LIKE ODOR	ODOR	OLO = ORGANIC LIKE ODOR SLO = SULFUR LIKE ODOR
INME	HEAI	DSPACE)							CLO = CHEMICAL LIKE OD	DOR DR	MLO = MUSTY LIKE ODOR
Ş									TES STOL HELE LINE OD		
ź											

Γ		16		GEI C	consultants	, Inc.	CLIENT	: Town of Glastonbury BORING LOG
	~ -	. 19	M,	455 V Glast	Vinding Bro onbury, CT	ok Ro 0603	PROJEC	CT NARMEse II 95 Oak Street, Glastonbury, CT PAGE
1	(- -			(860)	368-5300		GEL PR	ATE: Glastonbury, Connecticut 1 of 1 SB-2
ŀ			EACE	FLEV	ATION (F	T۱۰		
	NORTHI	NG: _	AUL		EAS	TINC	G:	TOTAL DEPTH (FT): _11.00
ľ	DRILLEI	DBY:	Colu	mbia I	Environm	enta	l Drilling / Ch	ITIS MCKINDAYTUM VERT. / HORZ.:
	LOGGEI DRILLIN	UBY:	Jess AILS:	Geo	orobe			DATE START / END: 2/19/2009 - 2/19/2009
ŀ	WATER	LEVEL	DEP	THS (F	T): <u>¥</u> .8.	00		
r			SAN	IPLE I	NFO			
	DEPTH	TYPE				ATA		SOIL / BEDROCK
	FT.	and	PEN FT.	REC IN.	DI9 (maa)	STR	ID	DESCRIPTION
L		NO.						
ľ	- 0					<u></u>		0 - 0.5 Topsoil.
								sand, fine; ~15% silt, moist, brown.
┝						÷#		2 - 4 POORLY GRADED SAND WITH SILT AND GRAVEL: ~80% sar
L								fine to medium, ~5% gravel, fine; ~15% silt, moist, reddish brown.
L			<u> </u>					
1	_		1.0		0		SB-2 (4-5)	4 - 6 POORLY GRADED SAND WITH SILT AND GRAVEL; ~80% sar fine to medium, ~5% gravel, fine; ~15% silt, moist, reddish brown.
ſ	- 5							
┢		ļ				<u> </u> 		6 - 8 POORLY GRADED SAND WITH SILT AND GRAVEL; fine, ~209
┞								sand, tine; ~80% silt, wet, brown.
Ā	2							
L								sand, fine; ~80% silt, saturated, brown.
	- 10							
┝		1	[1.111	I	Bottom of borehole at 11.0 feet.
1	NOTES:							
F			N LENG	TH OF S	SAMPLER O	R COF	RE BARREL ppm	
F	NEC = KEC ND = PHO		ATION E	OF SAN	OR READING	g (Jaf	IN. R FT.	= FEET TLO = TAR LIKE ODOR SLO = SULFUR LIKE ODO CLO = CHEMICAL LIKE ODOR SLO = SULFUR LIKE ODO
	NEA	JOF AUE,	,					ALO = ASPHALT LIKE ODOR
l								

Г		1	762	GELC	lonsi	altants Inc.	CLIENT: Town of Glastonbury		I.	BORING LOG
		. 🕊	D)	455 V Glast	Vindir	ng Brook Road y, CT 06033	PROJECT NAMEse II 95 Oak Street,	Glastonbur	PAGE	SB_3
	JĽ	Consi	ultants	(860)	368-	5300	GEI PROJECT NUMBER:09	0500	1 of 1	00-0
G	ROUNI	SURF	ACE	ELEV	ATIC	ON (FT):	LOCATION:			·····
N			Calu	mbia		EASTING:	TOTAL DEPTH (F	T): <u>8.00</u>		
	DGGEL) ВҮ:) ВҮ:	Jessi	ie McC	<u>=nvi</u> Cusk	ronmental Dri er	DATE START / El	ND: 2/19/2	009 - 2/1	9/2009
D	RILLIN	G DET	AILS:	Geo	prot	be				
W	ATER	LEVEL	DEPT	THS (F	•T): _	⊻ 4.00				
		SAN	MPLE	INFO	A					
D	EPTH	TYPE	PFN	REC	RAT	SAMPLE	SO	IL / BEDRO	CK	
	1.1.	and NO.	FT.	IN.	ST	ID			1	
=	0		<u> </u>		31.		0 1 Tanaoli			
					. <u>""</u> . ابر را		0 - FTUpson.			
							1 - 4 POORLY GRADED SAND WITH medium, ~5% gravel, fine; ~10% silt,	H SILT AND moist, brow	GRAVE n.	L; ~80% sand, fine to
			3.0			SB-3 (2-3)				
┢										
¥.							4 - 7 POORLY GRADED SAND WITH	H SILT AND	GRAVE	L: ~90% sand, fine to
	5						medium; ~10% silt, moist, brown.			_,,,
F							7 - 8 POORLY GRADED SAND WITH	H SILT AND	GRAVE	L; ~80% sand, fine; ~20%
┢	ſ	l			• 111		Bottom of borehole at 8.0 feet.			
10/01/										
4 										
5.5										
Dour Nove										
2										
5										
Ś										
<u></u>										
JOH.										
5										
<u>N</u>	DTES:									
PE RF	N = PENE C = REC(TRATION	N LENG ENGTH	TH OF S	SAMP 1PLE	LER OR CORE BAI	REL ppm = PARTS PER MILLION NLO = NA IN. = INCHES PLO = PE	PHTHALENE LI TROLEUM LIKE	KE ODOR	Crlo= creosote like odor Olo = organic like odor
) = PHOT HEAD	OIONIZA	TION D	ETECT	or Ri	eading (Jar	FT. = FEET TLO = TAI CLO = CH	R LIKE ODOR IEMICAL LIKE O	DOR	SLO = SULFUR LIKE ODOR MLO = MUSTY LIKE ODOR
NOY I		,					ALO = AS	PHALT LIKE OD	OR	
							and a second and a s			

.

	T (2	<i>7.62</i>	GELC	0050	Itante Inc	CLIENT: Town of Glastonbury	BORING LOG
GE		M tants	455 W Glasto (860)	/indir /indir xnbur 368-{	ng Brook Road y, CT 06033 5300	PROJECT NAME se II 95 Oak Street, Glastonbury, CITY/STATE: Glastonbury, Connecticut GEI PROJECT NUMBER:090500	CT AGE of 1 SB-4
GROUN	D SURF	ACE	ELEV	ATIC	ON (FT):	LOCATION:	
NORTHI	ING:				EASTING:	TOTAL DEPTH (FT): 8.00	
	D BY: _0	Joiur Jessi	ndia E e McC	:nvii Susk	ronmental Dri er	DATE START / END: 2/19/200	9 - 2/19/2009
DRILLIN	IG DETA	ILS:	Geo	orob	96		
WATER	LEVEL	DEPT	HS (F	T):	¥ 7.00		
DEPTH FT.	SAM TYPE and	PLE	REC	TRATA	ANALYZED SAMPLE ID	SOIL / BEDROCH DESCRIPTION	<
	NO.	۲۱.	IN.	ŝ			
0						0 - 0.5 Topsoil. 0.5 - 2 POORLY GRADED SAND WITH SILT AND ~15% silt, damp, brown. 2 - 4 POORLY GRADED SAND WITH SILT AND G silt, moist, brown.	GRAVEL; ~85% sand, fine; RAVEL; ~80% sand, fine; ~20%
		0.5			SB-4 (5.5-6)	 4 - 5 POORLY GRADED SAND WITH SILT AND G silt, moist, brown. 5 - 6 POORLY GRADED SAND WITH SILT AND G silt, moist, brown. 6 - 7 POORLY GRADED SAND WITH SILT AND G medium; ~30% silt, moist, brown. 	RAVEL; ~80% sand, fine; ~20% RAVEL; ~70% sand, fine; ~30% RAVEL; ~70% sand, fine to
1						7 - 8 POORLY GRADED SAND WITH SILT AND G moist, brown.	RAVEL; ~30% sand; ~70% silt,
0G PHASE II 35 OAK SI KEEL GPJ GEL CONSULTANTS.GDT 4/1008							
NOTES: PEN = PEN REC = REC PID = PHC HEA	NETRATION COVERY LE DTOIONIZA ADSPACE)	LENG NGTH TION D	TH OF S OF SAM DETECTI	SAMP IPLE OR R	LER OR CORE BA EADING (JAR	RREL ppm = PARTS PER MILLION NLO = NAPHTHALENE LIKE IN. = INCHES PLO = PETROLEUM LIKE O FT. = FEET TLO = TAR LIKE ODOR CLO = CHEMICAL LIKE ODO ALO = ASPHALT LIKE ODO	E ODOR CILO= CREOSOTE LIKE ODOR DOR OLO = ORGANIC LIKE ODOR SLO = SULFUR LIKE ODOR OR MLO = MUSTY LIKE ODOR R

[Te		GELC	oneu	itante inc	CLIENT: Town of Glastonbury BORING LOG
			S))	455 W	findir	ig Brook Road	PROJECT NAMEse II 95 Oak Street, Glastonbury, CT
1				(860) 3	368-	5300	CITY/STATE: Glastonbury, Connecticut 1 of 1 SB-5
	<u>]L</u>	Cons	ultants				GEI PROJECT NUMBER: 090500
G	ROUNI) SURF	ACE	ELEVA	ATIC	ON (FT):	LOCATION:
NC	ORTHI	NG:	<u> </u>			EASTING:	TOTAL DEPTH (FT): 8.00
DF) BY:	Colu	mbia E	ive!	ronmental Dri	11/10g / Chris McKinobey I UM VERI. / HORZ.:
	RILLIN	G DET	AILS:	Geor	orot)e	DATE STRATTERD
W	ATER	LEVEL	DEP.	THS (F	T):	¥ 4.00	
		SAR		INFO			
	-070				Τ	ANALYZED	SOU (BEDBOCK
	EPIH FT.	TYPE	PEN	REC	RA	SAMPLE	DESCRIPTION
		NO.	FT.	IN.	S		
	0		<u> </u>		31.		
				ŀ	<u>» </u>		0 ~ 1 Topson.
					ÎÌ		1 - 2 POORLY GRADED SAND WITH SILT AND GRAVEL; ~80% sand, fine, ~5%
-							gravel; ~15% slit, moist, prown. 2 - 4 POORLY GRADED SAND WITH SILT AND GRAVEL: ~90% sand, fine: ~10%
							silt, moist, brown.
			1.0			SB-5 (3-4)	
Ĭ <u>₹</u>				ŀ			4 - 5 POORLY GRADED SAND WITH SILT AND GRAVEL; ~85% sand, fine to
F	5			ŀ			medium; ~15% silt, saturated, brown.
L				ľ	:		sit, saturated, brown.
				•			
\vdash							7 - 8 POORLY GRADED SAND WITH SILT AND GRAVEL; ~25% sand, fine; ~75%
F							silt, saturated, brown.
Ő							
4							
קר מיפר							
AN							
22							
2							
5							
Ц Ч							
0 47							
S.							
, 4							
2							
NC)TES:						
PE	N = PEN	ETRATIO	N LENG	TH OF S	AMP	LER OR CORE BA	ARREL ppm = PARTS PER MILLION NLO = NAPHTHALENE LIKE ODOR CILO= CREOSOTE LIKE ODOR
PID	= REC = PHO		ENGTH ATION E	OF SAM	r Le DR RI	EADING (JAR	FT. = FEET TLO = TAR LIKE ODOR SLO = SULFUR LIKE ODOR
AND O	HEA	USPACE)					CLO = CHEMIGAL LIKE ODOR MLU = MUSTY LIKE ODOR ALO = ASPHALT LIKE ODOR
1							

.

LOGGEI DRILLIN WATER	D BY: <u>Jes</u> G DETAILS LEVEL DE	sie McC 3: <u>Geo</u> PTHS (F	Cusk prot T):	er DATE START / END:
DEPTH FT.	SAMPL TYPE and NO	E INFO	STRATA	SOIL / BEDROCK DESCRIPTION
<u> </u>				0 - 0.5 Topsoil. 0.5 - 4 POORLY GRADED SAND WITH SILT AND GRAVEL; ~80% sand, fine to coarse, ~10% gravel, fine; ~10% silt, moist, brown.
5 				4 - 8 POORLY GRADED SAND WITH SILT AND GRAVEL; ~80% sand, fine to medium, ~5% gravel, fine; ~15% silt, moist, brown.
- - - 10				8 - 10 POORLY GRADED SAND WITH SILT AND GRAVEL; ~80% sand, fine to coarse, ~5% gravel, fine; ~15% silt, moist, brown.

			r <i>i</i> eza	GELO	Consi	iltants Inc	CLIENT: Town of Glastonbury		BORING LOG
		1(?		455 V	Vindir	ng Brook Road	PRO IECT NAMEse II 95 Oak Street Glastor	bury CT	
~		. 🔊	and A	Glast	onbu	ry, CT 06033	CITVISTATE: Cleatenbury Connecticu	PĂĠI	E 98.7
(-	<u>ا</u> ا			(860)	368-	5300	CHHISTATE: Glastonbury, connecticu	└ 1 of '	1 30-7
\sim		Cons	ullants	<u> </u>			GELPROJECT NUMBER: 090500	<u> </u>	
GR	OUN	D SURI	FACE	ELEV	ATIC	ON (FT):	LOCATION:		
NO	RTHI	NG:				EASTING:	TOTAL DEPTH (FT): 11	00	
DRI	IIF	BY	Colu	mhia l	Envi	ronmental Dri	lling / Chris McKinnewTUM VERT. / HORZ.:		
	CRET	1 BV-	loce	io Mc(luck		DATE START / END: 2/1	9/2009 - 2	2/19/2009
			All C.	Goo	prot			0.2000 1	
UNA			DED.		T	¥ 0.00			····· · · · · · · · · · · · · · · · ·
WWA	ICK			і по (r	- 1):	<u>+</u> 9.00			
		SAI	MPLE	INFO					
					₹	ANALYZED		DOOK	
DEF	т ніч	TYPE	PEN	REC	⊅	SAMPLE			
г	1.	and	FT.	IN.	E	ID	DESCIA	II VA	
		NO.							
—	0				54		0 - 0 5		
					ित्ती		0.5 - 4 POORLY GRADED SAND WITH SILT	AND GR	AVEL: ~80% sand, fine to
-			Į		[.4]		medium, ~5% gravel, fine; ~10% silt, moist, b	rown.	
							· - · · · · · · ·		
-									
					[:]				
-				1			4 - 8 POORLY GRADED SAND WITH SILT A	ND GRAV	/EL: ~80% sand, fine to
	_				.		coarse, ~10% gravel, fine; ~10% silt. moist. b	rown.	,,,
	5			1	-		· · · · · · · · · · · · · · · · · · ·		
_									
-					<u> </u>				
				ļ					
-		:			 - 		8 - 10 POORLY GRADED SAND WITH SILT	AND GRA	VEL: ~80% sand. fine to
V							coarse, ~10% gravel, fine; ~10% silt, wet, bro	wn.	_,,
Ŧ							• • • • • •		
	10								
			1.0		ŀ	SB-7 (10-11)	10 - 11 POORLY GRADED SAND WITH SIL	AND GR	AVEL; ~15% sand, fine;
-					<u>1: 111</u>	(Rottom of borehole at 11.0 feet		
								v	
								-	
NOT	'ES:							- <u>,,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	<u> </u>			T 11 C - 1					
PEN =	= PENE = REC/	TRATIO	N LENG ENGTH	OF SAM	SAMPI APLE	LER OR CORE BA	KREL ppm = PARIS PER MILLION NLO = NAPHTHALEI IN. = INCHES PLO = PETROLFUM	IE LIKE ODOR	<pre>vk Gred Creding C</pre>
PID =	= PHO	TOIONIZ/	ATION E	DETECT	ORR	EADING (JAR	FT. = FEET TLO = TAR LIKE OD	DR	SLO = SULFUR LIKE ODOR
	HEAD	OSPACE)							MLO = MUSTY LIKE ODOR
							ALO = ASPHALT LIK		
							······································		· · · ·

	16	52	GEI C	onsultants	, Inc.	CLIENT	: Town of Glastonbury BO	
CΕ		Ľ	455 V Glasto (860)	vinding Bro onbury, CT 368-5300	ok Road 06033	PROJE	CT NAMEse II 95 Oak Street, Glastonbury, CT PAGE TATE: <u>Glastonbury, Connecticut</u> 1 of 1	SB-8
<u>UC</u>	Const	iltants				GEI PR	OJECT NUMBER: 090500	
GROUN		ACE	ELEV	ATION (F	T):	· · · · ·		
DRILLEI	NG: DBY:	Colu	mbia E	EAS Environm	ental	Drilling / Ch	ris McKin@4/TUM VERT. / HORZ.:	
LOGGE	D BY:	Jessi	ie McC	usker			DATE START / END: 2/19/2009 - 2/19/2009	
DRILLIN WATER	IG DETA	AILS: DEP1	<u>Geo</u> FHS (F	probe T): X 11	.00			
		SAM						
DEPTH	TVDE				E 4	ANALYZED	SOIL / BEDROCK	
FT.	and	PEN FT		PID (nnm)	TR/	ID SAMPLE	DESCRIPTION	
	NO.			(PPiii)				· · · · · · · · · · · · · · · · · · ·
- 0							0 - 0.5 0 5 - 4 POORLY GRADED SAND WITH SILT AND GR	AVEL fine ~80%
-							sand, fine; ~20% silt, moist, brown.	
-							4 - 8 POORLY GRADED SAND WITH SILT AND GRA	VEL: ~75% sand,
- 5							fine to medium, ~10% gravel, fine; ~15% silt, moist, bro	wn.
-								
-								
_								
_							8 - 11 POORLY GRADED SAND WITH SILT AND GR/ fine to medium, ~10% gravel, fine; ~15% silt, moist, bro	∖VEL; ~75% sand, own.
4.0								
- 10 •								
<u>r</u>		1.0		0		SB-8 (11)	11 - 12 POORLY GRADED SAND WITH SILT AND GR	≀AVEL; ~60% sand,
_	LL	I	{		1.1/1	[Bottom of borehole at 12.0 feet.	
NOTES:								
PEN = PENE REC = RECO	ETRATION	I LENG' NGTH	TH OF S OF SAM	AMPLER O	R CORE	BARREL ppm IN	= PARTS PER MILLION NLO = NAPHTHALENE LIKE ODOR CrLO= = INCHES PLO = PETROLEUM LIKE ODOR OLO =	CREOSOTE LIKE ODOR ORGANIC LIKE ODOR
PID = PHO HEAL	TOIONIZA DSPACE)	TION D	ЕТЕСТС	OR READING	g (Jar	FT.	= FEET TLO = TAR LIKE ODOR SLO = CLO = CHEMICAL LIKE ODOR MLO =	SULFUR LIKE ODOR MUSTY LIKE ODOR
							ALO = ASPHALT LIKE ODOR	

		11	100	GEI C	onsultants.	Inc.	CLIENT	: Town of Glastonbury	BORING LOG	
			S)))	455 V	Vinding Bro	k Roac	PROJE	CT NAMEse II 95 Oak Street, Glastonbu	L.SI_	
C		1 🔊		(860)	368-5300	06033	CITY/S1	ATE: Glastonbury, Connecticut	1 of 1 SB-9	
IV.] [Cons	ultants				GEI PR	DJECT NUMBER: 090500		
GR	OUNE) SURF	ACE	ELEV	ATION (F	F):		LOCATION:		
NO	RTHI	۱G:			EAS	TING:		TOTAL DEPTH (FT): 12.00		
DR	ILLED	BY:	Colu	nbia E	Environm	ental I	Drilling / Ch	ris McKinnberyTUM VERT. / HORZ.:		
LO	GGEL) BY: _	Jessi	e McC	Cusker			DATE START / END: _2/19/2	009 - 2/19/2009	
DR			AILS:	Geo	probe	10				
	IER			пэ (г	· 1): <u>¥ 9.</u>	JU		····		
			SAM	PLE I	NFO	-				
DE	РТН	TYPE				AT A	NALYZED	SOIL / BE	DROCK	
F	Т.	and	PEN		PID (ppm)	R	ID SAMPLE	DESCRI	PTION	
		NO.	[⁻ i ·	лч,	(hhu)	ŝ				
F	0		-			Nº 42	· · · · ·	0 - 0 5 Moist Tonsail	· · · · · · · · · · · · · · · · · · ·	
						ार्ग		0.5 - 4 POORLY GRADED SAND WIT	H SILT AND GRAVEL; ~75% sai	nd,
Γ								fine to medium, ~10% gravel; ~15% sil	t, moist, brown.	
┢										
Ī										
┢								4 - 5 POORLY GRADED SAND WITH	SILT AND GRAVEL: ~75% sand	i,
	5							fine to medium, ~10% gravel; ~15% sil	t, moist, brown.	
	Ŭ							5 - 6 POORLY GRADED SAND WITH	SILT AND GRAVEL; ~80% sand	۱,
-								6 - 8 POORLY GRADED SAND WITH	SILT AND GRAVEL; ~85% sand	I,
L								fine; ~15% silt, moist, brown.		
							-			
F								8 - 9 POORLY GRADED SAND WITH	SILT AND GRAVEL; ~85% sand	I,
Y						<u></u>		fine to medium; ~15% silt, moist, brown		
								fine to medium: ~5% silt, saturated, bro	H SILT AND GRAVEL; ~95% sai)wn.	na,
	10		1.0		0	i s	B-9 (10-11)	9.5 - 12 POORLY GRADED SAND WI	TH SILT AND GRAVEL; fine, ~20	0%
F								sand, fine to medium; ~/0% silt, satura	ited, brown.	
	,	•						Bottom of borehole at 12.0 feet.		
20										
÷										
3										
Text I										
5										
Ъ.										
Ę										
5										
ž.										
NO	TES:								<u></u>	
PEN	= PENE	TRATIO	N LENG	TH OF S	AMPLER OF	CORE	BARREL ppm	= PARTS PER MILLION NLO = NAPHTHALENE LI	KE ODOR CrLO= CREOSOTE LIKE OD	OR
REC	= RECO			OF SAM	IPLE		IN, FT	= INCHES PLO = PETROLEUM LIKE = FEFT TIO = TAR LIKE ODOR	ODOR OLO = ORGANIC LIKE ODO SLO = SULFUR LIKE ODOR	R
	HEAD	SPACE)			-,•,•LAL/(19)	. Incart	ET.	CLO = CHEMICALLIKE C	DOR MLO = MUSTY LIKE ODOR	-
2								ALU = ASPHALT LIKE OF		
									· · · · · · · · · · · · · · · · · · ·	

			7	GELC	onsultants	Inc		· Town of Glastonbury BORING	LOG
			S))	455 W	/inding Bro	inc. k Roa		CT NAMEse II 95 Oak Street, Glastonbury, CT	
1				(860)	368-5300	0603;	CITY/ST	TATE: Glastonbury, Connecticut PAGE SE	3-10
	<u> </u>	Cons	ultants				GEI PRO	OJECT NUMBER: 090500	
GI	ROUNI	O SURP	ACE	ELEV	ATION (F	Г):		LOCATION:	
N	ORTHI	NG:		. .	EAS	TING	:	TOTAL DEPTH (FT): _12.00	
D	RILLEI	DBY:	Colu	mbia E	Invironm	ental	Drilling / Ch	ris McKin DayTUM VERT. / HORZ.:	
	GGE	DBY:	Jessi	e McC	usker			DATE START / END:2/19/2009 - 2/19/2009	
	ATER	G DE D		<u>Geo</u> I'HS /F	TIV				
					•//				
			SAM	PLE I	NFO	×			
D	EPTH	TYPE	DEN	DEC	חום	čAT	SAMPLE	SOIL / BEDROCK	
	₽1.	and	FT.	IN.	(ppm)	STF	ID	DESCRIPTION	
		NU.							
F	0					<u>7, 1</u>		0 - 0.5 TOPSOIL.	
								0.5 - 4 POORLY GRADED SAND WITH SILT AND GRAVEL	; ~80% sand,
								Time sand, ~1576 sit, damp, brown.	
F									
╞									
L									/
								4 - 7 POORLY GRADED SAND WITH SILT AND GRAVEL; -	~80% sand,
-	5							The Salid, - 1070 sik, damp, blown.	
								7 - 8 POORLY GRADED SAND WITH SILT AND GRAVEL; ~	~80% sand,
								fine sand; ~15% slit, wet, brown. 8 - 9 POORLY GRADED SAND WITH SILT AND GRAVELS	-80% sand.
								fine sand; ~15% silt, wet, brown.	ee,o oanaj
Γ			1.0		0		SB-10 (9-10)	9 - 10 POORLY GRADED SAND WITH SILT AND GRAVEL;	~85% sand,
\vdash	10					Η		10 - 12 SILT WITH SAND: ~30% sand, silt; ~70% silt, moist,	brown.
	:								
F		1		<u> </u>				Bottom of borehole at 12.0 feet.	
5010									
Ŧ									
Š									
5									
2									
į									
5									
	JTES:					. . -			
PEI RE	N ≕ PENI C = REC	etratio overy l	N LENG ENGTH	TH OF S OF SAM	Sampler oi Iple	COR	E BARREL ppm IN.	T = PARTS PER MILLION NLO = NAPHTHALENE LIKE ODOR CrLO= CREOS = INCHES PLO = PETROLEUM LIKE ODOR OLO = ORGAN	NIC LIKE ODOR
PIC	= PHO	TOIONIZ/ DSPACE	ATION E	ETECT	OR READING	G (JAR	FT.	= FEET TLO = TAR LIKE ODOR SLO = SULFU CLO = CHEMICAL LIKE ODOR MLO = MUSTY	r like odor 1 like odor
2	0-0							ALO = ASPHALT LIKE ODOR	
12									the second s

Г		W.C.			opcultante	ine.		. Town of Glaston			BORING LOG
		166	3))	455 W	inding Broc	k Road	PROJE	CT NARMEse II 95 Oa	k Street, Glastonbur	LCI_	
				Glasto (860) 3	nbury, CT 368-5300	06033	CITY/S	TATE: Glastonb	ury, Connecticut	PAGE 1 of 1	SB-11
	JC	0.01151	ultants				GEI PR	OJECT NUMBER:	090500		
6	GROUNI	O SURF	ACE	ELEVA	TION (F	Г):		LOCATIO	N:		
N	IORTHI	NG:			EAS	TING:		TOTAL D	EPTH (FT): 8.00		
	RILLE) BY: _	Colu	mbia E	nvironm	ental	Drilling / Ch	<u>iris McKi</u> n DeyTUM V	ERT. / HORZ.:		
	OGGE		Jessi	ie McC	usker			DATEST	ART / END:	09 - 2/15	//2009
		G DE IA	AILS: DEPI	<u>Geor</u>	лове т)-		· · ·				
Ľ						·		1			
			SAM		NFO	₹.					
	DEPTH	TYPE	PEN	REC	חופ	` <u>ج</u> ا	SAMPLE		SOIL / BEI		
	F1.	and	FT.	IN.	(ppm)	STI	ID		DECOIG	non	
L		NO.									
	- 0					<u>, 17</u>		0 - 0.5 TOPSOIL.			
┝								fine to medium. ~5	% gravel; ~15%, wet	, brown.	ND GRAVEL, ~00% Saliu,
								,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		· 	
								2 - 4 POORLY GR	ADED SAND WITH noist_brown	SILT ANI	D GRAVEL; ~85% sand,
F								mic cana, - 1070, 1			
L			0.5		0		SB-11				CRAVEL:~85% sand
	_						(3.0-4)	fine to medium; ~1	5%, moist, brown.		- CIVIVEE, 0078 Junu,
F	- 5										
╞								6 - 8 POORLY GR	ADED SAND WITH	SILT AND) GRAVEL; ~80% sand,
L								fine to medium, ~5	% gravel; ~15%, wet	, brown.	
Γ											
┢		I 1		<u> </u>				Bottom of borehole	e at 8.0 feet.		
_											
ñ'n											
4											
15.0											
AN											
2ZO											
с ц											
9 7											
5											
Ë,											
2											
۲Ŋ											
5											
10H											
1											
ž											
	OTES										
	PEN = PEN	FTRATIO	N LENG	TH OF 9	SAMPLER O	R CORF	BARREL DOT	n = PARTS PER MILLION	NLO = NAPHTHALENE LI	KE ODOR	CrLO= CREOSOTE LIKE ODOR
	REC = REC	OVERY L	ENGTH	OF SAN		2/100	IN.	= INCHES	PLO = PETROLEUM LIKE	ODOR	olo = organic like odor slo = sulfur like odor
	HEA	DSPACE		551501		u fauer	<i>t</i> 1.	. ,,		DOR	MLO = MUSTY LIKE ODOR
J.									ALU = AGPHALT LIKE OL	JUR .	
Ž											

<u>G</u> E		سائلمالغ	455 V Glaste (860)	Vinding Bro onbury, CT 368-5300	ok Roa 06033	d PROJEC CITY/ST GEI PRO	CT NATINESE II 95 Oak Street, Glastonbury, CT PAGE GATE:Glastonbury, Connecticut 1 of 1 OJECT NUMBER:090500
GROUN NORTHI DRILLEI LOGGEI	D SURF NG: D BY: D BY:	ACE Colur Jessi	ELEV nbia I ie Mc(ATION (F EAS Environm Cusker	T): TING ental	Drilling / Ch	LOCATION: TOTAL DEPTH (FT): 8.00 ris McKin 1094/TUM VERT. / HORZ.: DATE START / END: 2/19/2009 - 2/19/2009
DRILLIN WATER	G DETA	AILS: DEP1	<u>Geo</u> ſHS (F	probe T):			
		SAM	PLEI	NFO	A		
DEPTH FT.	TYPE and NO.	PEN FT.	REC IN.	PID (ppm)	STRAT	SAMPLE ID	SOIL / BEDROCK DESCRIPTION
0 5		1.0		0		SB-12 (3-4)	0 - 0.5 TOPSOIL. 0.5 - 2.4 POORLY GRADED SAND WITH SILT AND GRAVEL; ~80 sand, ~5% gravel; ~15% silt, dry, reddish brown. 2.4 - 2.5 POORLY GRADED SAND WITH SILT AND GRAVEL; ~80 sand, ~5% gravel; ~15% silt, dry, red. 2.5 - 4 POORLY GRADED SAND WITH SILT AND GRAVEL; ~80% ~5% gravel; ~15% silt, damp, reddish brown.
_							Bottom of borehole at 8.0 feet.

1						inn	CUENT	CLIENT: Town of Glastonbury			BORING LOG		
	455 Winding Brook Road					ok Ro		CT NARMESe II 95 Oa	/. ст				
	CF	1 🔛		Glasto (860) 3	onbury, CT 368-5300	0603	CITY/ST	ITY/STATE: Glastonbury, Connecticut PAGE SB-14					
	UL	Consi	altants	. ,			GEI PRO	OJECT NUMBER:	090500				
	GROUNI	SURF	ACE	ELEVA	ATION (F	T):		LOCATIO	DN:				
	NORTHING: EASTING: TOTAL DEPTH (FT): 6.00												
	DRILLED) BY: _	Colur	nbia E	Invironm	enta	I Drilling / Ch	ris McKin DAYTUM \	/ERT. / HORZ.:				
	DRILLING DETAILS' Hollow Stem Auger									0/2009			
	WATER LEVEL DEPTHS (FT):										·····		
		<u> </u>	SAN										
	DEPTH	TYPE	YPE PEN REC PID			R	SAMPLE		SOIL / BEI DESCRIE				
		and NO.	FT.	IN. (ppm) 5			ID						
	0								······································		a and a second		
	— U					Ì		0 - 0.25 TOPSOIL	GRADED SAND WIT	HSUT	AND GRAVEL: ~85%		
	_							sand, fine to medi	um; ~15%, damp, bro	wn.			
						B.		fine to medium; ~	(ADED SAND WITH 3 15%, damp, brown.	SILT ANI	J GRAVEL, ~05% Saliu,		
	-		20		0		SB-14 (4-6)	4 - 6 POORLY GF	RADED SAND WITH S	SILT ANI	D GRAVEL: ~80% sand,		
							(,	fine sand; ~20%,	saturated, brown.				
	Ŭ												
				1		1 111		Bottom of borehol	e at 6.0 feet.				
60/													
4/10													
-tg													
SE													
LTA													
NSN													
100													
] GE													
GP.													
REET													
ST													
OAK													
II 95													
ASE													
ЪН													
00 LO													
SING.	NOTES							······································					
BOR	DEN - DEN	TOATIO				B COL			ΝΙ Ο = ΝΑΡΗΤΗΔΙ ΕΝΕ Ι Ι		CrLO= CREOSOTE LIKE ODOR		
ITAL	REC = REC	OVERY L	ENGTH	OF SAM		~ / 14 *			PLO = PETROLEUM LIKE	ODOR			
MEN	PID = PHO HEA	DSPACE)	ATION E	EIECT	JK KEADING	JAF) ی	κ FI.	- 1661	CLO = CHEMICAL LIKE O	DOR	MLO = MUSTY LIKE ODOR		
RON NO									ALU = ASPHALT LIKE OD	UK			
ENV.													

	The	Tetos	GEI Co	nsul	tants, Inc.	CLIENT: Town of Glastonbury BOR	ING LOG
GE		عالمانه	455 Wi Glasto (860) 3	ndin nbury 68-5	g Brook Road /, CT 06033 300	PROJECT NAMEse II 95 Oak Street, Glastonbury, CT CITY/STATE: <u>Glastonbury, Connecticut</u> 1 of 1 GEI PROJECT NUMBER: <u>090500</u>	MW-13
GROU		FACE	ELEVA	TIO	N (FT):	LOCATION:	
NORTH	IING:				EASTING:	TOTAL DEPTH (FT): 14.00	
DRILLE	D BY:	Colu	nbia Er	iviro	onmental Drill	ing / Chris McKinnepATUM VERT. / HORZ.:	
LOGGED BY: Jessie McCusker DATE START / END: 2/20/2009 -							
DRILLI	NG DET	AILS:	Hollo	w St	em Auger		
WATER	RLEVEL	. DEP	IHS (F	l): _			
	SAI	MPLE	INFO	_			
DEPTH	DEPTH TYPE					SOIL / BEDROCK	WELL
FT.	and	PEN		۲Ľ	ID ID	DESCRIPTION	DETAILS
	NO.	Г1.	111.	S			
- 0			L L			0 - 0.25 TOPSOIL.	
L						0.25 - 2 POORLY GRADED SAND WITH SILT AND GRAVEL;	
						~90% sand, fine to medium; ~10%, damp, brown.	
F						2 - 4 POORLY GRADED SAND WITH SILT AND GRAVEL;	
						~90% sand, fine to medium; ~10%, damp, brown.	
F						4 - 6 POORLY GRADED SAND WITH SILT AND GRAVEL;	
- 5						~90% sand, fine to medium; ~10%, wet, brown.	
-							
		1.0			MW-13 (6-7)	6 - 7 POORLY GRADED SAND WITH SILT AND GRAVEL; ~90% sand, fine: ~10%, saturated, brown.	
F			Ē	Ľ.		7 - 8 SILT WITH SAND; ~30% sand, fine; ~70%, moist, brown.	
╞			· F.			9 - 14 SILT MITH SAND: ~40% sand fine: ~60% wat brown	
Γ				.].			
10							
" Г							
				· •			
						Bottom of borehole at 14.0 feet.	
AINT							
nr.							
NO							
E .							
D B							
ц ц							
NAT.							
2							
2							
NOTES	;						
PEN = PE	NETRATIO			AMPL N E	ER OR CORE BA	RREL ppm = PARTS PER-MILLION NLO = NAPHTHALENE LIKE ODOR CrLO= C	REOSOTE LIKE ODOR
PID = PH	OTOIONIZ/	ATION D	DETECTO	R RÉ	ading (Jar	FT. = FEET TLO = TAR LIKE ODOR SLO = SUC	ULFUR LIKE ODOR
HE	AUSPACE)	I				ALO = ASPHALT LIKE ODOR MLU = N	ING IT LIKE ODOK
<u>الم</u>							

	1	<i>70</i> 2	GELC	Consi	ultants Inc	CLIF	NT: Tow	of Glastor				BOR	ING LOG	
GE		العالم uliants	455 V Glast (860)	Vindir onbu 368-	ng Brook Road y, CT 06033 5300	PRO CITY GEI	JECT NAR /STATE: PROJECT	Ese <u>II 95 Or</u> Glastoni NUMBER:	ak Street, Glast bury, Connectio 090500	onbur/p cut 1	AGE of 1		MW-15	
GROUN	D SURF	ACE	ELEV	ATIC	ON (FT):				DN:					
NORTHI	NG:	;			EASTING:			_ TOTAL D	DEPTH (FT): <u>1</u>	5.00				
DRILLEI	DRILLED BY: Columbia Environmental Drilling / Chris McKinne@ATUM VERT. / HORZ.:									0/0000				
	LOGGED BY: Jessie McCusker DATE START / END: 2/20/2009 - 2/20/2009									0/2009				
WATER	WATER LEVEL DEPTHS (FT):													
			WEO.										T	
	SAN	APLE	INFO	₹									WE	ł
DEPTH	TYPE	PEN	REC	R				SOIL / BEE					CONSTR	UCTION
	and NO	FT.	IN.	ST				DESCIU	non				DETA	ILS
							····		· · · · · · · · · · · · · · · · · · ·					
- 5 - 10					0 - 0.25 TOP 0.25 - 4 POC ~5% gravel; 4 - 8 POORL gravel; ~15% 8 - 12 POOR brown.	SOIL. RLY (~10% Y GR/ silt, n	GRADED S silt, damp, ADED SAN noist, brown RADED SA	AND WITH brown. D WITH SIL n. ND WITH SI	SILT AND GRAVE T AND GRAVE ILT; ~80% sand SILT; ~80% sand	,VEL; ~8 ;L; ~80% ;; ~20% s	silt, we	nd, ~5% t, et,		
- 15					Bottom of bo	rehole	at 15.0 fee							
NOTES:														
PEN = PEN REC = REC PID = PHO HEA	ETRATION OVERY LE TOIONIZA DSPACE)	n leng Ength Tion d	TH OF SAN OF SAN	Samp IPLE OR RI	LER OR CORE BA	REL.	ppm = PARTS IN. = INCHE FT. = FEET	PER MILLION S	NLO = NAPHTHAL PLO = PETROLEU TLO = TAR LIKE C CLO = CHEMICAL ALO = ASPHALT L	LENE LIKE JM LIKE OI DDOR LIKE ODOF LIKE ODOF	ODOR DOR DR R	CrLO= C OLO = C SLO = S MLO = N	CREOSOTE LIKE ORGANIC LIKE (SULFUR LIKE O AUSTY LIKE OD	e odor ' Ddor Dor Dor Dor

Г		The	V.C.	GELCO	neuitante in		LIENT: Town of G	astonbury		BORING LOG
	GE			455 Wir Glaston (860) 36	bury, CT 06 8-5300	Road PI 1033 CI G	ROJECT NAMEse II ITY/STATE: Gla EI PROJECT NUME	95 Oak Street, Glasto Istonbury, Connectic BER: 090500	nbury, CT PAGE ut 1 of 1	MW-16
ł	GROUNI	SURF	ACE	ELEVA	TION (FT):		LO	CATION:		
	NORTHING: EASTING: TOTAL DEPTH (FT): 14.00									
	DRILLED BY: Columbia Environmental Drilling / Chris McKinneØATUM VERT. / HORZ.:									
	LOGGE) BY: _	Jessi	e McCu	sker		DA	TE START / END: 2/	20/2009 - 2/20)/2009
	DRILLING DETAILS: Hollow Stem Auger									
	WATER LEVEL DEPTHS (FT):									
ľ	SAMPLE INFO									
	NEDTU			Ĩ			SOIL	/ BEDROCK		WELL
	FT.	and	PEN	REC	2		DES	SCRIPTION		DETAILS
		NO.	FT.	IN. 2	n					
	- 0			3	<u>ki o or</u>		······································			
	-				0-0.2	8~85% s	and: ~15% silt. dam	p, brown.		
ł	-							- ,		
	_									
t	-									
-	-									
	_									
ľ	- 5									
-	-									
ſ	-									
┢	-				III 8 - 14	~85% sar	nd ~15% silt moist.	brown.		
						00,000				
ſ	-									
\mathbf{F}	- 10									
	-			i.						
	-			l i						
ŀ	-									
80/	-			i.						
410										
Б	-	1 l		L	Bottor	n of boreh	ole at 14.0 feet.			<u></u>
TS.(
TAN										
10SUL										
Ś										
GЕJ										
۲,										
Ē										
TRE										
AK S										
50										
о Ш										
HASI										
ā Ø										
ĭГО										
RING	NOTES						<u></u>			
BOI	PEN = PEN	ETRATIO	NLENG	TH OF SA	MPLER OR (ORE BARRE	EL ppm = PARTS PER N	ILLION NLO = NAPHTHAL	ENE LIKE ODOR	CrLO= CREOSOTE LIKE ODOR
ITAL	REC = REC	OVERY L	ENGTH	OF SAMP			IN. = INCHES	PLO = PETROLEU	M LIKE ODOR	olo = organic like odor slo = sui fur like odor
ME	PHO = PHO HEA	DSPACE)	NUNE	JC I EU I UI	A NEADING (043[X	r;. → FEE;	CLO = CHEMICAL	LIKE ODOR	MLO = MUSTY LIKE ODOR
RON								ALO = ASPHALT L	IKE ODOR	
Ň										

Appendix B

Laboratory Analytical Results and Chain-of-Custody Forms

March 09, 2009

GEI Consultants Inc. 455 Winding Brook Drive, Suite 201 Glastonbury, CT 06033

Attn: Mr. Ryan Acosta

Please find attached laboratory report(s) for the samples submitted on: **February 27, 2009.**

All pertinent information for this analysis is located on the report. Should it be necessary to contact us regarding billing or the test results, please have the following information readily available:

Lab No.	:	0209347
PO/Job No.	:	090500
Invoice No.	:	158356
Customer No.	:	121

Please contact us if you have any questions.

Very truly yours,

Stephen/J. Franco Laboratory Director

Laboratory Director PH-0547

STEPHEN J. FRANCO Laboratory Director PHONE © 203/634-3731 www.ctl-web.com / ctestlab@erols.com 165 GRACEY AVENUE © MERIDEN, CT © 06451 Page 1

Date Samples Received: 02/27/09

Client Name :	GEI Consultants	CTL Lab No.: 0209347
Report Date :	03/06/09	PO/ Job No. : 090500

RESULTS OF ANALYSIS

Total Metals

Matrix Type : CTL Sample No.: Field ID :		W 2880 GEI-MW-13	W 2881 GEI-MW-15	W 2882 GEI-MW-16	W 2883 GEI-MW-17
Parameters	MDL				
Arsenic-mg/L	0.05	BDL		BDL	
Barium-mg/L	0.1	0.1		BDL	
Cadmium-mg/L	0.005	BDL		BDL	
Chromium, Total-mg/L	0.05	BDL		BDL	
Lead-mg/L	0.005	BDL	BDL	BDL	0.062
Mercury-mg/L	0.002	BDL		BDL	
Selenium-mg/L	0.01	BDL	1	BDL	
Silver-mg/L	0.01	BDL		BDL	

MDL= Method Detection Level BDL= Below Detection Level

Matrix Type: W = Water/Aqueous S= Soil/Solid O= Oil/Hydrocarbon

Page 2

Date Samples Received: 02/27/09

Client Name : GEI Consultants	Date Extracted: 03/06/09	
CTL Lab No.: 0209347	Date Analyzed: 03/06/09	
Job/PO No. : 090500	Analyst: BM	
Report, Date: 03/06/09		

RESULTS OF ANALYSIS

Matrix Type: W

CT ETPH -mg/L

Field ID	CTL #	MDL		 	
MW-2	2879	0.10	BDL		
GEI-MW-13	2880	0.10	BDL		
GEI-MW-15	2881	0.10	BDL		
GEI-MW-16	2882	0.10	BDL		
GEI-MW-1	2884	0.10	BDL		

MDL= Method Detection Level / BDL= Below Detection Level

Matrix Type: W= Water/Aqueous S= Soil/Solid O= Oil/Hydrocarbon

Client Name :	GEI Consultants		
CTL Lab No.:	0209347	Date Analyzed:	03/04/09
Job/PO No. :	090500	Analyst:	KM
Report Date :	03/06/09		

EPA METHOD 8260B GC/MS	Date Samples Rec'd: 02/27/09						
Matrix Type	W	W	W	W			
CTL Sample #:	2879	2880	2881	2882			
Field ID :	MW-2	GEI-MW-13	GEI-MW-15	GEI-MW-16			

Results of Analysis-ug/L

Parameters	MDL				
Dichlorodifluoromethane	1	BDL	BDL	BDL	BDL
Chloromethane	1	BDL	BDL	BDL	BDL
Vinyl chloride	1	BDL	BDL	BDL	BDL
Chloroethane	1	BDL	BDL	BDL	BDL
Bromomethane	1	BDL	BDL	BDL	BDL
Trichlorofluoromethane	1	BDL	BDL	BDL	BDL
1,1-Dichloroethylene	1	BDL	BDL	BDL	BDL
Methylene chloride	1	BDL	BDL	BDL	BDL
t-1,2-Dichloroethylene	1	BDL	BDL	BDL	BDL
1,1-Dichloroethane	1	BDL	BDL	BDL	BDL
2,2-Dichloropropane	1	BDL	BDL	BDL	BDL
cis-1,2-Dichloroethylene	1	BDL	BDL	BDL	BDL
Chloroform	1	, BDL	BDL	BDL	BDL
Bromochloromethane	1	BDL	BDL	BDL	BDL
1,1,1-Trichloroethane	1	BDL	BDL	BDL.	BDL
1,1-Dichloropropylene	1	BDL	BDL	BDL	BDL
Carbon tetrachloride	1	BDL	BDL	BDL	BDL
Benzene	1	BDL	BDL	BDL	BDL
1,2-Dichloroethane	1	BDL	BDL	BDL	BDL
Trichloroethylene	1	BDL	BDL	BDL	BDL
1,2-Dichloropropane	1	BDL	BDL	BDL	BDL
Bromodichloromethane	1	BDL	BDL	BDL	BDL.
Dibromomethane	1	BDL	BDL	BDL	BDL
cis-1,3-Dichloropropylene	1	BDL	BDL	BDL	BDL
Toluene	1	BDL	BDL	BDL	BDL
t-1,3-Dichloropropylene	1	BDL	BDL	BDL.	BDL
1,1,2-Trichloroethane	1	BDL	BDL	BDL	BDL
Tetrachloroethylene	1	BDL	BDL	BDL	BDL
1,3-Dichloropropane	1	BDL	BDL	BDL	BDL
Dibromochloromethane	1	BDL	BDL	BDL	BDL
1,2-Dibromoethane (EDB)	1	BDL	BDL	BDL	BDL
Chlorobenzene	1	BDL	BDL	BDL	BDL
Ethylbenzene	1	BDL	BDL	BDL	BDL
1,1,1,2-Tetrachloroethane	1	BDL	BDL	BDL	BDL
p/m-Xylene	1	BDL	BDL	BDL	BDL
o-Xylene	1	BDL	BDL	BDL	BDL

MDL= Method Detection Level BDL= Below Detection Level

Matrix Type: W= Water/Aqueous S= Soil/Solid O= Oil/Hydrocarbon

	Client Name :	GEI Consultants		
	CTL Lab No.:	0209347	Date Analyzed:	03/04/09
	Job/PO No. :	090500	Analyst:	KM
	Report Date :	03/06/09		
-	_			

EPA METHOD 8260B GC/MS	Date Samples Rec'd: 02/27/09			
Matrix Type	w	W	W	W
CTL Sample #:	2879	2880	2881	2882
Field ID :	MW-2	GEI-MW-13	GEI-MW-15	GEI-MW-16

Results of Analysis-ug/L

Parameters	MDL				
Styrene	1	BDL	BDL	BDL	BDL
Bromoform	1	BDL	BDL	BDL	BDL
Isopropylbenzene	1	BDL	BDL	BDL	BDL
1,1,2,2-Tetrachloroethane	1	BDL	BDL	BDL	BDL
Bromobenzene	1	BDL	. BDL	BDL	BDL
1,2,3-Trichloropropane	1	BDL	BDL	BDL	BDL
n-Propylbenzene	1	BDL	BDL	BDL	BDL.
2-Chlorotoluene	1	BDL	BDL	BDL	BDL
1,3,5-Trimethylbenzene	1	BDL	BDL	BDL	BDL
4-Chlorotoluene	1	BDL	BDL	BDL	BDL
tert-Butylbenzene	1	BDL	BDL	BDL	BDL
1,2,4-Trimethylbenzene	1	BDL	BDL	BDL	BDL.
sec-Butylbenzene	1	BDL	BDL	BDL	BDL
p-lsopropyltoluene	1	BDL	BDL	BDL	BDL
1,3-Dichlorobenzene	1	BDL	BDL	BDL	BDL
1,4-Dichlorobenzene	1	BDL	BDL	BDL	BDL
n-Butylbenzene	1	BDL	BDL	BDL	BDL
1,2-Dichlorobenzene	1	BDL	BDL	BDL	BDL
1,2-Dibromo-3-chloropropane	1	BDL	BDL	BDL	BDL
1,2,4-Trichlorobenzene	1	BDL	BDL	BDL	BDL
Hexachlorobutadiene	10	BDL	BDL	BDL	BDL
Naphthalene	10	BDL	BDL	BDL	BDL
1,2,3-Trichlorobenzene	1	BDL	BDL	BDL	BDL
Methyl ethyl ketone	10	BDL	BDL	BDL	BDL
Methyl butyl ketone	10	BDL	BDL	BDL	BDL
Methyl isobutyl ketone	10	BDL	BDL	BDL	BDL
МТВЕ	1	BDL	BDL	BDL	BDL
1,2-Dichloroethane-d4 (SR)		97	94	97	96
Toluene-d8 (SR)		100	99	101	99
p-Bromofluorobenzene (SR)		101	101	100	99

MDL= Method Detection Level BDL= Below Detection Level

Matrix Type: W= Water/Aqueous S= Soil/Solid O= Oil/Hydrocarbon

SR = Surrogate Recovery-Percent

Client Name :	GEI Consultants		
CTL Lab No.:	0209347	Date Analyzed:	03/04/09
Job/PO No. :	090500	Analyst:	KM
Report Date :	03/06/09		

EPA METHOD 8260B GC/MS	Date Samples Rec'd: 02/27/09			
Matrix Type CTL Sample #:	W 2883	W 2884	W 2885	
Field ID :	GEI-MW-17	GEI-MW-1	Trip Blank	

Results of Analysis-ug/L

Parameters	MDL				
Dichlorodifluoromethane	1	BDL	BDL	BDL	
Chioromethane	1	BDL	BDL	BDL.	
Vinyl chloride	1	BDL	BDL	BDL	
Chloroethane	1	BDL	BDL	BDL	
Bromomethane	1	BDL ·	BDL	BDL	
Trichlorofluoromethane	1	BDL	BDL	BDL	
1,1-Dichloroethylene	1	BDL	BDL	BDL	
Methylene chloride	1	BDL	BDL	BDL	
t-1,2-Dichloroethylene	1	BDL	BDL	BDL	
1,1-Dichloroethane	1	BDL	BDL	BDL	
2,2-Dichloropropane	1	BDL	BDL	BDL	
cis-1,2-Dichloroethylene	1	BDL.	BDL	BDL.	
Chloroform	1	BDL	BDL	BDL	
Bromochloromethane	1	BDL	BDL	BDL	
1,1,1-Trichloroethane	1	BDL	BDL	BDL	
1,1-Dichloropropylene	1	BDL	BDL	BDL	
Carbon tetrachloride	1	BDL	BDL	BDL	
Benzene	1	BDL	BDL	BDL	
1,2-Dichloroethane	1	BDL	BDL	BDL	
Trichloroethylene	1	BDL	BDL	BDL	
1,2-Dichloropropane	1	BDL	BDL	BDL	
Bromodichloromethane	1	BDL	BDL	BDL	
Dibromomethane	1	BDL	BDL	BDL	
cis-1,3-Dichloropropylene	1	BDL	BDL	BDL	
Toluene	1	BDL	BDL	BDL	
t-1,3-Dichloropropylene	1	BDL	BDL	BDL	
1,1,2-Trichloroethane	1	BDL	BDL	BDL	
Tetrachloroethylene	1	BDL	BDL	BDL	
1,3-Dichloropropane	1	BDL	BDL	BDL	
Dibromochloromethane	1	BDL	BDL	BDL	
1,2-Dibromoethane (EDB)	1	BDL	BDL	BDL	
Chlorobenzene	1	BDL	BDL	BDL	
Ethylbenzene	1	BDL	BDL	BDL	
1,1,1,2-Tetrachioroethane	1	BDL	BDL	BDL	
p/m-Xylene	1	BDL	BDL	BDL	
o-Xylene	1	BDL	BDL	BDL	

MDL= Method Detection Level BDL= Below Detection Level

Matrix Type: W= Water/Aqueous S= Soil/Solid O= Oil/Hydrocarbon

Client Name : GEI Consultants CTL Lab No.: 0209347 Job/PO No. : 090500 Report Date: 03/06/09

Date Analyzed: 03/04/09 Analyst: KM

EPA METHOD 8260B GC/MS	Da	te Samples Red	c'd: 02/27/09
Matrix Type	W	W	W
CTL Sample #:	2883	2884	2885
Field ID :	GEI-MW-17	GEI-MW-1	Trip Blank

Results of Analysis-ug/L

Parameters	MDL				
Styrene	1	BDL	BDL	BDL	
Bromoform	1	BDL	BDL	BDL	
Isopropylbenzene	1	BDL	BDL	BDL	
1,1,2,2-Tetrachloroethane	1	BDL	BDL	BDL	
Bromobenzene	1.	BDL	BDL	BDL	
1,2,3-Trichloropropane	1	BDL	BDL	BDL	
n-Propylbenzene	1	BDL	BDL	BDL	
2-Chlorotoluene	1	BDL	BDL	BDL	
1,3,5-Trimethylbenzene	1	BDL	BDL	BDL	
4-Chlorotoluene	1	BDL	BDL	BDL	
tert-Butylbenzene	1	BDL	BDL	BDL	
1,2,4-Trimethylbenzene	1	BDL	BDL	BDL	
sec-Butylbenzene	1	BDL	BDL	BDL	
p-Isopropyltoluene	1	BDL	BDL	BDL	
1,3-Dichlorobenzene	1	BDL	BDL	BDL	
1,4-Dichlorobenzene	1	BDL	BDL	BDL	
n-Butylbenzene	1	BDL	BDL	BDL	
1,2-Dichlorobenzene	1	BDL	BDL	BDL	
1,2-Dibromo-3-chloropropane	1	BDL	BDL	BDL	
1,2,4-Trichlorobenzene	1	BDL	BDL	BDL	
Hexachlorobutadiene	10	BDL	BDL	BDL	
Naphthalene	10	BDL	BDL	BDL	
1,2,3-Trichlorobenzene	1	BDL	BDL	BDL	
Methyl ethyl ketone	10	BDL	BDL	BDL	
Methyl butyl ketone	10	BDL	BDL	BDL	
Methyl isobutyl ketone	10	BDL	BDL	BDL	
МТВЕ	1	BDL	BDL	BDL	
1,2-Dichloroethane-d4 (SR)		94	94	97	
Toluene-d8 (SR)		98	101	99	
p-Bromofluorobenzene (SR)		104	106	100	

MDL= Method Detection Level BDL= Below Detection Level

Matrix Type: W= Water/Aqueous S= Soil/Solid O= Oil/Hydrocarbon

SR = Surrogate Recovery-Percent

Client Name :	GEI Consultants
CTL Lab No.:	0209347
Job/PO No. :	090500
Report Date :	03/06/09

Date Extracted: 03/03/09 Date Analyzed: 03/05/09 Analyst: YK

EPA METHOD 8270C Modified

Date Samples Rec'd: 02/27/09

Matrix Type:	W	W
CTL Sample #:	2882	2883
Field ID :	GEI-MW-16	GEI-MW-17

Results of Analysis-ug/L

Parameters	MDL				
N-Nitrosodiphenylamine	5	BDL	BDL		
Phenol	20	BDL	BDL		
2.4.6-Trichlorophenol	20	BDL	BDL		
Bis(2-chloroethoxy)methane	5	BDL	BDL		
Bis(2-Chloroethyl)ether	5	BDL	BDL		
2-Chlorophenol	20	BDL	BDL		
1,3-Dichlorobenzene	5	BDL	BDL		
1,4-Dichlorobenzene	5	BDL	BDL.		
1,2-Dichlorobenzene	5	BDL	BDL		
Bis(2chloroisopropyl)ether	5	BDL	BDL		
N-Nitrosodi-n-propylamine	5	BDL	BDL		
Hexachloroethane	3	BDL	BDL		
Nitrobenzene	5	BDL.	BDL		
Isophorone	5	BDL	BDL		
2-Nitrophenol	20	BDL	BDL		
2,4-Dimethylphenol	20	BDL	BDL		
1,2,4-Trichlorobenzene	5	BDL	BDL		
Naphthalene	5	BDL	BDL		
2,4-Dichlorophenol	20	BDL	BDL		
Hexachlorobutadiene	5	BDL	BDL		
2-Methylnaphthalene	5	BDL	BDL		
4-Chloro-3-methylphenol	20	BDL	BDL		
Hexachlorocyclopentadiene	5	BDL	BDL		
2-Chloronaphthalene	5	BDL	BDL		
Dimethyl phthalate	5	BDL	BDL		
Acenaphthylene	0.3	BDL	BDL		
2,4-Dinitrotoluene	5	BDL	BDL		
Acenaphthene	5	BDL.	BDL		
2,4-Dinitrophenol	20	BDL	BDL		
2,6-Dinitrotoluene	5	BDL	BDL		
4-Nitrophenol	20	BDL	BDL		
Diethyl phthalate	5	BDL	BDL		
Fluorene	5	BDL	BDL		
4-Chlorophenyl phenylether	5	BDL	BDL	<u></u>	
N-Nitrosodimethylamine	5	BDL	BDL	1	

MDL= Method Detection Level BDL = Below Detection Level

Matrix Types: W = Water/Aqueous S= Soil/Solid O= Oil/Hydrocarbon

Client Name : **GEI Consultants** CTL Lab No.: 0209347 Job/PO No. : 090500 Report Date : 03/06/09

Date Extracted: 03/03/09 Date Analyzed: 03/05/09 Analyst: YK

EPA METHOD 8270C Modified

Date Samples Rec'd: 02/27/09

Matrix Type:	W	W
CTL Sample #:	2882	2883
Field ID :	GEI-MW-16	GEI-MW-17

Results of Analysis-ug/L

Parameters	MDL			
2-Methyl-46-dinitrophenol	20	BDL	BDL	
4-Bromophenyiphenyi ether	5	BDL	BDL	
Hexachlorobenzene	0.07	BDL.	BDL	
Pentachlorophenol	5	BDL	BDL	
Phenanthrene	0.07	BDL	2.81	
Anthracene	5	BDL	BDL	
Carbazole	5	BDL	BDL	
Di-n-butyl phthalate	5	BDL	BDL	
Fluoranthene	5	BDL	6.0	
Benzidine	5	BDL	BDL	
Pyrene	5	BDL	5.0	
Butylbenzyl phthalate	5	BDL	BDL	
Benzo(a)anthracene	0.06	BDL	2.87	
Chrysene	4	BDL	BDL	
Bis(2-ethylhexyl)phthalate	2	BDL	BDL	
Di-n-octyl phthalate	5	BDL	BDL	
Benzo(b)fluoranthene	0.08	BDL	3.69	
Benzo(k)fluoranthene	0.3	BDL	1.2	
Benzo(a)pyrene	0.2	BDL	2.9	
Indeno(1,2,3-cd)pyrene	1	BDL	5.0	
Dibenzo(a,h)anthracene	1	BDL	BDL	
Benzo(ghi)perylene	20	BDL	BDL	
2-Fluorophenol (SR)		100	109	
Phenol-d6 (SR)		99	112	
Nitrobenzene-d5 (SR)		111	122	
2-Fluororbiphenyl (SR)		98	106	
2,4,6-Tribromophenol (SR)		95	100	
p-Terpenyl-dly (SR)		106	97	

MDL= Method Detection Level BDL = Below Detection Level

Matrix Types: W = Water/Aqueous S= Soil/Solid O= Oil/Hydrocarbon

SR = Surrogate Recovery-Percent

April 02, 2009

GEI Consultants Inc. 455 Winding Brook Drive, Suite 201 Glastonbury, CT 06033

Attn: Mr. Gary ladarola

Please find attached laboratory report(s) for the samples submitted on: March 20, 2009.

All pertinent information for this analysis is located on the report. Should it be necessary to contact us regarding billing or the test results, please have the following information readily available:

> : 0309263 Lab No. : S836-090500 PO/Job No. 158688 Invoice No. • Customer No. : 121

Please contact us if you have any questions.

Very truly yours,

Stephen J/Franco-

Laboratory Director PH-0547

STEPHEN J. FRANCO Laboratory Director PHONE 203/634-3731 www.ctl-web.com / ctestlab@erols.com 165 GRACEY AVENUE MERIDEN, CT 06451

Client Name:	GEI Consultants, Inc.	CTL Lab No.:	0309263
Demant Datas	04/01/2000	PO No:	S836-090500
Report Date:	04/01/2009	Analyst:	CP

RESULTS OF ANALYSIS

Matrix Type: CTL Sample No.:			WATER 3934	WATER 3935	WATER 3936	WATER 3937	
Field ID: Parameters	Date Tested	RL	1VV-1	1 00-2	100-3	1 ∀V ~~+	Method #
Lead, Total-mg/L	03/26/2009	0.005	0.024	BDL	0.032	0.011	200.7

RL=Reporting Level BDL = Below Detection Level

Client Name:	GEI Consultants, Inc.	CTL Lab No.:	0309263
Banart Data:	04/01/2000	PO No:	\$836-090500
Report Date:	04/01/2009	Analyst:	CP

RESULTS OF ANALYSIS

Į

Matrix Type:			WATER	WATER	WATER	WATER	
CTL Sample No.:			3938	3939	3940	3941	
Field ID:			TW-5	TW-6	TW-7	MW-15	
	Date						
Parameters	Tested	RL					Method #
Lead, Total-mg/L	03/26/2009	0.005	BDL	BDL	BDL	BDL	200.7

RL=Reporting Level BDL = Below Detection Level

Client Name:	GEI Consultants, Inc.	CTL Lab No.:	0309263
		PO No:	S836-090500
Report Date: 04/01/2009	04/01/2009	Analyst:	SJF

RESULTS OF ANALYSIS

EPA Method 8270C SVOC GC/MS

Matrix Type:	WATER	WATER	WATER	WATER
CTL Sample No.:	3934	3935	3936	3937
Field ID:	TW-1	TW-2	TW-3	TW-4
Date Analyzed:	03/30/2009	03/30/2009	03/30/2009	03/30/2009
Date Extracted:	03/25/2009	03/25/2009	03/25/2009	03/25/2009

Parameters	Units	RL				
1,2,4-Trichlorobenzene	ppb	5	BDL	BDL	BDL	BDL
1,2-Dichlorobenzene	ppb	5	BDL	BDL	BDL	BDL
1,2-Diphenylhydrazine	ppb	5	BDL	BDL	BDL	BDL
1,3-Dichlorobenzene	ppb	5	BDL	BDL	BDL	BDL
1,4-Dichlorobenzene	ppb	5	BDL	BDL.	BDL	BDL.
2,4-Dichlorophenol	ppb	20	BDL	BDL	BDL	BDL
2,4-Dimethylphenol	ppb	20	BDL	BDL	BDL	BDL
2,4-Dinitrophenol	ppb	20	BDL.	BDL	BDL	BDL
2,4-Dinitrotoluene	ppb	5	BDL	BDL	BDL	BDL
2,6-Dinitrotoluene	ppb	5	BDL	BDL	BDL	BDL
2-Chloronaphthalene	ppb	5	BDL	BDL	BDL	BDL
2-Chlorophenol	ppb	20	BDL	BDL	BDL	BDL
2-Methylnaphthalene	ppb	5	BDL	BDL	BDL	BDL
2-Nitrophenol	ppb	20	BDL	BDL	BDL	BDL
3,3-Dichlorobenzidine	ppb	5	BDL	BDL	BDL	BDL
4,6-Dinitro-2-methylphenol	ppb	20	BDL	BDL	BDL	BDL
4-Bromophenyl-phenylether	ppb	5	BDL	BDL	BDL	BDL
4-Chloro-3-methylphenol	ppb	20	BDL	BDL	BDL	BDL
4-Chlorophenyl phenylether	ppb	5	BDL	BDL	BDL	BDL
4-Nitrophenol	 ppb 	20	BDL	BDL	BDL	BDL
Acenaphthene	ppb	0.3	BDL	BDL	BDL	BDL
Acenaphthylene	ppb	5	BDL	BDL	BDL	BDL
Acetophenone	ppb	5	BDL	BDL	BDL	BDL
Anthracene	ppb	5	BDL	BDL	BDL	BDL
Benzidine	ppb	5	BDL	BDL	BDL	BDL
Benzo(a)anthracene	ppb	0.06	BDL	BDL	BDL	BDL
Benzo(a)pyrene	ddd	0.2	BDL	BDL	BDL	BDL
Benzo(b)fluoranthene	ppb	0.08	BDL	BDL	BDL	BDL
Benzo(g,h,i)Perylene	ppb	20	BDL	BDL	BDL	BDL
Benzo(k)fluoranthene	ppb	0.3	BDL	BDL	BDL	BDL
bis(2-Chloroethoxy) methane	ppb	5	BDL	BDL	BDL	BDL
bis(2-Chloroethyl) Ether	ppb	5	BDL	BDL	BDL	BDL
Bis(2-chloroisopropyl) ether	ppb	5	BDL	BDL	BDL	BDL
bis-(2-Ethylhexyl) phthalate	ppb	20	BDL	BDL	BDL	BDL

RL=Reporting Level BDL = Below Detection Level

Client Name:	GEI Consultants, Inc.	CTL Lab No.:	0309263
		PO No:	S836-090500
Report Date: 04/01/2009	04/01/2009	Analyst:	SJF

RESULTS OF ANALYSIS

EPA Method 8270C SVOC GC/MS

Matrix Type:	WATER	WATER	WATER	WATER
CTL Sample No.:	3934	3935	3936	3937
Field ID:	TW-1	TW-2	TW-3	TW-4
Date Analyzed:	03/30/2009	03/30/2009	03/30/2009	03/30/2009
Date Extracted:	03/25/2009	03/25/2009	03/25/2009	03/25/2009

Parameters	Units	RL				
Butylbenzylphthalate	ppb	5	BDL	BDL	BDL	BDL
Carbazole	ppb	5	BDL	BDL	BDL	BDL
Chrysene	ppb	4	BDL	BDL	BDL	BDL
Dibenzo(a,h)Anthracene	ppb	1	BDL	BDL	BDL	BDL
Diethylphthalate	ppb	5	BDL	BDL	BDL	BDL
Dimethylphthalate	ppb	5	BDL	BDL	BDL	BDL
Di-n-Butylphthalate	ppb	5	BDL	BDL	BDL	BDL
Di-n-octylphthalate	ppb	5	BDL	BDL	BDL	BDL
Fluoranthene	ppb	5	BDL	BDL	BDL	BDL
Fluorene	ppb	5	BDL	BDL	BDL	BDL
Hexachlorobenzene	ppb	0.07	BDL	BDL	BDL	BDL
Hexachlorobutadiene	ppb	5	BDL	BDL	BDL	BDL
Hexachlorocyclopentadiene	ppb	5	BDL	BDL	BDL	BDL
Hexachloroethane	ppb	3	BDL	BDL	BDL	BDL
Indeno(1,2,3-cd)Pyrene	ppb	1	BDL	BDL	BDL	BDL
Isophorone	ppb	5	BDL	BDL	BDL	BDL
Naphthalene	ppb	5	BDL	BDL	BDL	BDL
Nitrobenzene	ppb	5	BDL	BDL	BDL	BDL
N-Nitrosodimethylamine	ppb	5	BDL	BDL	BDL	BDL
N-Nitroso-di-n-propylamine	ppb	5	BDL	BDL	BDL	BDL
N-Nitrosodiphenylamine	ppb	5	BDL	BDL	BDL	BDL
Pentachlorophenol	ppb	20	BDL	BDL	BDL	BDL
Phenanthrene	ppb	0.07	BDL	BDL	BDL	BDL
Phenol	ppb	20	BDL	BDL	BDL	BDL
Pyrene	ppb	5	BDL	BDL	BDL	BDL
2,4,6-Trichlorophenol	ppb	20	BDL	BDL	BDL	BDL
2-Fluorophenol	%		73	69	83	78
Phenol-d6	%		84	86	96	92
Nitrobenzene-d5	%		105	110	121	108
2-Fluorobiphenyl	%		94	97	98	98
2,4,6-Tribromophenol	%	DUDE	107	130	116	106
p-Terphenyl-d14	%		103	103	100	104

RL=Reporting Level BDL = Below Detection Level

Client Name: GELConsu	Itants, Inc. CTL Lab N	o.: 0309263
	PO No:	S836-090500
Report Date: 04/01/2009	Analyst:	SJF

RESULTS OF ANALYSIS

EPA Method 8270C SVOC GC/MS

Matrix Type:	WATER	WATER	WATER	WATER
CTL Sample No.:	3938	3939	3940	3941
Field ID:	TW-5	TW-6	TW-7	MW-15
Date Analyzed:	03/31/2009	03/31/2009	03/31/2009	03/31/2009
Date Extracted:	03/25/2009	03/25/2009	03/25/2009	03/25/2009

Parameters	Units	RL				
1,2,4-Trichlorobenzene	ppb	5	BDL	BDL	BDL	BDL
1,2-Dichlorobenzene	ppb	5	BDL	BDL	BDL	BDL
1,2-Diphenylhydrazine	ppb	5	BDL	BDL	BDL	BDL.
1,3-Dichlorobenzene	ррр	5	BDL	BDL	BDL	BDL
1,4-Dichlorobenzene	ppb	5	BDL	BDL	BDL	BDL
2,4-Dichlorophenol	ppb	20	BDL.	BDL	BDL	BDL
2,4-Dimethylphenol	ppb	20	BDL	BDL	BDL	BDL
2,4-Dinitrophenol	ppb	20	BDL	BDL	BDL	BDL
2,4-Dinitrotoluene	ppb	5	BDL	BDL	BDL	BDL
2,6-Dinitrotoluene	ppb	5	BDL	BDL	BDL	BDL
2-Chloronaphthalene	ppb	5	BDL	BDL	BDL	BDL
2-Chlorophenol	ppb	20	BDL	BDL	BDL	BDL.
2-Methylnaphthalene	ppb	•5	BDL	BDL	BDL.	BDL
2-Nitrophenol	ppb	20	BDL	BDL	BDL	BDL
3,3-Dichlorobenzidine	ppb	5	BDL	BDL	BDL	BDL.
4,6-Dinitro-2-methylphenol	ppb	20	BDL	BDL	BDL	BDL
4-Bromophenyl-phenylether	ppb	5	BDL	BDL	BDL	BDL
4-Chloro-3-methylphenol	ppb	20	BDL	BDL	BDL	BDL
4-Chlorophenyl phenylether	ppb	5	BDL	BDL	BDL	BDL
4-Nitrophenol	ppb	20	BDL	BDL	BDL	BDL
Acenaphthene	ppb	0.3	BDL	BDL	BDL	BDL
Acenaphthylene	ppb	5	BDL	BDL	BDL	BDL
Acetophenone	ppb	5	BDL	BDL	BDL	BDL
Anthracene	ppb	5	BDL	BDL	BDL	BDL
Benzidine	ppb	5	BDL	BDL	BDL	BDL
Benzo(a)anthracene	ppb	0.06	BDL	BDL	BDL	BDL
Benzo(a)pyrene	ppb	0.2	BDL	BDL	BDL	BDL
Benzo(b)fluoranthene	ppb	0.08	BDL	BDL	BDL	BDL
Benzo(g,h,i)Perylene	ppb	20	BDL	BDL	BDL	BDL
Benzo(k)fluoranthene	ppb	0.3	BDL	BDL	BDL	BDL
bis(2-Chloroethoxy) methane	ppb	5	BDL	BDL	BDL	BDL.
bis(2-Chloroethyl) Ether	ppb	5	BDL	BDL	BDL	BDL
Bis(2-chloroisopropyl) ether	ppb	5	BDL	BDL	BDL	BDL
bis-(2-Ethylhexyl) phthalate	ppb	20	BDL	BDL	BDL	BDL

RL=Reporting Level BDL = Below Detection Level
Date Samples Received: 03/20/2009

Client Name:	GEI Consultants, Inc.	CTL Lab No.:	0309263
		PO No:	S836-090500
Report Date:	04/01/2009	Analyst:	SJF

RESULTS OF ANALYSIS

EPA Method 8270C SVOC GC/MS

Matrix Type:	WATER	WATER	WATER	WATER
CTL Sample No.:	3938	3939	3940	3941
Field ID:	TW-5	TW-6	TW-7	MW-15
Date Analyzed:	03/31/2009	03/31/2009	03/31/2009	03/31/2009
Date Extracted:	03/25/2009	03/25/2009	03/25/2009	03/25/2009

Parameters	Units	RL				
Butylbenzylphthalate	ppb	5	BDL	BDL	BDL	BDL
Carbazole	ppb	5	BDL	BDL	BDL	BDL
Chrysene	ppb	4	BDL	BDL BDL		BDL
Dibenzo(a,h)Anthracene	ppb	1	BDL	BDL	BDL	BDL
Diethylphthalate	ppb	5	BDL	BDL	BDL	BDL
Dimethylphthalate	ppb	5	BDL	BDL	BDL	BDL
Di-n-Butylphthalate	ppb	5	BDL	BDL	BDL	BDL
Di-n-octylphthalate	ppb	5	BDL	BDL	BDL	BDL
Fluoranthene	ppb	5	BDL	BDL	BDL	BDL
Fluorene	ppb	5	BDL	BDL	BDL	BDL
Hexachlorobenzene	ppb	0.07	BDL	BDL	BDL	BDL.
Hexachlorobutadiene	ppb	5	BDL	BDL	BDL.	BDL
Hexachlorocyclopentadiene	ppb	5	BDL	BDL	BDL	BDL
Hexachloroethane	ppb	3	BDL	BDL	BDL	BDL
Indeno(1,2,3-cd)Pyrene	ppb	1	BDL	BDL	BDL	BDL
Isophorone	ppb	5	BDL	BDL	BDL	BDL
Naphthalene	ppb	5	BDL	BDL	BDL	BDL
Nitrobenzene	ppb	5	BDL	BDL	BDL	BDL
N-Nitrosodimethylamine	ppb	5	BDL	BDL	BDL	BDL
N-Nitroso-di-n-propylamine	ppb	5	BDL	BDL	BDL	BDL
N-Nitrosodiphenylamine	ppb	5	BDL	BDL	BDL	BDL
Pentachlorophenol	ppb	20	BDL	BDL	BDL	BDL
Phenanthrene	ppb	0.07	BDL	BDL	BDL	BDL
Phenol	ppb	20	BDL	BDL	BDL	BDL
Pyrene	ppb	5	BDL	BDL	BDL	BDL
2,4,6-Trichlorophenol	ppb	20	BDL	BDL	BDL	BDL
2-Fluorophenol	%		72	76	76	83
Phenol-d6	%		90	84	79	89
Nitrobenzene-d5	%		116	116	113	116
2-Fluorobiphenyl	%		99	98	97	98
2,4,6-Tribromophenol	%		119	119	113	117
p-Terphenyl-d14	%		103	104	100	100

RL=Reporting Level BDL = Below Detection Level

Date Samples Received: 03/20/2009

Client Name:	GEI Consultants, Inc.	CTL Lab No.:	0309263
Offener varies.		PO No:	S836-090500
Report Date:	04/01/2009	Analyst:	SJF

RESULTS OF ANALYSIS

EPA Method 8270C SVOC GC/MS

Matrix Type:	WATER
CTL Sample No.:	3942
Field ID:	Blank
Date Analyzed:	03/31/2009
Date Extracted:	03/25/2009

Parameters	Units	RL.				
1.2.4-Trichlorobenzene	ppb	5	BDL			
1,2-Dichlorobenzene	ppb	5	BDL			
1.2-Diphenylhydrazine	ppb	5	BDL.			
1.3-Dichlorobenzene	ppb	5	BDL			
1,4-Dichlorobenzene	ppb	5	BDL			
2,4-Dichlorophenol	ppb	20	BDL			
2,4-Dimethylphenol	ppb	20	BDL			
2,4-Dinitrophenol	ppb	20	BDL			
2,4-Dinitrotoluene	ppb	5	BDL			
2,6-Dinitrotoluene	ppb	5	BDL			
2-Chloronaphthalene	ppb	5	BDL	77	24.62	
2-Chlorophenol	ppb	20	BDL			
2-Methylnaphthalene	ppb	5	BDL.			
2-Nitrophenol	ppb	20	BDL			
3,3-Dichlorobenzidine	ppb	5	BDL			
4,6-Dinitro-2-methylphenol	ppb	20	BDL		~~	
4-Bromophenyl-phenylether	ppb	5	BDL			<u></u>
4-Chloro-3-methylphenol	ppb	20	BDL			
4-Chlorophenyl phenylether	ppb	5	BDL			
4-Nitrophenol	ppb	20	BDL			
Acenaphthene	ppb	0.3	BDL			
Acenaphthylene	ppb	5	BDL			
Acetophenone	ppb	5	BDL			
Anthracene	ppb	5	BDL			
Benzidine	ppb	5	BDL			
Benzo(a)anthracene	ppb	0.06	BDL			
Benzo(a)pyrene	ppb	0.2	BDL			
Benzo(b)fluoranthene	ppb	0.08	BDL		<u> </u>	
Benzo(g,h,i)Perylene	ppb	20	BDL			
Benzo(k)fluoranthene	ppb	0.3	BDL			
bis(2-Chloroethoxy) methane	ppb	5	BDL			
bis(2-Chloroethyl) Ether	ppb	5	BDL			
Bis(2-chloroisopropyl) ether	ppb	5	BDL		~~	
bis-(2-Ethylhexyl) phthalate	ppb	20	BDL			

RL=Reporting Level BDL = Below Detection Level

Date Samples Received: 03/20/2009

Client Name:	GEI Consultants, Inc.	CTL Lab No.:	0309263
		PO No:	S836-090500
Report Date:	04/01/2009	Analyst:	SJF

RESULTS OF ANALYSIS

EPA Method 8270C SVOC GC/MS

Matrix Type:	WATER
CTL Sample No.:	3942
Field ID:	Blank
Date Analyzed:	03/31/2009
Date Extracted:	03/25/2009

Parameters	Units	RL				
Butylbenzylphthalate	ppb	5	BDL			
Carbazole	ppb	5	BDL		-	
Chrysene	ppb	4	BDL			
Dibenzo(a,h)Anthracene	ppb	1	BDL	-		
Diethylphthalate	ppb	5	BDL			
Dimethylphthalate	ppb	5	BDL			
Di-n-Butylphthalate	ppb	5	BDL			
Di-n-octylphthalate	ppb	5	BDL			
Fluoranthene	ppb	5	BDL			
Fluorene	ppb	5	BDL			
Hexachlorobenzene	ppb	0.07	BDL			
Hexachlorobutadiene	ppb	5	BDL			
Hexachlorocyclopentadiene	ppb	5 .	BDL			
Hexachloroethane	ppb	3	BDL			
Indeno(1,2,3-cd)Pyrene	ppb	1	BDL			
Isophorone	ppb	5	BDL			
Naphthalene	ppb	5	BDL			
Nitrobenzene	ppb	5	BDL			
N-Nitrosodimethylamine	ppb	5	BDL			
N-Nitroso-dl-n-propylamine	ppb	5	BDL			
N-Nitrosodiphenylamine	ppb	5	BDL	-		
Pentachlorophenol	ppb	20	BDL		re re	
Phenanthrene	ppb	0.07	BDL			
Phenol	ppb	20	BDL			
Pyrene	ppb	5	BDL			
2,4,6-Trichlorophenol	ppb	20	BDL			
2-Fluorophenol	%		79			
Phenol-d6	%		82			
Nitrobenzene-d5	%		105	·		
2-Fluorobiphenyl	%		98			
2,4,6-Tribromophenol	%		99			
p-Terphenyl-d14	%		97			

RL=Reporting Level BDL = Below Detection Level

March 04, 2009

GEI Consultants Inc. 455 Winding Brook Drive, Suite 201 Glastonbury, CT 06033

Attn: Mr. Gary ladarola

Please find attached laboratory report(s) for the samples submitted on: **February 20, 2009.**

All pertinent information for this analysis is located on the report. Should it be necessary to contact us regarding billing or the test results, please have the following information readily available:

Lab No.	: 0209261
PO/Job No.	: S828 (090500)
Invoice No.	: 158280
Customer No.	: 121

Please contact us if you have any questions.

Very truly yours,

Stephen J. Franco Laboratory Director PH-0547

STEPHEN J. FRANCO Laboratory Director PHONE © 203/634-3731 www.ctl-web.com / ctestlab@erols.com 165 GRACEY AVENUE © MERIDEN, CT © 06451

LAB NUMBER : 0209261 JOB NUMBER : \$828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES ANALYZED: 02/25-02/27/09 ANALYST : MH, SP

MASS ANALYSIS by EPA 3050B

· · · · · · · · · · · · · · · · · · ·	MATRIX TY CTL SAMP FIELD ID	(PE LE No.	S 2588 GEI-MW-13	S 2589 SB-14		
PARAMETER	UNITS	MDL				
Arsenic	mg/kg	1.0	1.9	2.4		
Barium	mg/kg	5	37	39		
Cadmium	mg/kg	0.5	BDL	BDL		
Chromium, Total	mg/kg	0.5	6.5	12.2		
Lead	mg/kg	0.5	2.3	4.5		
Mercury	mg/kg	0.02	BDL	0.03	· · ·	
Selenium	mg/kg	0.5	BDL	BDL		
Silver	mg/kg	0.2	BDL	BDL		

MDL=METHOD DETECTION LEVEL BDL=BELOW DETECTION LEVEL

MATRIX TYPES: W=WATER/AQUEOUS S=SOIL/SOLID

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES TESTED : 02/26/09 ANALYST : SP

RESULTS OF ANALYSIS

SPLP EPA 1312

Sample Matrix: S

LEAD - mg/L

			-		
Field ID	CTL #	MDL		 	
SB-2 (4-5)	2576	0.005	BDL		
SB-3 (2-3)	2577	0.005	BDL		
SB-4 (5.5-6)	2578	0.005	BDL		
SB-5 (3-4)	2579	0.005	BDL		
SB-6 (10.5-11)	2580	0.005	BDL		
SB-7 (10-11)	2581	0.005	BDL		

MDL=METHOD DETECTION LEVEL BDL=BELOW DETECTION LEVEL

MATRIX TYPES: W=WATER/AQUEOUS S=SOIL/SOLID

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED : 02/26/09 DATE SAMPLES TESTED : 02/26/09 ANALYST : LP

RESULTS OF ANALYSIS

Sample Matrix: S

CT ETPH

- mg/kg

Field ID	CTL #	MDL			
SB-1 (30")	2575	50	87		
SB-8 (11)	2582	50	BDL		
SB-9 (10-11)	2583	50	BDL		
SB-10 (9-10)	2584	50	BDL	~	
SB-101 (9-10)	2585	50	BDL		
SB-11 (3.5-4)	2586	50	BDL		
SB-12 (3-4)	2587	50	BDL		-
GEI-MW-13	2588	50	BDL		
SB-14	2589	50	96		

MDL=METHOD DETECTION LEVEL BDL=BELOW DETECTION LEVEL

MATRIX TYPES:

W=WATER/AQUEOUS S=SOIL/SOLID

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED: 02/24/09 DATE SAMPLES ANALYZED: 02/26/09 ANALYST : SE

EPA Method 8082

	MATRIX TYPE CTL SAMPLE No. FIELD ID		S 2582 SB-8 (11)	S 2583 SB-9 (10-11)	
PARAMETER	UNITS	MDL.			
PCB, Total	mg/kg	1	BDL	BDL	

ŧ

MDL=METHOD DETECTION LEVEL BDL=BELOW DETECTION LEVEL

MATRIX TYPES: W=WATER/AQUEOUS S=SOIL/SOLID

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED: 02/24/09 DATE SAMPLES ANALYZED: 02/26/09 ANALYST : SM, SE

EPA METHOD 608/8081A

		VDE	9	S	S	[
			3500	2504	3500	
	GIL SAMP	'LE NO.	2590	2591	2092	
	FIELD ID		SS-1	SS-2	55-3	
	<u>.</u>					
PARAMETER	UNITS	MDL				
Aldrin	ug/kg	25	BDL	BDL	BDL	
a-BHC	ug/kg	50	BDL	BDL	BDL	
b-BHC	ug/kg	50	BDL	BDL	BDL	
d-BHC	ug/kg	50	BDL	BDL	BDL	
Lindane	ug/kg	20	BDL	BDL	BDL	
Chlordane	ug/kg	50	BDL.	BDL	BDL	
4,4'-DDD	ug/kg	50	BDL	BDL	BDL	
4,4'-DDE	ug/kg	50	BDL	BDL	BDL	
4,4'-DDT	ug/kg	50	BDL	BDL	113	
Dieldrin	ug/kg	5	10	BDL	19	
Endosulfan I	ug/kg	100	BDL	BDL	BDL	
Endosulfan II	ug/kg	100	BDL	BDL	BDL	
Endosulfan Sulfate	ug/kg	100	BDL	BDL	BDL	
Endrin	ug/kg	50	BDL.	BDL	BDL	
Endrin Aldehyde	ug/kg	50	BDL	BDL	BDL -	
Heptachlor	ug/kg	10	BDL	BDL	BDL	
Heptachlor Epoxide	ug/kg	20	BDL	BDL	BDL	
Methoxychlor	ug/kg	50	BDL	BDL	BDL	
Toxaphene	ug/kg	500	BDL	BDL	BDL	

MDL=METHOD DETECTION LEVEL BDL=BELOW DETECTION LEVEL

MATRIX TYPES W=WATER/AQUEOUS S=SOIL/SOLID

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED: 02/24/09 DATE SAMPLES ANALYZED: 02/26/09 ANALYST : SM

EPA METHOD 8151A

	MATRIX TY CTL SAMP FIELD ID	MATRIX TYPE CTL SAMPLE No. FIELD ID		S 2591 SS-2	S 2592 SS-3	
PARAMETER	UNITS	MDL				
2,4-D	ug/kg	50	BDL	BDL	BDL	
2,4-DB	ug/kg	50	BDL	BDL	BDL	
2,4,5-T	ug/kg	50	BDL	BDL	BDL	
2,4,5-TP	ug/kg	50	BDL	BDL	BDL	
Dalapon	ug/kg	50	BDL	• BDL	BDL ·	:
Dicamba	ug/kg	50	BDL	BDL	BDL	
Dichloroprop	ug/kg	50	BDL	BDL	BDL	
Dinoseb	ug/kg	50	BDL	BDL	BDL	
MCPP	ug/kg	2000	BDL	BDL	BDL	
MCPA	ug/kg	2000	BDL	BDL	BDL	

MDL=METHOD DETECTION LEVEL BDL=BELOW DETECTION LEVEL

MATRIX TYPES: W=WATER/AQUEOUS S=SOIL/SOLID

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED : 02/19-02/20/09 DATE SAMPLES ANALYZED : 02/23/09 EPA 5035 PRESERVATION : Sodium Bisulfate ANALYST : YK

EPA METHOD 5035/8260B GC/MS

MA	MATRIX TYPE:		S	S	S	S
CTL S	AMPLE NO.:		2575	2576	2577	2578
	FIELD ID:		SB-1 (30")	SB-2 (4-5)	SB-3 (2-3)	SB-4 (5.5-6)
PARAMETER	UNITS	MDL				
Dichlorodifluoromethane	µq/kq	10	BDL	BDL	BDL	BDL
Chloromethane	ug/kg	10	BDL	BDL	BDL	BDL
Vinvl chloride	µg/kg	10	BDL	BDL	BDL	BDL
Chloroethane	µq/kg	10	BDL	BDL	BDL	BDL
Bromomethane	µg/kg	10	BDL	BDL	BDL	BDL
Trichlorofluoromethane	µg/kg	10	BDL	BDL	BDL	BDL
1,1-Dichloroethylene	µg/kg	10	BDL	BDL	BDL	BDL
Methylene chloride	µg/kg	10	BDL	BDL	BDL	BDL
t-1,2-Dichloroethylene	µg/kg	10	BDL	BDL	BDL	BDL
1,1-Dichloroethane	µg/kg	10	BDL	BDL	BDL	BDL
2,2-Dichloropropane	µg/kg	10	BDL	BDL	BDL	BDL
cis-1,2-Dichloroethylene	µg/kg	10	BDL	BDL	BDL	BDL
Chloroform	µg/kg	10	BDL	BDL	BDL	BDL
Bromochloromethane	µg/kg	10	BDL	BDL	BDL	BDL
1,1,1-Trichloroethane	µg/kg	10	BDL	BDL.	BDL	BDL
1,1-Dichloropropylene	µg/kg	10	BDL	BDL	BDL	BDL
Carbon tetrachioride	µg/kg	10	BDL	BDL	BDL	BDL
Benzene	µg/kg	10	BDL	BDL	BDL	BDL
1,2-Dichloroethane	µg/kg	10	BDL	BDL	BDL	BDL
Trichloroethylene	µg/kg	10	BDL	BDL	BDL	BDL
1,2-Dichloropropane	µg/kg	10	BDL	BDL	BDL	BDL
Bromodichloromethane	µg/kg	10	BDL	BDL	BDL	BDL
Dibromomethane	µg/kg	10	BDL	BDL	BDL	BDL.
cis-1,3-Dichloropropylene	µg/kg	10	BDL	BDL	BDL	BDL
Toluene	µg/kg	10	BDL	BDL	. BDL	BDL
t-1,3-Dichloropropylene	µg/kg	10	BDL	BDL	BDL	BDL
1,1,2-Trichloroethane	µg/kg	10	BDL	BDL	BDL	BDL
Tetrachloroethylene	µg/kg	10	BDL	BDL	BDL	BDL
1,3-Dichloropropane	µg/kg	10	BDL	BDL	BDL	BDL
Dibromochloromethane	µg/kg	10	BDL	BDL	BDL	BDL
1,2-Dibromoethane (EDB)	µg/kg	10	BDL	BDL	BDL	BDL
Chlorobenzene	µg/kg	10	BDL	BDL	BDL	BDL
Ethylbenzene	µg/kg	10	BDL	BDL	BDL	BDL
1,1,1,2-Tetrachloroethane	µg/kg	10	BDL	BDL	BDL	BDL
p/m-Xylene	µg/kg	10	BDL	BDL	BDL.	BDL
o-Xylene	µg/kg	10	BDL	BDL.	BDL	i BDL

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED : 02/19-02/20/09 DATE SAMPLES ANALYZED : 02/23/09 EPA 5035 PRESERVATION : Sodium Bisulfate ANALYST : YK

EPA METHOD 5035/8260B GC/MS

MATRIX TYPE: CTL SAMPLE NO.: FIELD ID:			S 2575 SB-1 (30'')	S 2576 SB-2 (4-5)	S 2577 SB-3 (2-3)	S 2578 SB-4 (5.5-6)
	1	1 1101				
PARAMETER		MDL			,	
Styrene	µg/kg	10	BDL	BDL	BDL	BDL
Bromoform	µg/kg	10	BDL	BDL	BDL	BDL
Isopropylbenzene	µg/kg	10	BDL	BDL	BDL	BDL
1,1,2,2-Tetrachloroethane	µg/kg	10	BDL	BDL	BDL	BDL
Bromobenzene	µg/kg	10	BDL	BDL	BDL	BDL
1,2,3-Trichloropropane	µg/kg	10	BDL	BDL	BDL	BDL
n-Propylbenzene	µg/kg	10	BDL	BDL	BDL	BDL
2-Chlorotoluene	µg/kg	10	BDL	BDL	BDL	BDL
1,3,5-Trimethylbenzene	µg/kg	10	BDL	8DL	BDL	BDL
4-Chlorotoluene	µg/kg	10	BDL	BDL	BDL	BDL
tert-Butylbenzene	µg/kg	10	BDL	BDL	. BDL	BDL
1,2,4-Trimethylbenzene	µg/kg	10	BDL	8DL	BDL	BDL
sec-Butylbenzene	µg/kg	10	BDL	BDL	BDL	BDL
p-lsopropyltoluene	µg/kg	10	BDL	BDL	BDL	BDL
1,3-Dichlorobenzene	µg/kg	10	BDL	BDL	BDL	BDL
1,4-Dichlorobenzene	µg/kg	10	BDL	BDL	BDL	BDL
n-Butylbenzene	µg/kg	10	BDL	BDL	BDL	BDL
1,2-Dichlorobenzene	μg/kg	10	BDL	BDL	BDL	BDL
1,2-Dibromo-3-chloropropane	µg/kg	10	BDL	BDL	BDL	BDL
1,2,4-Trichiorobenzene	µg/kg	10	BDL	BDL	BDL	BDL
Hexachlorobutadiene	µg/kg	50	BDL	BDL	BDL	BDL
Naphthalene	ug/kg	50	BDL	BDL	BDL	BDL
1,2,3-Trichlorobenzene	ug/kg	10	BDL	BDL	BDL	BDL
Methyl ethyl ketone	ug/kg	50	BDL	BDL	BDL	BDL
Methyl butyl ketone	µg/ka	50	BDL	BDL	BDL	BDL
Methyl isobutyl ketone	µg/kg	50	BDL	BDL	BDL	BDL.
MTBE	µg/ka	10	BDL	BDL	BDL	BDL
1.2-Dichloroethane-d4 (SR)	%		96	97	99	97
Toluene-d8 (SR)	%		94	92	93	90
p-Bromofiuorobenzene (SR)	%		97	99	95	98

MDL=METHOD DETECTION LEVEL BDL=BELOW DETECTION LEVEL SR=SURROGATE RECOVERY

MATRIX TYPES: W=WATER/AQUEOUS S=SOIL/SOLID

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED : 02/19-02/20/09 DATE SAMPLES ANALYZED : 02/23/09 EPA 5035 PRESERVATION : Sodium Bisulfate ANALYST : YK

EPA METHOD 5035/8260B GC/MS

	MATRIX TYPE: CTL SAMPLE NO.: FIELD ID:		S 2579 SB-5 (3-4)	S 2580 SB-6 (10.5-11)	S 2581 SB-7 (10-11)	S 2584 SB-10 (9-10)
PARAMETER	UNITS	MDL				
Dichlorodifluoromethane	ug/kg	10	BDL	BDL	BDL	BDL
Chloromethane	µg/kg	10	BDL	BDL	BDL	BDL
Vinvl chloride	µg/kg	10	BDL	BDL	BDL	BDL
Chloroethane	µg/kg	10	BDL	BDL	BDL	BDL
Bromomethane	ug/kg	10	BDL	BDL	BDL	BDL
Trichlorofluoromethane	µg/kg	10	BDL	BDL	BDL	BDL
1.1-Dichloroethylene	µg/kg	10	BDL	BDL	BDL	BDL
Methylene chloride	µg/kg	10	BDL	BDL	BDL	BDL
t-1.2-Dichloroethvlene	µa/ka	10	BDL	BDL	BDL	BDL
1.1-Dichloroethane	µg/kg	10	BDL	BDL	BDL	BDL
2.2-Dichloropropane	ua/ka	10	BDL	BDL	BDL	BDL
cis-1.2-Dichloroethylene	µa/ka	10	BDL	BDL	BDL	BDL
Chloroform	µg/kg	10	BDL	BDL	BDL	BDL
Bromochloromethane	µo/kg	10	BDL	BDL	BDL	BDL
1.1.1-Trichloroethane	µg/kg	10	BDL	BDL	BDL	BDL
1,1-Dichloropropylene	µg/kg	10	BDL	BDL	BDL	BDL
Carbon tetrachloride	µg/kg	10	BDL	BDL	BDL	BDL
Benzene	µg/kg	10	BDL	BDL	BDL	BDL
1,2-Dichloroethane	µg/kg	10	BDL	BDL	BDL	BDL
Trichloroethylene	µg/kg	10	BDL	BDL	BDL	BDL
1,2-Dichloropropane	µg/kg	10	BDL	BDL	BDL	BDL
Bromodichloromethane	µg/kg	10	BDL	BDL	BDL	BDL
Dibromomethane	µg/kg	10	BDL	BDL	BDL	BDL
cis-1,3-Dichloropropylene	µg/kg	10	BDL	BDL	BDL	BDL
Toluene	μg/kg	10	BDL	BDL	BDL	BDL
t-1,3-Dichloropropylene	µg/kg	10	BDL	BDL	BDL	BDL
1,1,2-Trichloroethane	µg/kg	10	BDL	BDL	BDL	BDL
Tetrachloroethylene	µg/kg	10	BDL	BDL	BDL	BDL
1,3-Dichloropropane	µg/kg	10	BDL	BDL	BDL	BDL
Dibromochloromethane	µg/kg	10	BDL	BDL	BDL	BDL
1,2-Dibromoethane (EDB)	µg/kg	10	BDL	BDL	BDL	BDL
Chlorobenzene	µg/kg	10	BDL	BDL	BDL	BDL
Ethylbenzene	µg/kg	10	BDL	BDL	BDL	BDL
1,1,1,2-Tetrachloroethane	µg/kg	10	BDL	BDL	BDL	BDL
p/m-Xylene	μg/kg	10	BDL	BDL	BDL	BDL
o-Xviene	un/ka	10	BDL	BDL	BDL	BDL

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED : 02/19-02/20/09 DATE SAMPLES ANALYZED : 02/23/09 EPA 5035 PRESERVATION : Sodium Bisulfate ANALYST : YK

EPA METHOD 5035/8260B GC/MS

	MATRIX TYPE:			S	S	S
	CTL SAMPLE NO .:		2579	2580	2581	2584
	FIELD ID:		SB-5 (3-4)	SB-6 (10.5-11)	SB-7 (10-11)	SB-10 (9-10)
PARAMETER	UNITS	MDL				
Styrene	µg/kg	10	BDL	BDL	BDL	BDL
Bromoform	µg/kg	10	BDL	BDL	BDL	BDL
Isopropylbenzene	µg/kg	10	BDL	BDL	BDL	BDL
1,1,2,2-Tetrachloroethane	µg/kg	10	BDL	BDL	BDL	BDL
Bromobenzene	µg/kg	10	BDL	BDL	BDL	BDL
1,2,3-Trichloropropane	µg/kg	10	BDL	BDL	BDL	BDL
n-Propylbenzene	µg/kg	10	BDL	BDL	BDL	BDL
2-Chlorotoluene	µg/kg	10	BDL	BDL	BDL	BDL
1,3,5-Trimethylbenzene	µg/kg	10	BDL	BDL	BDL	BDL
4-Chlorotoluene	µg/kg	10	BDL	BDL	BDL	BDL
tert-Butylbenzene	µg/kg	10	BDL	BDL	BDL	BDL
1,2,4-Trimethylbenzene	µg/kg	10	BDL	BDL	BDL	BDL
sec-Butylbenzene	µg/kg	10	BDL	BDL	BDL	BDL
p-lsopropyltoluene	μg/kg·	10	BDL	BDL	BDL	BDL
1,3-Dichlorobenzene	µg/kg	10	BDL	BDL	BDL	BDL
1,4-Dichlorobenzene	µg/kg	10	BDL	BDL	BDL	BDL
n-Butylbenzene	µg/kg	10	BDL	BDL	BDL	BDL
1,2-Dichlorobenzene	µg/kg	10	BDL	BDL	BDL	BDL
1,2-Dibromo-3-chloropropane	µg/kg	10	BDL	BDL	BDL	BDL
1,2,4-Trichlorobenzene	µg/kg	10	BDL	BDL	BDL	BDL
Hexachlorobutadiene	μg/kg	50	BDL	BDL	BDL	BDL
Naphthalene	µg/kg	50	BDL	BDL	BDL	BDL
1,2,3-Trichlorobenzene	µg/kg	10	BDL	BDL	BDL	BDL
Methyl ethyl ketone	µg/kg	50	BDL	BDL	BDL	BDL
Methyl butyl ketone	μg/kg	50	BDL	BDL	BDL	BDL
Methyl isobutyl ketone	µg/kg	50	BDL	BDL	BDL	BDL
MTBE	µg/kg	10	BDL	BDL	BDL	BDL
1,2-Dichloroethane-d4 (SR)	%		98	98	102	92
Toluene-d8 (SR)	%		93	90	91	93
p-Bromofluorobenzene (SR)	%		99	99	100	98

MDL=METHOD DETECTION LEVEL BDL=BELOW DETECTION LEVEL SR=SURROGATE RECOVERY

MATRIX TYPES: W=WATER/AQUEOUS S=SOIL/SOLID

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED : 02/19-02/20/09 DATE SAMPLES ANALYZED : 02/23/09 EPA 5035 PRESERVATION : Sodium Bisulfate ANALYST : YK

EPA METHOD 5035/8260B GC/MS

Ν	MATRIX TYPE:		S	S	s	
CTL	SAMPLE NO.:		2585	2588	2589	
	FIELD ID:		SB-101 (9-10)	GEI-MW-13	SB-14	
PARAMETER	UNITS	MDL				}
Dichlorodifluoromethane	µg/kg	10	BDL	BDL	BDL .	
Chloromethane	µg/kg	10	BDL	BDL	BDL	
Vinyl chloride	µg/kg	10	BDL	BDL	BDL	
Chloroethane	µg/kg	10	BDL	BDL	BDL	
Bromomethane	µg/kg	10	BDL	BDL	BDL	
Trichlorofluoromethane	µg/kg	10	BDL	BDL	BDL	
1,1-Dichloroethylene	µg/kg	10	BDL	BDL	BDL	
Methylene chloride	µg/kg	10	BDL	BDL.	BDL	
t-1,2-Dichloroethylene	µg/kg	10	BDL	BDL	BDL	
1,1-Dichloroethane	µg/kg	10	BDL	BDL	BDL	
2,2-Dichloropropane	µg/kg	10	BDL	BDL	BDL	
cis-1,2-Dichloroethylene	µg/kg	10	BDL	BDL	BDL	
Chloroform	µg/kg	10	BDL	BDL	BDL	
Bromochloromethane	µg/kg	10	BDL	BDL	BDL	
1,1,1-Trichloroethane	µg/kg	10	BDL	BDL	BDL	1
1,1-Dichloropropylene	µg/kg	10	BDL	BDL	BDL	
Carbon tetrachloride	µg/kg	10	BDL.	BDL	BDL	
Benzene	µg/kg	10	BDL	BDL	BDL	
1,2-Dichloroethane	µg/kg	10	BDL	BDL	BDL	
Trichloroethylene	µg/kg	10	BDL	BDL	BDL	
1.2-Dichloropropane	µg/kg	10	BDL	BDL	BDL	
Bromodichloromethane	µg/kg	10	BDL	BDL	8DL	
Dibromomethane	µg/kg	10	BDL	BDL	BDL	
cis-1.3-Dichloropropylene	µg/kg	10	BDL	BDL	BDL	
Toluene	µg/kg	10	BDL	BDL	BDL	
t-1.3-Dichloropropylene	µg/kg	10	BDL	BDL	BDL	
1.1.2-Trichloroethane	µg/kg	10	BDL	BDL	BDL.	
Tetrachloroethviene	µg/kg	10	BDL	BDL	BDL	
1 3-Dichloropropane	ua/ka	10	BDL	BDL	BDL	
Dibromochloromethane	ua/ka	10	BDL	BDL	BDL.	
1 2-Dibromoethane (EDB)	ua/ka	10	BDL	BDL	BDL	
Chlorobenzene	µq/ka	10	BDL	BDL	BDL	
Ethylbenzene	ua/ka	10	BDL	8DL	BDL	
1 1 1 2-Tetrachloroethane	ua/ka	10	BDL	BDL	BDL	
In/m-Xvlene	ua/ka	10	BDL	BDL	BDL	
lo-Xylene	µg/kg	10	BDL	BDL	BDL	

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED : 02/19-02/20/09 DATE SAMPLES ANALYZED : 02/23/09 EPA 5035 PRESERVATION : Sodium Bisulfate ANALYST : YK

EPA METHOD 5035/8260B GC/MS

MATRIX TYPE: CTL SAMPLE NO.: FIELD ID:		S 2585 SB-101 (9-10)	S 2588 GEI-MW-13	S 2589 SB-14		
PARAMETER	UNITS	MDL				
Styrene	µg/kg	10	BDL	BDL	BDL	
Bromoform	µg/kg	10	BDL	BDL.	BDL	
Isopropylbenzene	µg/kg	10	BDL	BDL	BDL	
1.1.2.2-Tetrachloroethane	μg/kg	10	BDL	BDL	BDL	
Bromobenzene	µg/kg	10	BDL	BDL	BDL	
1.2.3-Trichloropropane	µg/kg	10	BDL	BDL	BDL	
n-Propylbenzene	µg/kg	10	BDL	BDL	BDL	
2-Chlorotoluene	µg/kg	10	BDL	BDL	BDL	
1.3.5-Trimethylbenzene	µg/kg	10	BDL	BDL	BDL	
4-Chlorotoluene	µg/kg	10	BDL	BDL	BDL	
tert-Butylbenzene	µg/kg	10	BDL	BDL	BDL	
1.2.4-Trimethylbenzene	µg/kg	10	BDL	BDL	BDL	
sec-Butylbenzene	µg/kg	10	BDL	BDL	BDL	
p-isopropyitoluene	µg/kg	10	BDL	BDL	BDL	
1.3-Dichlorobenzene	μg/kg	10	BDL	BDL	BDL	
1,4-Dichlorobenzene	μg/kg	10	BDL	BDL	BDL	
n-Butylbenzene	µg/kg	10	BDL	BDL	BDL	
1.2-Dichlorobenzene	µg/kg	10	BDL	BDL	BDL	
1,2-Dibromo-3-chloropropane	µg/kg	10	BDL	BDL	BDL	
1,2,4-Trichlorobenzene	μg/kg	10	BDL	BDL	BDL	
Hexachlorobutadiene	µg/kg	50	BDL	BDL	BDL	
Naphthalene	µg/kg	50	BDL	BDL	BDL	
1.2.3-Trichlorobenzene	µg/kg	10	BDL	BDL	BDL	
Methyl ethyl ketone	µg/kg	50	BDL	BDL	BDL	
Methyl butyl ketone	µg/kg	50	BDL.	BDL	BDL	
Methyl isobutyl ketone	µg/kg	50	BDL	BDL	BDL	
MTBE	μg/kg	10	BDL	BDL	BDL	
1.2-Dichloroethane-d4 (SR)	%		95	91	94	
Toluene-d8 (SR)	%		91	89	93	
n-Bromofluorobenzene (SR)	%		100	100	112	

MDL=METHOD DETECTION LEVEL BDL=BELOW DETECTION LEVEL SR=SURROGATE RECOVERY

MATRIX TYPES: W=WATER/AQUEOUS S=SOIL/SOLID

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED : 02/25/09 DATE SAMPLES ANALYZED : 02/26/09 ANALYST : KM

EPA Method 8270 Modified

	MATRIX TYPE CTL SAMPLE NO. FIELD ID		S 2575 SB-1 (30")	S 2582 SB-8 (11)	S 2583 SB-9 (10-11)	S 2584 SB-10 (9-10)
PARAMETER	UNITS	MDL				
Acenaphthene	ug/kg	100	368.0	BDL	209.0	BDL
Acenaphthylene	ug/kg	100	BDL	BDL	BDL	BDL
Anthracene	ug/kg	100	435.0	BDL	262.0	BDL
Benzidine	ug/kg	100	BDL	BDL	BDL	BDL
Benzo(a)anthracene	ug/kg	100	896.0	BDL	470.0	BDL
Benzo(b)fluoranthene	ug/kg	100	950.0	BDL	193.0	BDL
Benzo(k)fluoranthene	ug/kg	100	844.0	BDL	286.0	BDL
Bis(2-chloroethyl) ether	ug/kg	100	BDL	BDL	BDL	BDL
Benzo(g,h,i)perylene	ug/kg	500	556.0	BDL	BDL	BDL
Bis(2-chloroisopropyl) ether	ug/kg	100	BDL	BDL	BDL	BDL
Benzo(a)pyrene	ug/kg	100	869.0	BDL	355.0	BDL
Bis-(2-ethylhexyl) phthalate	ug/kg	500	BDL	BDL	BDL	BDL
4-Bromophenylphenylether	ug/kg	100	BDL	BDL	BDL	BDL
bis(2-Chloroethoxy) methane	ug/kg	100	BDL	BDL	BDL	BDL
Butylbenzyl phthalate	ug/kg	100	BDL	BDL	BDL	BDL
Carbazole	ug/kg	100	319.0	BDL	125.0	BDL
2-Chloronaphthalene	ug/kg	100	BDL	BDL	BDL	BDL
4-Chlorophenyl phenyl ether	ug/kg	100	BDL.	BDL	BDL	BDL
Chrysene	ug/kg	100	911.0	BDL	406.0	BDL
Dibenzo(a,h) anthracene	ug/kg	500	BDL	BDL	BDL	BDL
1,2-Dichlorobenzene	ug/kg	100	BDL	BDL	BDL	BDL
1,3-Dichlorobenzene	ug/kg	100	BDL	BDL	BDL	BDL
1,4-Dichlorobenzene	ug/kg	100	BDL	BDL	BDL	BDL
3,3-Dichlorobenzidine	ug/kg	100	BDL	BDL	BDL	BDL
Diethyl phthalate	ug/kg	100	BDL	BDL	BDL	BDL
Dimethyl phthalate	ug/kg	100	BDL	BDL	BDL	BDL
Di-n-Butyl phthalate	ug/kg	100	BDL	BDL	BDL	BDL
2,4-Dinitrotoluene	ug/kg	100	BDL	BDL	BDL	BDL
2,6-Dinitrotoluene	ug/kg	100	BDL	BDL	BDL	BDL
Di-n-octyl phthalate	ug/kg	100	BDL	BDL	BDL	BDL
1,2-Diphenylhydrazine	ug/kg	100	BDL	BDL	BDL	BDL
Fluoranthene	ug/kg	100	2,790.0	BDL	1,130.0	BDL
Fluorene	ug/kg	100	229.0	BDL	128.0	BDL
Hexachlorobenzene	ug/kg	100	BDL	BDL	BDL	BDL _

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED : 02/25/09 DATE SAMPLES ANALYZED : 02/26/09 ANALYST : KM

EPA Method 8270 Modified

C.	MATRIX TYPE TL SAMPLE NO. FIELD ID		S 2575 SB-1 (30")	S 2582 SB-8 (11)	S 2583 SB-9 (10-11)	S 2584 SB-10 (9-10)
PARAMETER	UNITS	MDL				
Hexachlorobutadiene	ug/kg	100	BDL	BDL	BDL	BDL
Hexachlorocyclopentadiene	ug/kg	100	BDL	BDL	BDL	BDL
Hexachloroethane	ug/kg	100	BDL	BDL	BDL	BDL
Indeno(1,2,3-cd) pyrene	ug/kg	500	BDL	BDL	BDL	BDL
Isophorone	ug/kg	100	È BDL	BDL	BDL	BDL
2-Methylnaphthalene	ug/kg	100	BDL	BDL	BDL	BDL
Naphthalene	ug/kg	100	151.0	BDL	124.0	BDL
Nitrobenzene	ug/kg	100	BDL	BDL	BDL	BDL
N-Nitrosodimethylamine	ug/kg	100	BDL	BDL	BDL	BDL
N-Nitroso-di-n-propylamine	ug/kg	100	BDL	BDL	BDL	BDL
N-Nitrosodiphenylamine	ug/kg	100	BDL	BDL	BDL	BDL
Phenanthrene	ug/kg	100	1,830.0	BDL	921.0	BDL
Pyrene	ug/kg	100	2,120.0	BDL	938.0	BDL
1,2,4-Trichlorobenzene	ug/kg	100	BDL	BDL	BDL	BDL
2-Chlorophenol	ug/kg	500	BDL	BDL	BDL	BDL
2,4-Dichlorophenol	ug/kg	500	BDL	BDL	BDL	BDL
2,4-Dimethylphenol	ug/kg	500	BDL	BDL	BDL	BDL
4,6-Dinitro-2-methylphenol	ug/kg	500	BDL	BDL	BDL	BDL
2,4-Dinitrophenol	ug/kg	500	BDL	BDL	BDL	BDL
2-Nitrophenol	ug/kg	500	BDL	BDL	BDL	BDL
4-Nitrophenol	ug/kg	500	BDL	BDL	BDL	BDL
4-Chloro-3-methylphenol	ug/kg	500	BDL	BDL	BDL	BDL
Pentachlorophenol	ug/kg	500	BDL	BDL	BDL	BDL
Phenol	ug/kg	500	BDL	BDL	BDL	BDL
2,4,6-Trichlorophenol	ug/kg	500	BDL	BDL	BDL	BDL
Phenol-d6 (SR)	%		105	100	101	105
Nitrobenzene-d5 (SR)	%		94	106	104	107
2-Fluorobiphenyl (SR)	%		99	99	101	104
2,4,6-Tribromophenol (SR)	%		92	95	92	96
p-Terphenvi-d14 (SR)	%		108	98	104	95

MDL=METHOD DETECTION LEVEL BDL=BELOW DETECTION LEVEL SR=SURROGATE RECOVERY

MATRIX TYPES

W=WATER/AQUEOUS S=SOIL/SOLID

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED : 02/25/09 DATE SAMPLES ANALYZED : 02/26/09 ANALYST : KM

EPA Method 8270 Modified

С	MATRIX TYPE TL SAMPLE NO. FIELD ID		S 2585 SB-101 (9-10)	S 2586 SB-11 (3.5-4)	S 2587 SB-12 (3-4)	S 2588 GEI-MW-13
PARAMETER	UNITS	MDL				
Acenaphthene	ug/kg	100	BDL	BDL	BDL	BDL
Acenaphthylene	ug/kg	100	BDL	BDL	BDL	BDL
Anthracene	ug/kg	100	BDL	BDL	BDL	BDL
Benzidine	ug/kg	100	BDL	BDL	BDL	BDL
Benzo(a)anthracene	ug/kg	100	BDL	130.0	BDL	BDL
Benzo(b)fluoranthene	ug/kg	100	BDL	BDL	BDL	BDL
Benzo(k)fluoranthene	ug/kg	100	BDL	BDL	BDL	BDL
Bis(2-chloroethyl) ether	ug/kg	100	BDL	BDL	BDL	BDL
Benzo(g,h,i)perylene	ug/kg	500	BDL	BDL	BDL	BDL
Bis(2-chloroisopropyl) ether	ug/kg	100	BDL	BDL	BDL	BDL
Benzo(a)pyrene	ug/kg	100	BDL	144.0	BDL	BDL
Bis-(2-ethylhexyl) phthalate	ug/kg	500	BDL	BDL	BDL	BDL
4-Bromophenylphenylether	ug/kg	100	BDL	BDL	BDL	BDL
bis(2-Chloroethoxy) methane	ug/kg	100	BDL	BDL	BDL	BDL
Butylbenzyl phthalate	ug/kg	100	BDL	BDL	BDL	BDL
Carbazole	ug/kg	100	BDL	BDL	BDL	BDL
2-Chloronaphthalene	ug/kg	100	BDL	BDL	BDL	BDL
4-Chlorophenyl phenyl ether	ug/kg	100	BDL	BDL	BDL	BDL
Chrysene	ug/kg	100	BDL	118.0	BDL	BDL
Dibenzo(a,h) anthracene	ug/kg	500	BDL	BDL	BDL	BDL
1,2-Dichlorobenzene	ug/kg	100	BDL	BDL	BDL	BDL
1,3-Dichlorobenzene	ug/kg	100	BDL	BDL	BDL	BDL
1,4-Dichlorobenzene	ug/kg	100	BDL	BDL	BDL	BDL
3,3-Dichlorobenzidine	ug/kg	100	BDL	BDL	BDL	BDL
Diethyl phthalate	ug/kg	100	BDL	BDL	BDL	BDL
Dimethyl phthalate	ug/kg	100	BDL	BDL	BDL	BDL
Di-n-Butyl phthalate	ug/kg	100	BDL	BDL	BDL	BDL
2,4-Dinitrotoluene	ug/kg	100	BDL	BDL	BDL	BDL
2,6-Dinitrotoluene	ug/kg	100	BDL	BDL	BDL	BDL
Di-n-octyl phthalate	`ug/kg	100	BDL	BDL	BDL	BDL
1,2-Diphenylhydrazine	ug/kg	100	BDL	BDL	BDL	BDL
Fluoranthene	ug/kg	100	BDL	207.0	BDL	BDL
Fluorene	ug/kg	100	BDL	BDL	BDL	BDL
Hexachiorobenzene	ug/kg	100	BDL	BDL	BDL	BDL

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED : 02/25/09 DATE SAMPLES ANALYZED : 02/26/09 ANALYST : KM

EPA Method 8270 Modified

	MATRIX TYPE	-	S	S	S	S
	CTL SAMPLE NO.		2585	2586	2587	2588
	FIELD ID		SB-101 (9-10)	SB-11 (3.5-4)	SB-12 (3-4)	GEI-MW-13
PARAMETER	UNITS	MDL				
Hexachlorobutadiene	ug/kg	100	BDL	BDL	BDL	BDL
Hexachlorocyclopentadiene	ug/kg	100	BDL	BDL	BDL	BDL
Hexachloroethane	ug/kg	100	BDL	BDL	BDL	BDL
Indeno(1,2,3-cd) pyrene	ug/kg	500	BDL	BDL	BDL	BDL
Isophorone	ug/kg	100	BDL	BDL	BDL	BDL
2-Methylnaphthalene	ug/kg	100	BDL	BDL	BDL	BDL
Naphthalene	ug/kg	100	BDL	BDL	BDL	BDL
Nitrobenzene	ug/kg	100	BDL	BDL	BDL	BDL
N-Nitrosodimethylamine	ug/kg	100	BDL	BDL	BDL	BDL
N-Nitroso-di-n-propylamine	ug/kg	100	BDL	BDL	BDL	BDL
N-Nitrosodiphenylamine	ug/kg	100	BDL	BDL	BDL	BDL
Phenanthrene	ug/kg	100	BDL	BDL	BDL	BDL
Pyrene	ug/kg	100	BDL	193.0	BDL	BDL
1,2,4-Trichlorobenzene	ug/kg	100	BDL	BDL	BDL	BDL
2-Chlorophenol	ug/kg	500	BDL	BDL	BDL	BDL
2,4-Dichlorophenol	ug/kg	500	BDL	BDL	BDL	BDL
2,4-Dimethylphenol	ug/kg	500	BDL	BDL	BDL	BDL
4,6-Dinitro-2-methylphenol	ug/kg	500	BDL	BDL	BDL	BDL
2,4-Dinitrophenol	ug/kg	500	BDL	BDL	BDL	BDL
2-Nitrophenol	ug/kg	500	BDL	BDL	BDL	BDL
4-Nitrophenol	ug/kg	500	BDL	BDL	BDL	BDL
4-Chioro-3-methyiphenol	ug/kg	500	BDL	BDL	BDL	BDL
Pentachlorophenol	ug/kg	500	BDL	BDL	BDL	BDL
Phenol	ug/kg	500	BDL	BDL	BDL	BDL
2,4,6-Trichlorophenol	ug/kg	500	BDL	BDL	BDL	BDL
Phenol-d6 (SR)	. %		103	100	106	106
Nitrobenzene-d5 (SR)	%		108	105	104	106
2-Fluorobiphenyl (SR)	%		100	101	104	103
2,4,6-Tribromophenol (SR)	%		94	91	92	100
p-Terphenvl-d14 (SR)	%		93	94	94	96

MDL=METHOD DETECTION LEVEL BDL=BELOW DETECTION LEVEL SR=SURROGATE RECOVERY

MATRIX TYPES

W=WATER/AQUEOUS S=SOIL/SOLID

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED : 02/25/09 DATE SAMPLES ANALYZED : 02/26/09 ANALYST : KM

EPA Method 8270 Modified

CTL	MATRIX TYPE . SAMPLE NO. FIELD ID		S 2589 SB-14		
PARAMETER	UNITS	MDL			
Acenaphthene	ug/kg	100	BDL		
Acenaphthylene	ug/kg	100	BDL		
Anthracene	ug/kg	100	BDL		
Benzidine	ug/kg	100	BDL		
Benzo(a)anthracene	ug/kg	100	105.0		
Benzo(b)fluoranthene	ug/kg	100	BDL		
Benzo(k)fluoranthene	ug/kg	100	BDL		
Bis(2-chloroethyl) ether	ug/kg	100	BDL		
Benzo(g,h,i)perylene	ug/kg	500	BDL		
Bis(2-chloroisopropyl) ether	ug/kg	100	BDL		
Benzo(a)pyrene	ug/kg	100	BDL		
Bis-(2-ethylhexyl) phthalate	ug/kg	500	BDL		-
4-Bromophenylphenylether	ug/kg	100	BDL		
bis(2-Chloroethoxy) methane	ug/kg	100	BDL		
Butylbenzyl phthalate	ug/kg	100	BDL	 	
Carbazole	ug/kg	100	BDL		
2-Chloronaphthalene	ug/kg	100	BDL		
4-Chlorophenyl phenyl ether	ug/kg	100	BDL		
Chrysene	ug/kg	100	109.0		
Dibenzo(a,h) anthracene	ug/kg	500	BDL	 	····
1,2-Dichlorobenzene	ug/kg	100	BDL		
1,3-Dichlorobenzene	ug/kg	100	BDL	 	
1,4-Dichlorobenzene	ug/kg	100	BDL	 	
3,3-Dichlorobenzidine	ug/kg	100	BDL		
Diethyl phthalate	ug/kg	100	BDL	 	
Dimethyl phthalate	ug/kg	100	BDL		
Di-n-Butyl phthalate	ug/kg	100	BDL		
2,4-Dinitrotoluene	ug/kg	100	BDL		
2,6-Dinitrotoluene	ug/kg	100	BDL		
Di-n-octyl phthalate	ug/kg	100	BDL	 	
1,2-Diphenylhydrazine	ug/kg	100	BDL	 	
Fluoranthene	ug/kg	100	221.0		
Fluorene	ug/kg	100	BDL	 	
Hexachlorobenzene	ug/kg	100	BDL		

LAB NUMBER : 0209261 JOB NUMBER : S828 (090500) REPORT DATE : 03/02/09

DATE SAMPLES RECEIVED : 02/20/09 DATE SAMPLES EXTRACTED : 02/25/09 DATE SAMPLES ANALYZED : 02/26/09 ANALYST : KM

EPA Method 8270 Modified

1	MATRIX TYPE CTL SAMPLE NO. FIELD ID		S 2589 SB-14		
PARAMETER	UNITS	MDL			
Hexachlorobutadiene	ug/kg	100	BDL		
Hexachlorocyclopentadiene	ug/kg	100	BDL		
Hexachloroethane	ug/kg	100	BDL		
Indeno(1,2,3-cd) pyrene	ug/kg	500	BDL		
Isophorone	ug/kg	100	BDL		
2-Methylnaphthalene	ug/kg	100	BDL		
Naphthalene	ug/kg	100	BDL		
Nitrobenzene	ug/kg	100	BDL		
N-Nitrosodimethylamine	ug/kg	100	BDL		
N-Nitroso-di-n-propylamine	ug/kg	100	BDL		
N-Nitrosodiphenylamine	ug/kg	100	BDL		
Phenanthrene	ug/kg	100	119.0		
Pyrene	ug/kg	100	201.0		
1,2,4-Trichlorobenzene	ug/kg	100	BDL		
2-Chlorophenol	ug/kg	500	BDL		
2,4-Dichlorophenol	ug/kg	500	BDL		
2,4-Dimethylphenol	ug/kg	500	BDL		
4,6-Dinitro-2-methylphenol	ug/kg	500	BDL	 	
2,4-Dinitrophenol	ug/kg	500	BDL	 	
2-Nitrophenol	ug/kg	500	BDL		
4-Nitrophenol	ug/kg	500	BDL		
4-Chloro-3-methylphenol	ug/kg	500	BDL	 	
Pentachlorophenol	ug/kg ·	500	BDL		
Phenol	ug/kg	500	BDL	 	
2,4,6-Trichlorophenol	ug/kg	500	BDL	 1	
Phenol-d6 (SR)	%		101	 	
Nitrobenzene-d5 (SR)	%		105	 1	
2-Fluorobiphenyl (SR)	%		101	 	
2,4,6-Tribromophenol (SR)	%		96		
p-Terphenyl-d14 (SR)	%		93		

MDL=METHOD DETECTION LEVEL BDL=BELOW DETECTION LEVEL SR=SURROGATE RECOVERY

MATRIX TYPES

W=WATER/AQUEOUS S=SOIL/SOLID

icut tories in:	2 2 otal Number of Containers				1 Time		<u> </u>	e charges.
connect testing labora	Container Tur				e Encores Frozen :	5 Day	10 Day	e subject to priority fi Page
				e T≖Tediar Bag ter En = Encore Typ	atory. (Signature)	3 Day*	4 Day*	lan " 5 Days" may b
d Analyses				EPA Vial S = Steril = Wipe Empty Vial W= Wa	Revelved By Labor	24 HR*	48 HR*	around times less th
RECORD				= Amber Glass V = Vater S = Soil Wp dium Bisulfate Ev =		Date / Time	Date / Time	*Turna
IN OF CUSTODY	HI 1915	X		Plastic C = Cube AG ater DW = Drinking V = Methanol SB = Sou RTTYPE	tate EDI			
СНА	nature) 11) Preserv Arrix Codia	<u> </u>		ntainer Types : P = 1 ttrix : A = Air W= We 35 Preservation : M 1 DATA REPOI		ceived By: (Signature)	ceived By: (Signature)	cords.
		a			Re 2 [40] *5	/ Time Re	/ Time Re	in of Custody Rec
	6020 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0/n7/2		da ca la	ht tan 13	Date	Date	ectly filled out Chapt.
	SET 837 400 Acc	1M-18		REPORT INFORM	EI Lens	Marie (iature)	eid liable for incorre 45 days from recei
Lab Tracking #:	CTL Client:	N		Send Report To: CE Email Report To: Quote ID	Involce To: Fax Report To: RSR Griferia (Check C	Relinquished By: (Sign	Relinquished By: (Sigr	CTL will not be h Samples held for

Connecticut Testing Laboratories, Inc. 165 Gracey Ave. / Meriden, CT 06451 Tel. (203) 634-3731 / Fax (203) 630-1336 ODICIMIAI

, ¹ ;

CHAIN OF CUSTODY RECORD

165 Gracey Ave. / Meriden, CT 06451 Tel. (203) 634-3731 / Fax (203) 630-1336 ADICIMAI

		CHAIN OF CUSTODY RECORD	PILO HOLDER
l ah Tracking #:		096500 Request	ad Analyses
CTL Client: GE '			
Client Po # <u>\$\$36</u>	090500		Conta
Sampler(8): Stor Car	and the	_(signature)	
· SESSIE Mr. M. Sker	Ryan Acord	L(print) Preserv	
Lab Use Field ID (please print)	. Date Time	Matrix Code	Container Type Code
SS-2D(b)	3,19,09 6001700	×	
55-21(b)			
(m) (m)			
(b) 25-24 (b)			
(a) 25-25 (b)			
55 - 26 (10)			
55 - 27 (b)) <u>,</u> a	~	
*			
REPORT INFORMATION		Container Types : P = Plastic C = Cube AG = Amber Glass V =	EPA Vial S = Sterile T ≖Tediar Bag
Send Report To: GARY ANARY A		Matrix: A = Air W= Water DW = Drinking Water S = Soil W	j≖ Wipe • Emmit Vial MJ- Writer En = Encore Time
Quote ID	way arve usite		
			Doccined Del Abendrani (Stanon ica) i Data / Time
liivutei to. Fax Renort To:			TMA MICHIA Web 3/20/07 (120
		PDF Email	Samples Iced Date Encores Frozen :
RSR Criteria Check One) & WP GA + \$	3WP 3/21/00 1:20	*Specify	Temp C :
Reinpulshed By: (Signature)	Date / Time	Received By: (Signature) Date / Time	Turn Around Time
			24 HR* 3 Day* 5 Day X
Relinquished By: (Signature)	Date / Time	Received By: (Signature) Date / Time	
CTL will not be held liable for incorrectly fil	led out Chain of Custody	rturr *Turr	iaround times less than " 5 Days" may be subject to priority fee charges.
outinities held for 40 days it of the technic			Page 2 of S
		Connecticut Testing Laboratories. Inc.	

Tel. (203) 634-3731 / Fax (203) 630-1336

d Analyses	stanistan) to radmir/ 6	Container Type Code					EPA Vial S = Sterile T =Tedlar Bag = Wipe Empty Vial W≖ Water En = Encore Type		Temp C : Date Encores Frozen :	Turn Around Time	24 HR* 3 Day* 5 Day 48 HR* 4 Day* 10 Day	around times less than " 5 Days" may be subject to priority fee charges. Page $\frac{1}{1}$ of $\frac{3}{2}$	
Requeste	Bignature) Preserv	Matrix Code y C y u y u y		× ×	× × × ×	V X X X V	Container Types:P = Plastic C = Cube AG = Amber Glass V = F Matrix:A = Air W= Water DW = Drinking Water S = Soil Wp= 5035 Preservation:M = Methanol SB = Sodium Bisulfate Ev = I	DATA REPORT TYPE	PDF Catality Control & Catality	*Specify Date / Time By: (Signature)	Received By: (Signature) Date / Time	Records. *Turna	Connecticut Testing Laboratories, Inc. 165 Gracey Ave. / Meriden, CT 06451 Tel. (203) 634-3731 / Fax (203) 630-1336 Аргении
Lab Tracking #:	CTL Client: <u>CE1 CONSULTANTS</u> Client PO# <u>S&2 & Conservants</u> (C905-00) Sampler(s): <u>Essik</u> McCus/EEL (6	Lab Use Field ID (please print) Date Time SB-4 S0-1 002.6 0530	56-3 (2-3) 2-11,04 0740 56-3 (2-3) 1000 55-4 (55-6) 892	38-6 (1-5a) 1-95	<u>SB-8 (II)</u> <u>SB-8 (II)</u> <u>1130</u>	58-10 (10-11) V 1200	Send Report To: CAEN TADARY A Email Report To: CAEN TADARY A Email Report To: CAEN GYOUND OF ICONTUNTANTS COM		Fax Report To:	Reinquished By: (\$Ignature) Date / Time F	Relinquished Bu/(Signature) Date / Time F	CTL will not be held liable for incorrectly filled out Chain of Custody F Samples held for 45 days from receipt.	

CHAIN OF CUSTODY RECORD

Analyses	tal Number of Containers	Container Type Code		A Vial S = Sterile T = Tediar Bag Mipe mpty Vial Water En = Encore Type	Received by Laboratery 75 information and the pate of Time and the contract of the pate of the pate of the pate frozen in temp C :	Turn Around Time 24 HR* 3 Day* 5 Day 10 Day 48 HR* 4 Day* 10 Day 10 Day	und times less than " 5 Days" may be subject to priority fee charges. Page <u>A</u> of <u>A</u>
Requested	(signature) (print) (print) Preserv LL, C,	Matrix Code		Container Types : P = Plastic C = Cube AG = Amber Glass V = EP Matrix : A = Air W= Water DW = Drinking Water S = Soil Wp= V 5035 Preservation : M = Methanol SB = Sodium Bisulfate Ev = En	DATA REPORT TYPE RCP State EDI Excel K Other * PDF Email *	Received By: (Signature) Date / Time Received By: (Signature) Date / Time	Records. *Turnaro Connecticut Testing Laboratories, Inc. 165 Gracey Ave. / Meriden, CT 06451 Tel. (203) 634-3731 / Fax (203) 630-1336 Antonio Ave.
	ITANTS BORED (090500) Jusker	10) 2-19.09 1330 - 2.19.09 1400 - 2.19.09 1400	2.20.09 930 2.20.09 930 2.2009 110 2.2009 110	VTION NTION NOT A Of ICONSULTANCOM	SWP	Date / Time A.M.M. 33	ctly filled out Chain of Custody i pt.
Lab Tracking #:	CTL Client: GEJ Conscu Client Po # S & 2 & 668 Sample si E & 666	SB-101(9- 58-11(3.5-4) 56-12(3-4) 6£1-MW-13	58-14 55-1 55-3 55-3	REPORT INFORMA Send Report To: <u>CAKUT MOAR</u> Email Report To: <u>OFTAG TOU DE</u> Quote ID	Invoice To: Fax Report To: RSR Criteria (Check One) GWP GA	Relinquished By: (Signature) Relinquished By: (Signature)	CTL will not be held liable for incorre- Samples held for 45 days from receip

CHAIN OF CUSTODY RECORD